nessquik 2.5

Developer Guide

Tim Rupp

Last Modified
07/06/2007

Table of Contents

| 010 4o T4 LT 5 (o) 3 U UUUUURRPRN 5
2 PrOTEQUISIIES. ...eeeiiieeiiieeeitte ettt ettt e ettt e ettt e ettt e e bt e e e abbeeeabeeesabteeeabaeensbeessbeeennnsbbaeeeeesennnneeeeas 6
3. Coding STANAATAS.cc..iiiiiiiieie ettt e et e enees 8
L O00) 111111S 11 TSSO PP P PR USPP PRI 8

— GUIAEIINES.ttt ettt e b e st et eeab e e bt e st e e be e et e e e e sbbeeeeaas 8
—PHPAOC TaZS. ...ttt ettt e st e ettt e et e sttt e ettt e s bt e e e bt eesnbeeeenbaeeanbeeennraeenan 8
—Function and Class COMMENLS.........ccuuiiieriiieeeiiiiieeeeiieeeeesiteeeeebteeeessetreeessbeereereeeeeeeeaaaeaaeeeaeenns 8

® FOTMIATHINE. .ottt ettt e bt e et e bt e st e e bt e ea bt e bt e e s eab bt e e e bt eeeennaee 9
INAENENE. ..ttt e e et e e 9
PHP TAZS. ..o e e 9

L S 101 0] 161 OO SRS P SRRSO 9

A 25 4 TS (0] 1 SO OO O OSSO PP P PTSUPRPIUPPPUPPRN 10

® FUINICHIONS. ..ttt ettt s ae et e s bt e et e e shb e e bt e e eabb e e e s abbeeeeanteeeenaes 10
—FUNCHON CallS.. .ttt et st ettt e e e e s 10

— FUNCHION DETINITIONS.iiiiiiiiiiie ettt ettt e et e et e e et eeetaeeessteeesasaaeaeeeansssaneaeens 11

® NN, .ttt eiee et ettt e e et e e ettt e et ee e taee e sbeeesaaeesasseeensaeeensaeesaseeeanseeeanseeeanseeeansabeeeeeeennnnareeeaeans 11

L 010 118 o) BN 4 17 1 4L SRR 12

o INCluding PHP FHIES.....cocuuiiiiiie ettt ettt e e e e e 13

4. ATCRITECTUTC.teeiteeiieeeiie ettt ettt ettt e et et e st e bt e e bt e bt e sat e e bt e e ab e e st e sate e bt e eabeebeesateenanneeesnneee 14
® NESSQUIK WED GUIL....ooiiiiiiiiee ettt et e st e e ateeesbeeeebeeensnaeeas 14

® NESSQUIK CHIEIMT. ..ottt ettt ettt e s e e st e e ittt e e e e e abbeeeeeeeaas 14

R Y S ettt et e et e ettt e e e e et eeee s 14

® SCAN-INE-TIOW.....euteeiieenttenirteteeniteeteeeuteebeesaeeeabeeeseeeabeesaseeabeeeaseeaseesateesseeesneeabeesaseenbeesaneeseenaneeneeeans 14

® POTESCAN-TIIETIOW....ceuuuteeutreenuteeeautteeniteeenueeeesuteesateesseeesasteesabeeeaasteeasseesabeesbaeessbeesabbeeseasasbnneeeesennns 14

5. What's Available and WRETE........cc.cooiiiiiiiiiii e e 16
® DiIreCtOry HICTATCHYviiiiiiiiiiiie ettt e st e et e e et eesaaeeenebeeensaeeensneeeaeens 16
TASYTIC. ettt st b e e bt e e b e e e ab e e e aa e e e et e e a e e e e e s e naraeeeee s 16

e 18] 11 TSRS 17

St Lo OO OO PO PO TSRO P PP UPPPPRRPTP 17
DS ettt a e st h e et a e st e bt e e ea e nae e st e e e e r et e e nannee s 18
OCS e e h et h et e bt e a e h et et e e bt e e ab e e bt eabe e e e teeeeeabaeees 18

o AITIAZS e eutteenitee ettt e ettt e et e et e et e et e et ee e ab e e e atee e bt e e s bt e e e bt e e e bt e e a b e e e enbee e nbee e nteeenbeeeeeennnbateeeens 18
ANIE et ettt et e eat e et e et e e e naees 18

O ettt e bt e e a bt e et e e bt e e bt e e e bt e e nabteeeabbaeeee s 19

8] £ ST TP PO P PSSO T OO PP RRORRRRRPRPPPRt 19
L1 10 £ F PRSP 20
L5110 o U OO OO OO TP PO PP PPPUPPP 20

e 511010 B TSP PP PPPPP 20
153111 0] B 11T OO TP P PP 21

e LS 1 VPSRRIt 21

B 014 16 (<SOSR 21

.4 101 1531 O USSP P P PRSPPI 22
Database SCREMA.c..coiiiiiiiii ettt st ettt et e s 23
® AIVISION_ZIOUP_TIST. ittt ettt ettt et e ettt e et e e e bt e e e e eaabbteeeeeeeas 24
L 1 1<) o T OO PP PPU R UPPTPPPPR 24
® NEIP_CALEZOTIES. ..ceutiiuiieiieiieeet ettt ettt e et s e et e st e e b st e e b e st e e s enneeeeaanee 26
L 1115 2 ¢ OO OO OO OO P PO PP O PP UPPPRUPPPPRINt 26
* metrics_hiStOrIC_SCAN_TIENAS.....cc.uiiiiiiriieiieiiceeeete ettt ettt ettt e st e e e nnee e e 28
LB 4T 1) B 1 U210 (1 PR 29
L o) 11 Fe 1 USRS OUPPPRR 30
L o) (0] 5 (S VT T OO T OO OSSP UTUPPRRTUPPPRURPPRRNt 32
o Profile_MAachine_LISt.......coouiiiiiiiiiiiiiie ettt ettt e e et e e e 33
¢ PIOTIIE_PIUGIN_TIST. . eiiiiiieiiiieiiie ettt ettt ettt e e st e e st e e it e sttt eeeeessnnbbaeeeaenas 34
® PIOTIIE SEUIIIEZS. c.uveeeieeiiieeiieeie ettt ettt ettt st et et e b e st e e bt e ean e e e satneeesnnneeeeaanee 36
® TECUITEIICE. ... eeutteeuteetteeuteeaute et eeueeeateeatteease e bt e eabeeabeeeabe e beeeab e e bt e eabe e st e sabeembeeesbeeabeesabeenabaeeesanneeeeennnee 39
® SAVEA_SCAN_TESULLS. c...eiiiiiiiiiiieitteet ettt ettt et et e e bt e st e s bt e eabeesbeesareenneeeane 41
® SCATL_PTOZIESS . eeeuurteeutteeautteeueeesauteeaauteeasteeaasteeeasaeeeasteeaasaeeaaseeeaabeeebbeeesbeeeasbee e e abb bt eeeeeenabrbeeeeeeaas 42
® SCATINETS. ¢eutteeuiteeeutte ettt eeateeeeateeeeate e ettt e e bt e eeabbeeeabteeeabbeeeabe e e eabeeeebb et e e bt e e e bt e e e bt e e sttt e e e e e eabbbeeeeeeeas 43
® SCATMETS _ZIOUPS.c.utteeutteeuteerureeaauseeasteeasteessteeaasteesasteesssaeesasteeasseeeasseeansseeasseessanssseeeeesenanssnaeeeeanns 44
o special_plugin_ Profile.........cooui it e 45
o special_plugin_profile_GIrOUPS........ceieiiiiiiiiiiiie ettt ettt e st e e e e et eee e e 46
o special_plugin_profile_TtemS.ccoiuiiiiiiiiiiiiiiie ettt e 47
& WHIERIISE. ¢ttt ettt b et ha e e bt e e ab bt e e s st ne e e e nteeeeeaee 48
. DEVEIOPING IMELTICS. ¢ uevieiiiieiiiie ettt ettt ettt et e st e e st e e sab e e sabee e st e e ensbeesnsbeesnsaseeeeeesnnnnseees 50
® MELTICS APt e e et e e e et e e e s e e e e tae e e e e araeeeeatbaaeeennnaaaeeannnaes 50
FaN 2d EJ OO OO SO U PR PPRUPPP 51
© JODS AP .t h ettt et h et et e bt e et e b et e e bt e et 52
e Using the JObS APTIN PHP......ccccoiiiiiiiieeeeeee ettt ettt e e e e 53
—Creating a NEW CHENT ODJECT...c...uiiiiiiiiiieiiie ettt e 53
—Get the list of target machines for a particular profile...........ccccoviriiiniiniiniiieee, 53

— Ask the server for a list of all the PIUZINS......ccc.eiiriiiiiiiiiiieceeeee e 54

—Get the plugins for a particular Profile...........ccocueiiiiiiiiiiiniiie e 54
—Get the profile settings for a particular profile............ccceevuiieiiiieiiieeieece e 54
—Get a list of the top X pending profile IDS...........coocuiiiriiiiiiiiiiieeeeeeeee e 55
—Get the status of @ Scan Profile.........c..ooiiiiiiiiiiiiiii e 55
—Determine if a scan has been canceled............coouoiiiiiiiiiiiiiii 56
—Determine the number of scans being run by a client right NOW..........ccccceviiiniiiiniiiiiinee. 56
—Specifically get plugins from @ SEVEIILY CYPE......cocueeieeriirriierieeiierie e 57
—Specifically get plugins from a family.........ccceeiiiiiiiiiiiiiii e 57
—Get items in a specific scan profiles' special plugin liSt.........ccocueeriiieriiiiniiieeniiiieeee e, 57
—Reset a canceled, running, SCANS' SEATUS.veeeevieeriiieeriieeeieeesieeesteeesteeeseeeesereeesaeesseeessssaeeeeens 58
—SEt A SCAN'S CUITENT PIOZIESS. ¢ uuvrteeeeiuirteeersiiteeesaiitteeeasttteeeasutteeessastteeessssteessssssaeessssnnnnsnssnssssnnnes 59
—Change @ SCAN'S STATUS.....ceeuutteriieiiiie ettt ettt ettt e ettt e et e et e e e bt e e s bt e e sabeeesabeeesabeeeeeaanbeneeas 60
—Set ascan's fINISh date.........coiiiiiiiiii e 61

— SAVE & SCAN TEPOTE.c...eeiuiiieeitieeitee ettt ettt ettt et e et e s bt e sbt e e sabb e e s bt e e sabteesabeeesabeeeeeeesnsbaeeeeeas 62
—Email SCAN TESULLS 10 USETS...ceeuiiiiiiieeiiieeiiee ettt ettt et e et e st e st e st e e e e e anbeneees 63
—Add entry to eXemption taDIE.........c..oiiiiiiiiiiiiiiie e e 64

© SYSOPS APL..ceee e ettt e et e et e et e e e abeesateeeareenaas 66

® USING the SYSOPS APL.....ooiieiieeeeeeeeee ettt et e et e st e e s bt eessaeesnbaeeeeesnnsaneeeaeans 66
—Creating a NEW CHENT ODJECT...cc.uuiiiiiiiiiieeeiieeeiee et ettt e et e et e e et eeseaeesanaeesnsaeennneas 66
—Mark a nessquik client's scanner as being Offline............cccoeoeeiiiiiiiiiniiie 67
—Mark a nessquik client's scanner as being Online..........cccceeueeriiriiiinieiiienieeee e 67

9. Typical Program FIOW.........c..cooiiiiiiiiiiieceee ettt sttt et e e e 68
10.Templates VS. TREMES.cooiuiiiiiiieiie ettt et e et e st e e st e e s bbeesnbaeesnnseaeeas 69
LTUDIE TESTNME. .ttt ettt st ettt et s e e b e san et e st e e sbeeeeneesseeeaneesaneenneenaneens 70
12.Bug Fixes, Enhancements, Patches in General.............ccocceeiviiiiniiiiiiiiiiniieeieeeieeeeeee e 71
13.Appendix A — nessquik Development INfrastructure...........cooveevieriieiieniiiiieniececeeeeesee e 72
14. Appendix B — RETEIENCES.eiiiiiiiiiiiiiiieeeee ettt ettt e e e ettt e e e e e aeae s 73
15.Appendix C - Special Plugin Profiles. ..ottt 74

Introduction

This document provides detailed information, regarding nessquik, that developers may need if
they decide to modify or enhance the system. It is divided into many sections, but overall it starts off
general and becomes more specific. I start with what I consider the prerequisites for developing
nessquik. This includes necessary software and suggested network configuration. Coding standards that

must be followed are presented after that.

nessquik's architecture is presented next and includes information about the web UlI, client, and
nessquik's optional additions, scan-me-now and portscan-me-now. I also touch upon the reasoning for

the particular architecture, caveats and limitations it presents, and what is being planned for the future.

File structure is the next topic addressed. To be familiar with the code, it's handy to know where

everything is and what the different directories contain.

This document uses several conventions. They are listed here for both your convenience and my

convenience.
1. Text that refers to nessquik code uses the font type cour i er

2. Example code, for instance in the API section, is given a 20% gray background (according to

OpenOffice) for clarity during reading.

Prerequisites

I'm making the assumption that the reader has the following proficiencies.
® Moderate knowledge of the various outputs generated by the Nessus Vulnerability Scanner
® Advanced knowledge of the PHP scripting language

® Moderate to advanced knowledge of the Linux operating system. In particular Red Hat

derivatives.
® Moderate knowledge of the MySQL database

I don't recommend that you modify code on a production system. That said, I think it's
beneficial that you have high quality sample data to work with. I've found the only way to get good test

data is to let people use the system and generate that data.

Create a backup of any live databases, and use them as your sample data when modifying the
system. Ideally you'll have a separate instance of nessquik available on a different machine. This will

prevent you from stepping on any production code.

I expect that you'll be using the latest release of PHP 5 for development purposes. For the
general release of nessquik, a standard install of PHP 5 will work. For Fermi or site specific

development, PHP will need to also have the following compiled and available
® PostgreSQL support
® Oracle Support

A copy of nessquik 2.5 with all the trimmings, including portscan-me-now and scan-me-now is also

assumed.

nessquik is designed to work on Linux operating systems. No support is available for any other

operating system. For this document, Scientific Linux Fermi 4.4 (a derivative of Red Hat Enterprise

Linux 4) will be used.

For development purposes, a multi-tiered installation of nessquik is assumed. See the diagram

in Appendix A for details on the configuration that I am working with.

To recap, the following technical prerequisites should be met for development of nessquik.

e PHPS5 ® Valid nessquik installation
e MySQL 4.x ® Good sample data available
® Apache 2.x ® Network layout is known. (See Appendix A

® Linux. example: Red Hat for an example)

Coding Standards

To add to ease of readability and future maintenance, the following coding standards are used.
If you decide to make changes to the software, it is expected that you abide by these guidelines. Any

code that is submitted without following these guidelines will be returned to the sender.

Note that many of these guidelines have been borrowed (in certain cases word for word) from
the GForge open source project. I've found that their expectations are very close to mine, and therefore
instead of duplicating the effort of writing some of the standards, I have instead copied theirs. See the

References section in Appendix B for a direct link to the GForge coding standards.
Comments

Guidelines

Non-documentation comments are strongly encouraged. A general rule of thumb is that if you look at a
section of code and think "Wow, I don't want to try and describe that", you need to comment it before
you forget how it works.

® C++ style comments (/* */) and standard C comments (//) are both acceptable.

® Use of perl/shell style comments (#) is prohibited.

PHPdoc Tags

Inline documentation for classes should follow the PHPDoc convention, similar to Javadoc. More

information about PHPDoc can be found here:

http://www.phpdoc.de/

Function and Class Comments

Similarly, every function should have a block comment specifying name, parameters, and return

values.
/ * %

* brief description
* long description. nore | ong description

*

* @uthor firstnanme | astnane enai
* @aram variable description
* @eturn val ue descri ption

* @Bee
*
Note

The placement of periods in the short and long descriptions is important to the PHPdoc parser. The first
period always ends the short description. All future periods are part of the long description, ending

with a blank comment line. The long comment is optional.

Formatting

Indenting

All indenting is done with TABS. Before committing any file to SVN, make sure you first replace

spaces with tabs and verify the formatting.

PHP Tags

The use of <?php ?> to delimit PHP code is required. Using <? ?> is not valid. This is the most
portable way to include PHP code on differing operating systems and webserver setups. Also, XML

parsers are confused by the shorthand syntax.

Templating
The Smarty templating engine is used for 99% of the output generated by nessquik. Templates should

9

contain display code and internal smarty operators only. Embedded PHP is not allowed in the templates

even though Smarty supports this.

Expressions

® Use parentheses liberally to resolve ambiguity.

® Using parentheses can force an order of evaluation. This saves the time a reader may spend
remembering precedence of operators.

® Don't sacrifice clarity for cleverness.

® Write conditional expressions so that they read naturally aloud.

® Keep each line simple.

® The ternary operator (X ? 1 : 2) usually indicates too much code on one line. i f . . .

el se if... el seisusually more readable.

Functions

Function Calls

Functions shall be called with no spaces between the function name, the opening parenthesis, and the
first parameter; spaces between commas and each parameter, and no space between the last parameter,

the closing parenthesis, and the semicolon. Here's an example:
$var = foo($bar, $baz, $buz);

As displayed above, there should be one space on either side of an equals sign used to assign the return
value of a function to a variable. In the case of a block of related assignments, more space may be

inserted to promote readability:

$short f oo($bar);

$l ong_vari abl e = foo($baz);

10

Function Definitions

Function declarations using the following convention:

function foo_function($argl, $arg2 = "") {
if (condition) {
st at enent ;
}

return $val

}

Arguments with default values go at the end of the argument list. Always attempt to return a

meaningful value from a function if one is appropriate. Here is a slightly longer example:

function connect (&$dsn, $persistent = false) {
if (is_array($dsn)) {
$dsni nfo = &$dsn;
} else {
$dsni nfo = DB:: par seDSN($dsn) ;

if (!$dsninfo || !'$dsninfo[' phptype']) {
return $this->raisekrror();

return true;

Naming

Constants should always be uppercase, with underscores to separate words.
® True and false are built in to the php language and behave like constants, but should be written

in lowercase to distinguish them from user-defined constants.

11

® Function names should suggest an action or verb: updateAddress,
makeStateSelector

® Variable names should suggest a property or noun: UserName, Width

® Use pronounceable names. Common abbreviations are acceptable as long as they are used the
same way throughout the project.

® Be consistent, use parallelism. If you are abbreviating number as 'mum', always use that
abbreviation. Don't switch to using no or nmbr.

® Database tables should be named with underscores _ between words like: my_table and
indexes on tables should be named with the table name first with the underscores removed, then
field names mytable_fieldlfield?2.

® Variable names such as $x or $y are prohibited except in the case of loops where the value of
the variable is an integer, and only used for the purpose of incrementing. In the rare times that
poor variables names like these are used, inline documentation should be provided describing

what the loop does.

$address_info = array(...);

for ($i = 0; $ < count(S$list); $i++)

Control Structures

These include if, for, while, switch, etc. Here is an example if statement, since it if the most

complicated form.

if ((conditionl) || (condition2)) {
actionl;

} elseif ((condition3) && (conditiond)) {
actionz;

} else {
def aul tacti on;

12

Control statements shall have one space between the control keyword and opening parenthesis, to

distinguish them from function calls.

You should use curly braces even in situations where they are technically optional. Having them
increases readability and decreases the likelihood of logic errors being introduced when new lines are

added.

Switch statements are the exception to the rule above. The following is allowed:

switch ($condition) {

case 1:
actionl;
br eak;

case 2:
action2;
br eak;

defaul t:

def aul t acti on;
br eak;

Including PHP Files

Anywhere you are unconditionally including a class file, use require_once. Anywhere you are
conditionally including a class file (for example, factory methods), use include_once. Either of these
will ensure that class files are included only once. They share the same file list, so you don't need to
worry about mixing them - a file included with require_once will not be included again by
include_once. Note: include_once and require_once are keywords, not functions. You don't need
parentheses around the filename to be included, however you should do it anyway. Use of the constant

prefix _ABSPATH is required as well to make sure you are including local install files only.

i ncl ude(_ABSPATH.' /1i b/ pre. php');

13

Architecture

nessquik Web GUI

The web GUI provides the primary interface to the users. All activity related to creating scans,
editing saved scans, and viewing results, is performed through the web. The GUI is a mixture of
Javascript and HTML. It makes use of the Scriptaculous suite of javascript code. This library includes

the prototype.js library. The backend nessquik code is written in PHP.

nessquik client

The nessquik client is used to schedule scans on Nessus servers. At this point in time a nessquik

client is required on each Nessus scanner that will be used to run scans.

Keys

To mildly control who is able to access the Jobs API provided by nessquik, client keys are used
to distinguish which nessquik clients and which. This is a temporary solution and it is expected

to change in the future.

scan-me-now

scan-me-now is a separate product from nessquik. It allows users to point their browser or other
network aware software at the scan-me-now software and perform a full Nessus against the device
contacting the server. scan-me-now allows adminsitrators to give their users the ability to perform their

own full scan when it is convenient for them.

portscan-me-now

portscan-me-now is a separate product from nessquik. It allows a user to point their browser or

14

other network aware software at the portscan-me-now software and perform a number of different port
scans against the device using Nmap. portscan-me-now allows administrators to give their users the

ability to perform their own scan when it is convenient for them.

15

What's Available and Where

Directory Hierarchy

nessquik's file structure is organized into several subdirectories. The majority of the code that

performs page updating tasks is included in the async/ directory.

async
Scripts that are run when asynchronous calls come in from the javascript code

The format of a these files typically looks like this

<?php

sessi on_nane(' nessqui k') ;
session_start();
if (!defined("_ABSPATH')) {
defi ne(" _ABSPATH', dirnanme(dirnanme(__FILE)));

/'l requires go here
require_once(_ABSPATH. ' /Ii b/ Smarty. php');

/'l gl obal variabl es cone next
$user nane = inport_var('usernane','S);

/'l Then instanti ate gl obal objects
$db
$t pl

nessqui kDB: : get | nst ance();

SmartyTenpl at e: : get |l nstance();

/'l Assign smarty paths
$tpl->tenplate_dir = _ABSPATH.'/tenpl ates/"';

16

$tpl->conpile_dir = _ABSPATH.'/tenplates_c/"';

/'l Get your action
$action = inport _var('action', 'P);

/1 Switch on your action
sw tch($action) {
case "javascript_action":
actionl,
br eak;
case “javascript_action_2":

action2;
br eak:
}
?2>
confs

Configuration files that are specific to the nessquik web-ui software.

For Fermi's version of nessquik, this directory also contains the errors/ folder which holds the
403.php script. This script is run when the user attempts to access the system without a valid KCA
certificate. This script is specific to Fermi's nessquik. It will display output that is formatted like the

rest of the system as opposed to a default 403 error page generated by Apache.

db

Database abstraction layers that nessquik supports.

nessquik uses MySQL as it's primary database, however many more databases are supported
out of necessity in Fermilab's environment. An abstraction layer for the Postgres database is included,
and a stripped down version of ADODB is included for Oracle support. As per a request, I have also

included MySQL1 support as a replacement for the generic MySQL support in PHP.

17

deps
Software that I consider dependencies for nessquik.

For the general release of nessquik, the nessquik client is the only dependency. For Fermilab's

installation, the PHP oci8 PECL extension and a directory for certificate redirection is included too.

docs
Documentation associated with nessquik

All the most current documentation is included in this folder. This includes items such as the
AUTHORS file, CHANGELOG, INSTALL, and README. Items that are more complete than the
provided documentation (such as this developer manual and the user manual) are made available from

the nessquik website.

images
Images that are displayed on all the webpages are kept here

If you have an image and want to use it on any webpage, it should be placed in this directory
and then referenced in the template using the path relative to the nessquik installation. For instance, the

image hand.png would be linked in a template as.

<inmg src="inmages/ hand. png” >

lang

Holds word constants for different languages

At this point in time, this directory includes nothing that is used by nessquik. Instead it is a
placeholder for the future when I begin to replace static wording in the template files with Smarty

variables. This directory may or may not be removed in the future, so please to not plan anything

18

around it.

lib
Contains all libraries of nessquik code

All libraries that nessquik uses are contained in this directory. These libraries include classes,

simple function files, and subdirectories which contain 3" party software.

logs

All nessquik generated log files go in this directory

If nessquik generates any log, that log will be written to this directory. Logs generally include
the timestamp that they were created in their filename. Logs should never overwrite each other, and
semi-random numbers have been added to files to make sure this doesnt happen. This directory by
default is not viewable from the web. An htaccess file exists in it that denies GET and POST access to

the directory.

opt

All optional software packaged with nessquik

nessquik includes several optional software packages in the release. These packages, such as
scan-me-now and portscan-me-now, are included in this directory. Unlike the linux /opt directory, none
of the software in this folder is required to go in /opt. Instead, each package includes its own

installation routines that should be followed.

19

scripts

Maintenance and routinly run scripts use by nessquik

For development purposes, several extra scripts are included in the scripts directory to facilitate
ease of maintaining the code. These scripts are normally removed before a release because they are
useless outside of my development environment. This scripts directory also includes scripts that are
necessary to make nessquik work properly. Normally users are instructed during installation to set up a

particular crontab configuration. These scripts are usually referenced in those particular steps.

setup

All files needed to set up nessquik correctly

During initial installation, users are directed to this folder to run scripts and perform tasks that
are needed to get nessquik up and running. Once installation is complete, it's advised that the user
remove this directory. At this point in time, none of the file can be run from the web. This makes more
sense that you might initially think because a majority of the nessquik installation steps require CLI

access anyway. In the future, a web based installation wized may become available.

templates

Web related output files are here

This directory should not be confused with another common practice in web design called
theming. Nessquik does not do themes, and there is no intention to ever add that functionality. The
templates contained in this directory are used instead simply to separate the PHP logic from the HTML

display logic.

20

templates_c

Smarty cache directory for generating web pages

This directory contains the cached files that Smarty will create when generating the webpages
displayed in nessquik. This directory needs to be writable by the webserver, but does not need to be
viewable by just anyone. It's recommended that htaccess files be used to restrict all access to this

directory. If these precautions are not taken, it could introduce a substantial security hole.

tests

nessquik unit tests and other testing infrastructure

Normally this directory is removed before a new release of nessquik is made. At this point in
time, the files contained in this directory are primarily PHPUnit test cases. They are run during
development to catch bugs before they are found by the general public. This directory didn't exist until
2.5. It was created out of upper management decision that came down the pipe requiring that all in-

house software packages be tested extensively before production release.

In the future many more tests will be added to this directory included UI tests using the

Selenium framework.

upgrade
Includes all scripts and documents necessary to upgrade nessquik

Each upgrade sub-directory in this directory contains the scripts, documentation and other files
that are needed to successfully upgrade nessquik from version to version. Each upgrade path is
included in it's own subdirectory. Upgrades are not cumulative. You must upgrade sequentially even if

you are using a very old release.

21

xmlrpc
API files that expose nessquik functionality to 3" party developers

nessquik exposes a small subset of it's total codebase to an XML-RPC API. The files that make
up the API are stored in this directory. In the future much more functionality will be added to the API
so that developers in 3™ party organizations will be able to integrate nessquik into their environment

more easily.

22

Database Schema

The current database schema that nessquik uses is described below. Each field is documented
and, where necessary, includes use cases in the code where that field is used. Sample data that may
populate the field is also included. For more detailed information on each particular field, please refer

to the actual SQL code that is provided with nessquik.

In nessquik 2.5, there are several new tables. Overall, there are twenty (20) tables. Some of
them are not included or not used in the General release of nessquik. Those tables are marked as such

in the list below.

® division group list ® profile settings

® help ® recurrence

® help categories ® saved scan results
® metrics (Fermi) ® scan progress

® metrics historic scan trends (Fermi)

® scanners

® nasl names @ scanners_groups

® plugins ® special plugin profile
® profile list ® special plugin profile groups

® profile machine list ® special plugin profile items

® profile plugin list

® whitelist (Fermi)

23

division_group_list

This table contains a list of all the groups that nessquik knows about. This table will always
contain at least one (1) row with the value “All Groups”. Other than that, this table is used for different

purposes depending on the nessquik release.
This table only has two fields.
® group_id
A unique ID for each group
® group_name
The name of a group pulled either from LDAP, or in the future, added manually.

For Fermi, this table is used as a fast lookup table to supplement the groups found in LDAP. It's
updated on a nightly basis to reflect new groups that are added. A sample entry in the database is

shown below.

Old groups are not removed, therefore the table will grow indefinitely. The General release of nessquik
does not use this table nearly as much as Fermi. For comparabilities sake, this table should only include
the single row for “All Groups”. This table will be used much more by the General release in the

future.

help

The help table contains the topics that are seen in the help pages of nessquik. Categories are

stored in a separate table, and the categories' ID is used in this table to associate a particular category

24

with a help topic.
In nessquik 2.5 there are four fields in this table.
® help_id

A unique ID to associate with the help topic. Used by update and delete functions in

nessquik.
® category_id

The ID of the category that the particular help topic is located in
® question

The question, or topic, that is displayed to the end user on the help pages. The user will

click on this text to view the answer
® answer
The complete answer to the question or topic that is posed in the previous field.

The questions and answers in this table are stored in the LONGTEXT MySQL field type. This
allows for extremely long questions and answers to be stored. For all practical purposes these field

lengths are longer than anyone will ever need. A sample (truncated) output is shown below.

e oo S e S +
| help_id | category id | guestion | answer |
S S S S +
| 1 | 1 | What types of...| You can ad...|
S S S S S +

The only difference between the Fermi and General releases of nessquik with regards to the
help table is the particular topics that are in the table. Obviously those that relate Fermi specific

features are not included in the General release.

25

help_categories

Help categories group together the topics that are found on the help page. Categories would be
what you see to the left when you reach the help page. Clicking on a particular category will show all

the questions or topics in that category.
There are three fields in the categories table.
® category_id

A unique ID for the category. Used for maintenance of the category and for relating topics

to categories.

® [fype

The type of category. There are two supported values; A for admin and G for general.
Admin categories include topics that only an admin would have any interest in. General

include topics that affect the whole user base.
® category
The name of the category as it will appear on the left hand side of the help screen.

A sample of the data contained in the categories table is shown below.

| category id | type | category |

As with the help table, the help_categories table may be slightly different between releases.

metrics

In the Fermi release of nessquik, a metrics table is used to store metric installation data. This

26

table is also included in the General release, but none of the General code makes use of it. It is included

simply for future use after the authentication system has been added to nessquik General.
There are five fields in the metrics table.
® metric_id

A unique ID for each metric so that when it comes time to remove a particular metric or

perform other operations on it, there is no confusion due to name or displayed name.
® 1ype
The type of the metric. In nessquik 2.5 there are two possible values; graphs and reports.

® name

The name of the graph, or more appropriately, the class name of the graph. This value is

used especially by the metric maintenance, and metric admin scripts when instantiating

metric classes.
® display_name

The name of the metric as displayed to the administrator
® description

A short description of the metric.

A sample (truncated) of the data that you would find in this table is shown below.

o m e e o - - o e e o e a e -k o e e o - +
| metric_id | type | name | display_nanme | description |
R Fom e e e - T o R +

144 | graphs | NunmberOf... | Nunber o... | Create graph...|
S S S o e e oo T +

27

For the General release of nessquik, the metrics table will become more useful in version 2.6

when user accounts are added to the application.

metrics_historic_scan_trends

This table is not really a default table that comes with the standard nessquik schema. Instead it
is created by the Historic Scan Trends metric when that metric is installed. It is used to store counters
for scan severity so that they can be quickly graphed without needing to mine data from the scan

results.
There are eight fields in this table.
® row_id
A unique ID for the trend in the database
® username
The username of the person who scheduled the scan
® profile_id
The ID of the profile that was used when the scan was run
® scanner_id
The unique ID of the scanner where the scan ran
® date_recorded
The date that this record was recorded in the table
® hole_count
The total number of holes found upon completion of the scan

® warning_count

28

The total number of warnings found upon completion of the scan
® note_count
The total number of notes found upon completion of the scan

A sample (truncated) of the data that would be contained in this table is shown below

R T Fom e Fomm e oo oo o e e oo oo +

| row.id | usernanme | profile_id | scanner_id | date_recorded |

Fome oo - S Fom e Fom e e e oo Fom e e oo oo +

| 19 | clifford | 5b969088... | 1| 2007-03-17 |

R S Fom e Fom e oo - Fom e e oo oo o +
T Fom e e e oo Fom e oo +

Note that this table is also not available in the General release of nessquik because of the

authentication limitation. In 2.6 it is likely that this table and it's features will be made available.

nasl_names

This table is used as another quick lookup table in nessquik. Every night, or depending on when
you set the crontab entry, nessquik will query the Nessus server for its current list of plugins. It will
also parse all the available plugins in the Nessus plugins directory. When it parses the file, it takes the

file name, matches it with the plugin ID, and sticks the two in this lookup table.

In the web UI this table is queried when you are viewing more detailed information about a

plugin. The nasl name, for instance, will show up in this more detailed view.
There are only two fields in this table.
® pluginid

29

The ID of the plugin
® script_name
The name of the actual NASL script

An example of the data that may be contained in this table is shown below.

| pluginid | script_nane |

I T +
| 20149 | Sl ackware_SSA 2005- 310-01. nasl |
. e +

plugins

The plugins table is one of the more important tables in nessquik. It is populated by querying
the Nessus server for a list of all it's plugins, and then taking, literally, the full output and shoveling it

into the table for quick retrieval by nessquik.

This table, like the groups table, is a continuously growing table at this point in time. While the
nightly update-plugins.php script will not insert duplicate plugins, it also will not remove plugins that
no longer exist. There are plans to fix this. There are also plans to monitor plugin updates and provide

that data to the admin in a report.
There are eleven (11) fields in this table.
® pluginid
The unique ID of the plugin
® family

The family that the plugin is in. This is used in nessquik when you click the by family link

30

Ok, you got me. I haven't the foggiest idea what this field is used for. Until I find the
documentation on it, it'll remain that way. I can say with certainty though that this field is

not used by nessquik.
sev

The severity of the plugin. The is used in nessquik when you click the by severity link
copyright

The copyright applied to the plugin. Usually it is listed as Tenable because that's who

authors most of them, but in addition to Tenable, user contributed plugins are also included.
shortdesc

The plugin's short description. This info is used when displaying individual plugins in the

nessquik Ul For instance, when you type in the search box and it returns a list of plugins.
rey

The current revision of the plugin. As problems are found, or features are added to existing

plugins, this rev number will be increased.
cve

The CVE IDs that this plugin addresses
bugtraql

The bugtraq IDs that this plugin addresses
bugtraq?2

An alternative ID to refer to the check that this plugin performs. For instance, no bugtraq ID
may exist (as seen by the value “NOBID” in the table, and this field would have

“GLSA:200406-17” in it, referencing a Gentoo Linux advisory.

31

® desc
This is the full plugin description

Because of the volume of data in this table its difficult to show an example of it even truncated.
As such, if you're truly interested in the contents, I'd ask that you go look at the actual data using the

MySQL CLI tool or any of a myriad of different GUI tools.

profile_list

This table is the central hub for all profile related content. There are other profile tables that
extend the data in this table, but for all practical purposes, if you are going to work with profiles, you
should familiarize yourself with the content of this table because it is used a lot in joining with other

data in other profile tables.
In nessquik 2.5, there are six fields in this table.
® profile_id

This is a unique ID for the profile. It is used for a variety of operations that can be done on
the profile including updating and removing items that are specific to it. This is also used as

a foreign key in a number of other profile related tables.
® username

The name of the user who created the particular profile.
® date_scheduled

The date the scan profile was scheduled to be run. This field will be updated if a plugin is

rescheduled.
® date_finished

The date the scan profile finished running. This field will be updated as the scan is

32

rescheduled and finishes running.
® sratus
The current status of the scan profile. This field can be one of several values.
m N for Not ready to run
m P for pending
m R for running
m F for finished.
® cancel

This field acts as an on or off switch. When a scan is running, if you set the value of this

field to Y, nessquik will stop the scan. If the value is set to N, nessquik will not try to stop

the scan.

An example of the tables (truncated) contents are shown below.

o e e e o oo S o e e e oo +
| profile_id | username | dat e_schedul ed |
o e a o S o e e a +
| 38eaf 6a3eb8d8573b | tarupp | 2007-03-16 09:26:01 |
o e e Fom e o e e e +

o e e e e e e o Fom e e - Fome e e - +

| date_fi ni shed | status | cancel |

o e e e e e ook Fom e e e - Fom e e e - +

| 2007-03-16 19:26:00 | F | N |

o e e e e e e e e o R R +

profile_machine_list

In the machine list table, nessquik stores all the targets for all the scan profiles. This table is

33

used during scan run time to get a list of the targets to scan. It's a pretty simple table.
The machine list table has three fields.
® row_id

A unique identifier for the machine entry. This is used for updating or removing

information about the particular entry when using the web UI.
® profile_id

The profile ID that the particular target is associated with. This ID must match at least one

ID in the profile_list table.
® machine

The target to include in the profile. At this point in time the target includes a prefix that
specifies what type of target it is (since nessquik supports many). In the future I plan on

splitting this prefix off to a separate field.

A sample of the data that is contained in this table is shown below.

S S o e m e o e e e e e e e e e e eaaao o SRS +
| rowid | profile_id | machi ne |
S ot m e o e e e e e e e e e e eeaao o SRS +
| 165 | 22caddblba799bdd5bad4l7c72lec4a97 | :reg:172.17.2.21 |
S S o e m e e e e e e e e e e e e e meaaao o o e e e e e e e o e oo ok +

profile_plugin_list

The plugin list table contains all the plugins that are associated with all the profiles. Upon
creating a new scan, the list of plugins that you choose is inserted into this table so that the scan-maker
can look them up during scan run time. This table is manipulated directly when you edit a scan profile

too. For instance, removing plugins from your scan profile removes them from this table.

There are four fields in this table.

34

® row_id
A unique identifier for the plugin entry in the table
® profile_id
The scan profile ID that this plugin entry is associated with
® plugin_type
The type of the entry in the table. There are five valid types
m all - All the plugins
m plu - A specific plugin
m sev - A severity category of plugins
m fam - A family category of plugins
m spe - A special plugin profile
® plugin

The value of the plugin. Each plugin type will have a different format of data that will be

inserted in this field. The types and their expected data are listed below.
m all - The word all

m plu - The plugin ID of the plugin to use

m sev - The severity name of the severity of plugins to use

m fam - The family name of the family of plugins to use

m spe - The special plugin profile ID

An example of the data that you might find in this table is shown below.

row.id | profile_id | plugin_type | plugin |

35

| 19 | 0797185328b32e2f b8ca29b9b3bbdf bl | al | | all |

The plugin field in this table is semi-free-form. What I mean by this is depending on the value
of the plugin_type field, a different value will be stored in the plugin field. For instance, if the
plugin_type is plu then the value in plugin will be a number representing the plugin ID. A type of fam

will result in the plugin value being the family name.

profile_settings

In nessquik 2.0, this table was called user_settings. Since then, it's purpose has become more
geared towards settings that are specific to each scan profile. It contains a number of fields that can be
customized for the scan profile. As more settings are added in the future, it is likely that this table will

either be expanded, or instead be complemented with other setting tables.

In addition to profile settings, this table includes the general settings that you are able to
configure. Your general settings are distinguished from scan profile settings by their use of the sys

word in the setting_type.

In Fermi's release of nessquik, a user's sys entry is created upon first surfing to the nessquik

page. Actually, this holds true for the General release as well. In nessquik 2.6 this is expected to change
with the addition of the authentication system. When this system is in place, creation of the sys entry

will be made at account creation time.
It contains sixteen (16) fields in nessquik 2.5
® setting_id
A unique identifier for the particular entry in the settings table.
® username

The username of the person who either created the profile, or if this is their first visit to

36

nessquik, the person who visited the page and therefore had their sys entry created for them.
® profile_id

The profile ID used for updating information about the profile in this table. Normal scan

profiles are not the only ones to have profile IDs. Sys entries have profile IDs too.
® setting_name

The name of the scan profile. If the entry is a sys entry, then a value of zero (0) is used.
® setting_type

The type of the setting. There are two values allowed here.

m sys - Each user has one (1) sys entry. This defines the values that are found on the

general settings page.

m user - Each scan that is created by a user is given a user entry. All the settings for the
scan profile are then stored in this entry in the table. A user may have an arbitrary

number of user entries in this table.
® short_plugin_listing

An on/off switch that tells the web Ul whether to display extra details in the plugin search

list or not. Note that this setting has no effect for individual scan profiles.
® ping_host_first

This setting is an on/off switch that tells the nessquik clients' scan maker whether to create a
nessusrc file with hosting pinging enabled or disabled. A value of one (1) will enable

pinging. A value of zero (0) will disable it.
® report_format

The default format for a scan profiles output. This is the format that is sent via email to the

37

user. If the report is saved, the user can go back and choose to view the report in a number

of other different formats.
® save_scan_report

Specifies whether nessquik should save the scan results to the database or just drop the

results after it emails them. By default, all scan results are saved.
® port_range

The port range to use in the scan. Nessquik only supports simple port ranges at this point in
time. You do not have the ability to specify more complex forms, such as “23, 45-90,
1024”. This functionality will likely be added in the future though because Nessus supports
this format for ports. By default, the word default is used for the port range. According to
the Edgeos documentation (Appendix B), the keyword is expanded by Nessus to equal the

port range 1 to 15,000.
® custom_email_subject

This field holds the custom email subject that nessquik's scan maker will use when sending
you an email. Nessquik supports macros in the subject line. These macros are stored as-is in

the table field. They are replaced with real data upon scan completion by the scan-maker.
® alternative_email_list

A colon (:) separated list of email addresses where the scan report will also be sent to. Scan
reports are always sent to the original creator. In addition, you can send the report to others

with this list.
® alternative_cgibin_list

A colon (:) separated list of paths that will be used by Nessus when detecting vulnerable

CGI scripts. These paths should be the full path from the base domain name that you are

38

scanning.
® recurring

An on/off toggle switch that tells nessquik whether the scan profile has any recurrence

associated with it.
® scanner_id

The ID of the scanner that this profile is associated with. Scanners must be defined in the
administration area of nessquik. Scans must then be assigned to a scanner so that the

specific nessquik clients know who is supposed to run which scans.

Due to the large amount of data that is contained in this table, if you are truly interested in
seeing an example of the data, I'd ask that you refer directly to the MySQL table once you have created

at least one scan.

recurrence

A scan profile's recurrence settings are stored in this table. In nessquik, there are a number of
ways to configure recurrence. Daily, weekly, or monthly, this table holds the rules that the cron script
follows when it goes about rescheduling your scans. This table is only used by the cron script when it

comes to automatically rescheduling your scans.
There are six fields in this table.
® recurrence_id
A unique identifier for the recurrence entry
® profile_id
The ID of the profile that this recurrence entry is associated with.

® recur_type

39

The type of scan recurrence that you chose. There are three valid choices

m D for daily recurrence
m W for weekly
m M for monthly

® the_interval

The interval that the recurrence will happen. Think of it as saying “reschedule the scan

every days/weeks/months” and fill in the blank with this number.
® specific_time

This is the time that you want the scan to reoccur on the date or days you chose. It's the
value that is decided by the small clock fields that are shown when you click the recurrence

check box. The full date is saved, however only the time is used.
® rules_string

The recurrence rules. Depending on the type of recurrence that you chose, there are
different ways that the next scheduled date should be determined. For example with
monthly recurrence, you can specify which day of the month to reschedule the scan on. That

day is stored in the rules string.

An example of the data that you might find in this table is shown below.

--------------- T T T g
recurrence_id | profile_id | recur_type |
--------------- T
1 | aOb772d5b304c9396d802bc54a. .. | M |
--------------- T
Fom e e e e oo o e e oo oo oo Fom e e oo oo +
| the_interval | specific_tine | rules_string |

40

saved_scan_results

This table acts as central storage for all of the scan results. In nessquik 2.5, saving reports is
enabled by default, so there is a very good likelihood that this table will grow to become very large. In
Fermi's environment, this table is located on a completely separate database due to security concerns.
In the General release of nessquik this functionality is not available. It's not impossible to add, but I

figure it's not something that the majority of people need.
There are four fields in this table.
® results_id
A unique identifier for the entry containing a set of results
® profile_id
The ID of the profile that the results are associated with
® saved_on
The date and time that the results were saved to the database
® scan_results

The actual scan results. For the most part, this is raw NBE with the exception that it is triple
colon delimited (:::). The theoretical limit for the amount of data that this field can hold is
something on the order of 4 GB. I don't expect any scan results to ever come close to

reaching this. If you do come close, please don't use nessquik.

Due to the massive volume of data contained in this table, it is impractical to show a data

sample. Please see the raw database entries if you are interested.

41

scan_progress

This table holds the data that is used to create the progress meters on the scans page while the
scans are running. There are two types of progress as reported by Nessus' output while the scan is

running; portscan and attack.

Portscan progress is a tricky beast because it's not entirely accurate. In the past this output
would cause the progress bar to appear to skip. In nessquik 2.5 I have decided to only report on the

progress of attacks. The portscan status is still logged, however it is not used in the UI.

The data in this table is updated mainly during the scan, however if you reschedule a scan, this

table will be updated and the progress for the scan profile will be reset to zero.
There are four fields in this table.
® scan_id
A unique ID for the entry in the progress table
® profile_id
The profile ID to associate the progress with
® portscan_percent
The percent completion of the portscans against the targets
® attack_percent
The percent completion of the attacks against the targets

If you've been keeping track at home, it's not difficult to figure out what the data in this table is

going to look like. The percents that are stored in the table are out of 100%. See below for an example.

| scan_id | profile_id | portscan_percent | attack_percent |

42

32 | 5bd3464425788. .. | 0 | 72 |

scanners

The scanners table contains all the information about the Nessus scanners you have configured
the nessquik clients to use. I expect that this table will be greatly extended in the future to

accommodate many requests that I've received with regards to the scanners.

This table holds the information about the scanners that are associated with your scan profiles.
If a scanner doesn't exist in this table, you wont be able to schedule a scan. You can manipulate this

table by surfing to the settings page in the administration area of nessquik.

There are five fields in this table, however only three of them are actively used.

® scanner_id

A unique ID created for each scanner. This ID is used by profiles to specify which scanner

to run a giVCl’l scan on.

® name

The name of the scanner. This does not need to be the hostname for the machine. This
information is only used as a convenience for the end user so that if they are scheduling a

scan, they know which server it will run from.
® client_key

A special, unique, key that acts as a means of authenticating a nessquik client when

requesting details about a scan.
® privileged

Used only by Fermi at the moment. This is a simple on/off bit in the table and is used to

specify whether a scanner should be granted more privileges than normal. In our particular

43

case, we offer the nessquik client to a number of different groups on site, but we dont allow
those groups to arbitrarily create exemptions for themselves. By setting the privileged flag,
it would allow the scanner to perform operations on the database that go beyond normal

scanner requests.
® online

Currently not used. In the future this will be an on/off bit that will be used to tell the status
of a Nessus scanner. Of course, the processes that twiddle this bit will need to either be on

the Nessus server, or have credentials available to log in to the nessus server.

Fom e e e - R o e e a e o - Fom e e e ook - +
| scanner_id | nanme | client_key | privileged | online |
Fom e e e o R o e e e e o - Fom e e e oo - +
| 1| ovaltine | wd4gllno6Hbi... | O | O |
T TR o e e e a o - T S NI +

scanners_groups

This table acts as a mapping table between the scanners and the groups that are allowed to use
the scanners. In Fermi's environment this table allows us to maintain a much finer level of control over
who can use which scanners. Since groups often set up their own scanners, this requirement is more of

a necessity than a convenience.
There are three fields in this table.
® row_id
A unique identifier for the row in the table
® group_id

The ID of the group that a scanner is associated with. This ID is associated with the

group_id found in the division_group_list table

44

® scanner_id

The ID of the scanner that the group is allowed to use. This ID is associated with the

scanner_id found in the scanners table.

A sample of the data that will likely be stored in this table is shown below.

| row.id | group_id | scanner_id |

special_plugin_profile

Special plugin profiles are just user defined meta plugins (plugins containing more plugins). See
Appendix C for a graphic describing a special plugin profile. This table is the primary place where
general information about the plugin profiles is stored. Other tables complement the data stored in here

by referencing fields in this table.

When you create a plugin profile, it's name is stored in here and a unique ID for it is generated.
That name is displayed to everyone who is allowed to access that profile (as defined by the

special_plugin_profile_groups table).
There are only two fields in this table
® profile_id

A unique ID for the plugin profile. This ID is used in a number of different areas in
nessquik. It is a foreign key to the other profile plugin tables, and it is used as the identifier

for the plugin when you choose it from the “special plugins” list when creating a new scan.

® profile_name

45

The name of the special plugin profile as will be seen by users

A sample of the data that you are likely to see in this table is shown below

| 1| critical vulnerabilities |

special_plugin_profile_groups

The purpose of this table is nearly identical to that of the scanners_groups table, except that this
guy relates to the plugin profiles. Access to plugin profiles is controlled by groups. This table is a quick
lookup table used for checking if a specific user is allowed to use a plugin profile based on their group

membership.
There are three fields in this table
® row_id
A unique identifier for this record in the table
® group_id

The ID of the group that is allowed to use a specific plugin profile. This ID is associated

with the group_id found in the division_group_list table
® profile_id

The ID of the special plugin profile that the group is allowed to use. This ID is associated

with the profile_id found in the special_plugin_profile table.

A sample of the data that you will find in the table is shown below.

| rowid | group_id | profile_id |

46

special_plugin_profile_items

This table stores the contents of the special plugin profiles. Since a plugin profile can be made
up of a variety of other plugin types, this table is needed to know what kind of stuff is in the plugin
profile. In the scan-maker script, the content in this table is evaluated and parsed down to reach the
eventual list of plugins to use for the scan. Families, severities, and individual plugins can all be

included in a plugin profile.
This table contains four fields. Most of which you'll probably be familiar with.
® row_id
A unique identifier for this row in the table
® profile_id

The ID of the plugin profile that this particular plugin is associated with. A profile can have

an arbitrary number of items in it.
® plugin_type
The type of the plugin for this entry. There are three valid types
m plu for an individual plugin
m sev for a severity of plugins
m fam for a family of plugins
® plugin

The value that matches the type of plugin specified. Each type of plugin has a different data

format.

47

m plugins will have the ID of the plugin in this field
m families will have the name of the family
m severities will have the name of the severity

A sample of the data that you will see in this table is shown below.

S S LSS Fomm e oo S S +
| 1] 1| plu | 15545 |
Foem e m e oo LSS Fomm e Foem e m e oo +

whitelist

The whitelist table is specific to the Fermi release of nessquik. There are separate databases that
we talk to when verifying a user is allowed to scan a particular machine. Computer Security does not
have direct control over those databases, so it is not possible to change the data in them to say that a

specific user is now allowed to scan a machine.

We needed to be able to override the permissions stored in these databases though on a case by
case basis. The whitelist is a table that CST controls and is able to add new information to. Entries in
the whitelist table are assumed to be allowed to scan a particular device regardless of what the other

databases on site say.

As an example of how this is used, consider the position a GCSC is put in when they need to
scan a machine they are not a registered admin for. GCSC's need to be able to scan any machine under
their jurisdiction, however just because it may be under their jurisdiction doesn't mean they are a
registered admin for the machine. In the normal flow of things, this would prevent them from

legitimately scanning a target.

Central web admins are another good example especially when it comes to VHosts. The central

web admins must be able to scan any and all VHosts regardless of whether they have explicit

48

permission to do so or not. The whitelist covers them too.
There are three fields in this table.
® whitelist_id
A unique identifier for the entry in the table
® username

The username of the person who will be allowed to target the listed entry

® [isted_entry

The entry that the user is allowed to scan. Data in this field can be either one of three valid

types.

m [P address
m CIDR block
m Range of IP addresses

An example of the data that is stored in this table is shown below.

o e e e o - R o e e e a e ok +
| whitelist_id | usernane | listed entry |
o e e e e a e o - R o e e e e a e ok +
| 56 | tarupp | 131.225.70.20 |
o e a o - TR S +

49

Developing Metrics

nessquik stores the vulnerability scan results in a database table. Using this information,
nessquik is able to create metrics. Metrics are only available to administrators at this point in time. This

functionality will be extended to the end user in the future.
The metrics included with nessquik 2.5 are
® Number of Scans

® Scan Trends

Metrics API

New metrics can be created to create graphs or reports as the developer sees fit. For detailed

information about developing metrics, see the document Metric Developers API.

50

APIs

At the present, nessquik includes two APIs. More APIs are planned for the future that will
expose more of the system to be used in development of 3" party software. XML-RPC is used for the

underlying API.

For PHP developers interested in using either of the APIs, I strongly encourage you to use the
IXR library. This library can be found in the | i bs/ directory in nessquik. This library makes it much

easier to use the available methods.

For all other developers, I'm afraid I can't commit to a specific client side library since I'm not
familiar enough with other languages and their support for XML-RPC libraries. If you use a particular
library and would like to contribute examples of how you use that library, please contact me and I will

include your examples for others.

In addition to providing code samples in the documentation below, I also include the raw XML
that is returned by nessquik. This should allow you as a developer to understand the format of the
returned data so that you can work with it even if your particular langauge doesn't have a specific

library available for XML-RPC.

The two current APIs are listed in detail on the next several pages.

51

Jobs API

nessquik supports an API called the Jobs API. This is primarily used by the nessquik client
when running or scheduling new jobs. The jobs API includes a standard set of available methods.
Several of these methods require authentication and or authorization before they will run. See the table

below for a list of the available standard API methods.

Method Name

jobs.getMachines

jobs.getAllPlugins

jobs.getProfilePlugins

jobs.getProfileSettings

jobs.getPendingProfilelds

jobs.getStatus

jobs.getCancel

jobs.getCountRunning

jobs.getPluginsBySeverity

jobs.getPluginsByFamily

jobs.getSpecialProfileltems

jobs.setResetCancel

jobs.setProgress

jobs.setStatus

jobs.setFinishedDate

jobs.saveReport

jobs.emailResults

nessquik's Jobs API can also be extended to include third party methods. Fermilab for instance
has added their own API calls for maintaining their exemptions table. Most of the methods supplied in

the Jobs API require a key be specified.

52

Using the Jobs API in PHP

Using the Jobs API from PHP is very easy. In the following examples I will specifically be
using the IXR library. I encourage all PHP developers to do the same. In several of the examples, I
make reference to a PHP constant called _CLIENT_KEY. This constant must be defined by you prior
to making several API calls. This client key is used in a way similar to an authentication token. Profiles
are typically associated with a scanner, and that scanner is given a key so that it can prove to nessquik
that it is allowed to ask for profile information. An example client key is shown below, including the

define statement.

define(' _CLIENT_KEY', 'y4RRYoOhysf 33K | Dzf PeT8775x8gune’);

Creating a new client object

In PHP, before you can use the API, you need to create a client object that can talk the API.
This is very simple and can be accomplished with the following code. All future operations can be

done through this new object.

/'l Required. Before any other APl calls,

/'l these two |ines nust run

requi re_one(_ABSPATH. ' /| i b/l XR_Li brary. php');
$client = getI XRAient();

Get the list of target machines for a particular profile

This API method will query nessquik for a list of the machines targeted in a particular profile.

/'l Profile ID as found in the profile_|list database table
$profile_id = “68326b7e827cdaal05e8d0351d3f d9c1”;

$client->query('jobs.getMachines', _CLIENT_KEY, $profile_id);
$machi nes = $cl i ent - >get Response();

53

Ask the server for a list of all the plugins
The API allows you to query nessquik for a list of all the plugins that nessquik knows about.
The list that is returned is very large, but only contains the plugin ID.
$client->query('jobs.getAllPlugins');

$scanner _set = $client->get Response();

Get the plugins for a particular profile

You may be interested in knowing which plugins are currently used in a particular scan profile.
This method will query nessquik and return a list of the plugins to you for that profile. You must

specify a plugin type to ask for with this method call. The available types are
e all ® fam
® sev e plu

You'll also need the profile ID that you are asking for plugins for, and a valid client key that is

allowed to read that particular profile.

/1l Profile ID as found in the profile_|list database table
$profile_id = “68326b7e827cdaal05e8d0351d3f d9c1”;

/1 To query for plugins that were chosen by severity
$client->query('jobs.getProfilePlugins,

_CLI ENT_KEY,
$profile_id,
1] Sevﬂ

),

$pl ugi ns = $client - >get Response();

54

Get the profile settings for a particular profile

You can retrieve all the profile settings for any scan profile assuming you have a client key that

is allowed to read those profiles, and you have the profile ID that you want to read.

/1l Profile ID as found in the profile_list database table
$profile_id = “68326b7e827cdaal05e8d0351d3f d9c1”;

$client->query('jobs.getProfileSettings',
_CLI ENT_KEY, $profile_id
)

$settings = $client->get Response();

Get a list of the top X pending profile IDs

This API method call is used primarily by the scan-runner when forking off an arbitrary number
of scans to run. The method returns a list of profile IDs that are in a pending state that need to be run. A
valid client key must be provided, as must a limit. The limit is the number of profiles that you want

returned, and must be a number.

/| Specify the nunber of profile IDs
[/ That | want returned
$limt = 20;

$cl i ent->query('jobs. getPendi ngProfilelds',
_CLI ENT_KEY,
$limt

)

$profile_ids = $client->get Response();

Get the status of a scan profile

Oftentimes you may want to know the current status of a scan profile. nessquik uses this a lot

on the scans page dashboard to show you which scans you have pending, or running, etc. This API

55

method will return the single character status of the scan. The return value will be one of the following

characters
® N - Not Ready to Run ® R - Running
® P - Pending ® F — Finished

To call the method, see the example below.

/1l Profile ID as found in the profile_|list database table
$profile_id = “68326b7e827cdaal05e8d0351d3f d9c1”;

$client->query('jobs.getStatus', _CLIENT_KEY, $profile_id);
$status = $client->get Response();

Determine if a scan has been canceled

There's a good likelihood that if you use this method, you'll always only see a return value of N.
While you might start to think that this is a bug, it should be noted that a properly set up nessquik client

will call this method every 10 seconds during a running scan. Therefore if you're really interested in

using this method, you'll have about a 10 second window where it could return a value of Y.

In any case, see the example below.

/1l Profile ID as found in the profile_list database table
$profile_id = “68326b7e827cdaal05e8d0351d3f d9c1”;

$client->query('jobs.getCancel', $profile_id);
$cancel ed = $cli ent->get Response();

Determine the number of scans being run by a client right now

This method returns the number of scans that a nessquik client is currently running. A valid

client key must be supplied so that the API knows which client to pull counters for.

[/ As for the nunber of scans

56

$client->query('jobs.getCountRunning', _CLIENT_KEY);
$runni ng_count = $client->get Response();

Specifically get plugins from a severity type
This method is a helper method that wraps around an internal APl method. It's a shortcut for
retrieving only the plugins of a specific severity instead of all the plugins.

/'l Only get plugins that have the severity “dos”
$severity = “dos”;

$client->query('jobs.getPlugi nsBySeverity', $severity);
$pl ugi ns = $cl i ent - >get Response();

Specifically get plugins from a family
This method is a helper method that wraps around an internal API method. It's a shortcut for
retrieving only the plugins of a specific family instead of all the plugins.

/'l Only get plugins that are in the “Backdoors” famly
$fam |y = “Backdoors”;

$client->query('jobs.getPluginsByFamly', $famly);
$pl ugi ns = $client->get Response();

Get items in a specific scan profiles’ special plugin list

What this method does is it gives you a list of the items in a special plugin profile that is
associated with a scan profile. As you've heard, scan profiles can have a number of different plugins in
them; severity, individual plugins, families, etc. Scan profiles can also have special plugin profiles
associated with them. These plugin profiles can contain plugins such as severity groups, individual

plugins, etc. This method returns all the items in a scan profile's special plugin profile.

For example, a scan profile may have the following plugins

57

® :plu:12345
® :sev:denial
® :spe:critical vulnerabilities

In the above case, the :spe: item is a special plugin profile. If you were to look at the database table

associated with this special plugin profile, you may see the following

® :sev:destructive_attack

® :plu:12523
® :plu:13423
® :plu:11232

This method will return the above four (4) items to the developer. Note that it will not try to determine
what plugins are in the :sev: type above. If the developer wants to know that info, they can use the
get Pl ugi nsBySeverity API call. An example of using the described API method is shown
below.

/'l Profile ID as found in the profile_|list database table
$profile_id = “68326b7e827cdaal05e8d0351d3f d9c1”;

$client->query('jobs.getSpecialProfileltens', $profile_id);
$itens = $client->get Response();

Reset a canceled, running, scans' status

This method will reset the status of a canceled scan after the scan has been canceled by the
scan-maker. If this method is not called by the scan-maker, then the scan will remain in a permanently
canceled state. This inconsistency would likely be cleared up the next time the scan is run, because the
scan-maker will see the canceled bit, stop the scan, and reset the profile to be not ready to run and not

canceled.

58

/1l Profile ID as found in the profile_|list database table
$profile_id = “68326b7e827cdaal05e8d0351d3f d9c1”;

$client->query('jobs. get Speci al Profileltens',
_CLI ENT_KEY,
$profile_id

);

$itens = $client->get Response();

Set a scan's current progress

During the time that the scan is running, it's progress is continually being updated in the
database. This method takes care of updating the status of the scan so that other software can read that
progress and report it back to the end user. This method requires a profile ID to be updated as well as

two (2) values; portscan progress and attack progress.

Nessus reports it's progress in two ways. A portscan is done before the actual attacks are started,
and this progress is shown . This progress counter is very unreliable because the number of ports
scanned cannot be determined, absolutely, ahead of time. Also, several portscans may be done during
the course of a scan. This leads to further inconsistency because a portscan progress can very likely

Jump from 12 to 40 to 90 percent and then back down to 20 percent.

Attack progress has been observed to be more stable. Attack plugins tend to only be run once.
As such, the progress back in the nessquik Ul only shows attack progress. Example portscan and attack

progress output are shown below.
® portscanl131.225.82.83110014481
® attackl131.225.82.8312112248
The fields in the output are pipe (|) delimited. The value in each field is described below

® Type of scan

59

® Target of the particular scan

® The current,
portscan - port being scanned
attack - plugin being run

® The total,
portscan — number of ports to scan
attack — number of plugins to use

An example of this API method being used is shown below.

/'l The profile being updated
$profile_id = “68326b7e827cdaal05e8d0351d3f d9cl”;

/'l The total portscan progress, in percent.
$portscan = “50”;

/'l The total attack progress, in percent
$attack = “3”;

$client->query('jobs.setProgress',
_CLI ENT_KEY,
$profile_id,
$portscan,
$at t ack

);
Change a scan's status

This method will change a scan's status from one status to another. You must know the current

status before you can change to the new status. The status that is being set, and the status being set

60

1

from, should be one of the four (4) valid status'.

1. N — Note Ready to Run
2. P —Pending

3. R —Running

4. F — Finished

/'l The profile being updated
$profile_id = “68326b7e827cdaal05e8d0351d3f d9cl”;

/'l The status you're com ng from
$from= “P";

/'l The status you're going to
$t0 — “R';

$client->query('jobs.setStatus',

_CLI ENT_KEY,
$profile_id,
$from

$to

)
Set a scan's finish date

After a scan has finished running, it's finish date should probably be reported back to the
database so that the web UI will update with the proper finish date and time. The format of the datetime
string should be a valid MySQL datetime format. This can be accomplished using the PHP strftime

function as shown in the example below.

/1 The profile being updated
$profile_id = “68326b7e827cdaal05e8d0351d3f d9cl”;

61

/'l Format the time correctly
$tinme = tine();
$formatted date = strftinme("%-%m% %", $tinme);

$cl i ent->query('jobs. setFinished',
_CLI ENT_KEY,
$profile_id,
$formatt ed date

)
Save a scan report

If the results of a scan need to be saved back to the database once the scan has been run, then
this API method should be used. It will add a new record to the results table that contains the output
generated by Nessus. By convention, the NBE output is used, so that output is what should be saved

back to the database.

I am not 100% sure if this API method can handle very large scan results. I refer to “very large”
as being in the 50-70 meg range. Since nessquik has not been tested on datasets this large, I cannot say

for certain, what will happen.

/'l The profile being updated
$profile_id = “68326b7e827cdaal05e8d0351d3f d9c1”;

// Format the time correctly
$tinme = tine();

$saved on = strftime("%-%n% %", $tinme);

[/ The saved results in NBE fornmt
$results = “tinestanp|12:....";

$cli ent->query('jobs. saveReport',

62

_CLI ENT_KEY,

$profile_id,
$saved_on,
$results

)
Email scan results to users

nessquik will, by default, always send your scan results via email (even if you also saved them
to the database). This functionality is encapsulated in this method. The method will not only send the
results to you, but will also send them to your list of additional recipients. The results that are sent
should already be formatted as text or HTML. You have the ability to include a special subject line

with the email too.

/1 The profile being updated
$profile_id = “68326b7e827cdaal05e8d0351d3f d9c1”;

/1l List of extra people to send to
$reci pients = array(

'] oe@onewhere. com

'j an@onewher e. com

)E

/1 Subject line to send with enai
$subj ect = “Nessus Scan Results”;

/'l Formatted Nessus results out put

/'l The $output variable in this case

/'l would contain NBE that | am transform ng

/'l through the use of the output_htm hel per function
$results = $nes->out put _ht m ($out put) ;

[/ Format of the emmil to send

63

$format = “html ”;

$client->query('jobs.enmil Results',

_CLI ENT_KEY,
$profile_id,
$reci pi ent s,
$subj ect,
$resul ts,

$f or mat

),
Add entry to exemption table
This functionality only works in the Fermi release of nessquik

An exemption is added for each scan that is performed by nessquik so that in the event that a
user needs to request a border exemption, by virtue of scheduling a scan, the necessary pre-requisites
will already be in place to fulfill the exemption. Note that currently nessquik does not check the type of
scan you are running before it adds your exemption. Therefore, just scheduling a scan with a single

plugin will generate an exemption. This will be addressed in a future release.

/1 The profile being updated
$profile_id = “68326b7e827cdaal05e8d0351d3f d9c1”;

/'l The usernane to add the exenption for
$usernane = “joeuser”;

[/ The duration, in seconds, of the scan
$durati on = “600";

$client->query('jobs. addExenption',

_CLI ENT_KEY,
$profile_id,

64

65

SysOps API

The SysOps API is included with nessquik so that software can be written to query the system
status of nessquik clients and servers. This API is still in it's infancy. At this point in time, only a

handful of methods are available. This API will be expanded in the future to include many more

methods.

Method Name

sysops.markOffline

sysops.markOnline

sysops.whatsOnline

sysops.isOnline

Using the SysOps API

The SysOps API is not difficult to use. In the following examples, the IXR library for PHP will
be used. For each example however, I've included an example of the XML that is returned by nessquik.

This should be enough to explain how to talk the API using languages other than PHP.

Creating a new client object

In PHP, before you can use the API, you need to create a client object that can talk the API.
This is simple and can be accomplished with the following code. All future operatings can be done
through this new object.

/'l Required. Before any other APl calls,

/'l these two |ines nust be run

require_once (_ABSPATH.'/lib/IXR _Library. php');

$client = getlI XRAient();

66

Mark a nessquik client's scanner as being offline

There is always the possibility that a Nessus scanner can go offline for whatever reason. This
call to the API will tell nessquik to mark the scanner as being offline. When a scanner is offline, it
cannot have jobs scheduled on it, and the client that talks to it will not try to schedule any pending jobs
on it. Finally, setting this marker will allow the nessquik web interface to show the administrator that

the system is down on a remote machine.

At this point in time, this API method is not functional. It will become more relevant in the next
release. To mark the Nessus scanner as offline, use the following API method.

/'l Marks the scanner as “offline”

$client->query('sysops. markOfline', _CLIENT_KEY);

Mark a nessquik client's scanner as being online

If a system has been marked as offline for any reason, it will need to be set back to online status
before it is usable again. The following API method will turn a scanner back on provided that the
developer has the appropriate client key.

/'l Marks the scanner as “online”

$client->query('sysops. markOnline', _CLIENT_KEY);

67

Typical Program Flow

In nessquik there is a general pattern of execution that all scripts take. For consistency, it's

recommended that you follow this pattern.

Pages are loaded through the index.php page for general user related code, and the admin.php
page for admin related code. Individual pages for each area of the site are not used at this point in time.
AJAX functionality is contained in files placed in the async directory. Each file should be named after
the area of the site where it is located, or the functionality that it provides. For instance, the
asynchronous code that is called from the admin whitelist area is contained in this whitelist.php file

located in the async directory.

When a request for a main page is made, the request will pass through the index.php page for
general requests, or the admin.php page for admin requests. A switch statement in either page will
direct a Smarty object to request a specific “main” template to be used. This template is then displayed

to the user.

All subsequent calls on the page are through the AJAX interface. Functions exist in the
javascript that is loaded for each page, that will query the backend for new content. The javascript
functions should provide a “catch” function that will catch the output sent from the backend and insert

it into the document as needed.

68

Templates vs. Themes

nessquik does not using a theming concept. Templates are used instead to separate out the
display code from the PHP code. Smarty is the template system that is used, due to the my familiarity
with it.
The template system is composed of three main components

e lib/smarty/

O This directory contains all of the Smarty libraries. In addition to the classes packaged with
Smarty, I have included a Smarty singleton class, Smar t yTenpl at e, that should be used

for instantiating a Smarty object.

e tenplates/

O This directory contains all the of the templates used by nessquik. Templates should be

named based on what they do. For example.
admin_scans.tpl
contains a template for the scans section in the admin area.

O All templates must end with a . t pl extension
e tenplates_c/

O This directory contains the Smarty cache of the templates. When a user surfs to a page, that
page 1s generated by Smarty and stored temporarily in this directory. Subsequent calls to

that page make use of the cache if it is still valid.

O This directory must be writable by the web server

69

Unit Testing

Unit testing is accomplished with the PHPUnit package. This code is available through PEAR

for convenience. See the t est s directory for the most up-to-date unit tests for nessquik.

By convention, there is a different unit test class for each class in nessquik. Classes are located
in the lib/ directory of the main nessquik installation. There are two main types of classes that are

tested since there are two types of nessquik releases; General and Fermi. If a particular class is so
common that it is included in both releases, then it's unit test is prefixed with the word Common_.

Otherwise, the unit test is prefixed with the release it belongs to Fermi_ or General_.

Each unit test can be manually run using standard PHP syntax
/ pat h/ t o/ php Uni t Test
example:
/ pat h/ t o/ php Conmon_NmapTest . php
If the developer is interested in running all of the tests in one fell swoop, a shell script is

provided that accomplishes this. There are also individual AllTests files that will run all of the tests in

a particular category of unit tests.

In addition to the PHPUnit tests, there is interest in using the Selenium framework for testing
the web UI. Selenium is an extension for Firefox that allows one to script browser usage. It's kind of
like mechanize for Python. It provides an IDE-like environment where a developer can perform a

single action on a page, save the results, and create a unit test from his actions.

nessquik will use this framework in the future for testing the functionality of the frontend.

70

Build System

To help in managing new releases of the software and to make it easier to release specific
“products” in the software, nessquik uses Phing for it's build system. Phing is a PHP based build
system that uses an XML file to hold instructions describing how to build your software. In addition to
the XML file, it also uses the equivalent of a .ini file to store global variables that can be used in the

XML configuration file.
Phing relies on two files to exist in the current working directory.
1. build.xml
2. build.properties

To build nessquik, these files must exist and be configured properly. For the most part, build.xml will
not change, and you can ignore it. In the other file, build.properties, you must tweak several variables
to ensure that you build nessquik (and/or any of it's products) correctly. There are only a handful of
variables though, and they are, for the most part, self explanatory. They are listed below for

convenience.
® nessquik.version
The version number that will be assigned to the nessquik release
® portscanmenow.version
The version number that will be assigned to the portscan-me-now release
® scanmenow.version
The version number that will be assigned to the scan-me-now release
® nessquikclient.version

The version number that will be assigned to the nessquik-client release

71

® nessquik.release

Different files are deleted and moved based on the release of nessquik. This specifies which
set of build instructions will be run so that you will have an installation that mimics that

release.

The proper values for this variable are

m fermi
m general
m ovaltinefermi

m ovaltinegeneral
® nessquik.product

The type of product to build. This gives you fine grained control over which software you
want to pack up. For instance, if the code for portscan-me-now is changed, there's no reason
to go about rebuilding all of nessquik. You may only want to re-build portscan-me-now and

package it up.

To build all the products, simply specify the value “nessquik™ since the main nessquik

release by default includes all the sub products.
The proper values for this variable are

m nessquik

m nessquik-client

m scanmenow

m portscanmenow

® directory.main

72

The main directory from where you want to start building nessquik. Note the the subversion

repository will be checked out to this parent directory
m ex. /root/
® directory.build
The name you want to give to the subversion repository upon checkout.
m eX. /nessquik-build/
® directory.products

The directory where you want all the built products to be placed. They will be put in this
directory as tarballs and will be properly labeled with a name and version number. If this

directory does not exist, Phing will attempt to create it
® svn.app
The full path to the subversion svn binary
® svn.repository
The full URL to the repository that you want to check out.

Once you have tweaked the build properties sufficiently, you can run the phing command to build the

particular products
[root @val tine ~]# phing
Phing will read the XML and properties file and will build what you specify. The files that are

generated will be located in the path that you specified in directory.products.

In the future, the unit tests (PHPUnit), code coverage tests (PHPUnit), and generation of the
API data via PHPDocumentor will likely be combined with Phing. The builds are run nightly via cron.

This is to guarantee that a new packages are made available for to the community as often as possible.

73

Bug Fixes, Enhancements, Patches in General

I welcome all submissions of code, but do not guarantee that any submitted code will be added

to the development trunk. All submitted patches must follow the format below
® Diff the patch against the most recent release of nessquik

® Use this diff command

diff -u original-source changed-source
® Email the patch to me as an attachment

® Include a short blurb in the email describing what the patch fixes

74

Appendix A n essquik Development Infrastructure

g Internal .
MNessus I
— Scanner
=

nessquik
web
server

DMEZ
nessquik users } or
Internet
External
Messus
Scanner

75

Appendix B R eferences

I borrowed ideas from several existing coding standards documents to create this document.

® Gforge: PHP Coding Standards
http://gforge.org/docman/view.php/1/2/coding-standards.html
® Edgeos Documentation for Nessus - “default” port range keyword

http://www.edgeos.com/nessuskb/details.php?option_id=76

76

Appendix C - Special Plugin Profiles

Special Plugin Profile

"critical vulnerabilities"

sclick Users select the plugin
/ and the 3 associated plugins
are automatically included in

their scan profile

3 And voila, a single 'plugin’
' containing 3 other plugins

is now available for use

3 plugins

but its too difficult

to remember which 3

heed to be used

So admin creates
a SpeC|a| plugln prOflle Q Attempt to fingerprint web server with favicon.ico
Q Basic authentication without password chokes the web server

that contains all 3
QO Bea WeblLogic may be tricked into revealing the source code of JSP scripts.

77

	Introduction
	Prerequisites
	Coding Standards
	Comments
	Guidelines
	PHPdoc Tags
	Function and Class Comments

	Formatting
	Indenting
	PHP Tags

	Templating
	Expressions
	Functions
	Function Calls
	Function Definitions

	Naming
	Control Structures
	Including PHP Files

	Architecture
	nessquik Web GUI
	nessquik client
	Keys

	scan-me-now
	portscan-me-now

	What's Available and Where
	Directory Hierarchy
	async
	confs
	db
	deps
	docs
	images
	lang
	lib
	logs
	opt
	scripts
	setup
	templates
	templates_c
	tests
	upgrade
	xmlrpc

	Database Schema
	division_group_list
	help
	help_categories
	metrics
	metrics_historic_scan_trends
	nasl_names
	plugins
	profile_list
	profile_machine_list
	profile_plugin_list
	profile_settings
	recurrence
	saved_scan_results
	scan_progress
	scanners
	scanners_groups
	special_plugin_profile
	special_plugin_profile_groups
	special_plugin_profile_items
	whitelist

	Developing Metrics
	Metrics API

	APIs
	Jobs API
	Using the Jobs API in PHP
	Creating a new client object
	Get the list of target machines for a particular profile
	Ask the server for a list of all the plugins
	Get the plugins for a particular profile
	Get the profile settings for a particular profile
	Get a list of the top X pending profile IDs
	Get the status of a scan profile
	Determine if a scan has been canceled
	Determine the number of scans being run by a client right now
	Specifically get plugins from a severity type
	Specifically get plugins from a family
	Get items in a specific scan profiles' special plugin list
	Reset a canceled, running, scans' status
	Set a scan's current progress
	Change a scan's status
	Set a scan's finish date
	Save a scan report
	Email scan results to users
	Add entry to exemption table

	SysOps API
	Using the SysOps API
	Creating a new client object
	Mark a nessquik client's scanner as being offline
	Mark a nessquik client's scanner as being online

	Typical Program Flow
	Templates vs. Themes
	Unit Testing
	Build System
	Bug Fixes, Enhancements, Patches in General
	Appendix A – nessquik Development Infrastructure
	Appendix B – References
	Appendix C - Special Plugin Profiles

