nessquik 2.5

Metric Developers Guide

Tim Rupp

Last Modified
07/06/2007

Table of Contents

L INEEOUCTION. ...ttt ettt ettt et e e et e e st e e e bt e e e bt e e eabbeesabteesabteeeeesanasbbaeeaeenas 2
R o (S (<10 |8 R 11T PSR PTUPPPPPPRSPPP 3
B RULES. .ttt ettt ettt e ea et e a bt e e bt e et e e bt e s bt e e bt e e et e e e bt e e nabeeeeeeeeaaa 4
8 CAVRALS. .. eeeeeueieeeitte ettt ettt ettt ettt e et e bt e e bt e e e bt e e ettt e e a bt e e at e e e hb e e e bt e e e bt e e e bt e e e bt e e nabteeeabeeenabeeenares 4

4. What's Available and WRETe........ccc.coiiiiiiiiiiiie ettt e e 5
® DIrectory HICTATCRYoo.uiiiiiiiiiieee et sttt ettt e e e e 5

D TIEIIICS/ ..ttt ettt sttt e e e e e e 5

— IIB/MELTICS/ZTAPRS/ ...t 5

— LID/IMNIELTICS/TEPOTLS. ..ottt eitie ettt ettt ettt et e e et e e st e e st e e e et ee e abeeensbeeensbeesnsseesnsseesnnnsssneeeaenns 5

— L CMIPLALES/TNELIICS/ .ttt ettt ettt e et e et e st e e st e e s bt e e e bt eesabaeesasaeesnnbbaeeeeeennnns 5

— teMPlateS/MELTICS/ZTAPNS/oeeieiieiie ettt et e e s e e st e e s bee e nsreeeeeeesnsssaeeaeeans 5

— LeMPLAtES/MELIICS/TEPOTES/ ...veeeeiieeiiieeiee ettt e ettt e ettt e st e esiteeesabeeesaeeensseeessneesnsseesnseeesnseessannnns 6

B TN o PO OO OO USROS POTSURRO 7
® GIAPN MEITICS. ..ottt et ettt ettt et sat e et e et e s san e et e e e nneee 7

L 1) ALY (15 5 T USROS PTPPPRR 12

6. TOMIPIALES.veeeiiieeiie ettt ettt ettt e sttt e sttt e s bt e e s bt e e s abeeesabeeeaab e e e nbeeeanbeeeeeeennnbbaaeeeeeenntee 15
* Where do I put the temPIate?........c.cooiiiiiiiiiiiee et 15

* What should be in the tempPlate?.........coouiiiiiiiiiiiiiie et 15

* Do templates SUPPOTt JAVASCTIPL?......eeiurieiiiiieriieeniteeeiteesteeesteessateeesiteesaaeesbeeesnseeesabaeesaseesnaseesnnns 15

* Can javascript functions be defined in templates?..........cccueeiriiiiiiiiiiiieeieee e 16

* Are there any best practices I should folloOW?.........cccuieiiiiiiiiii e 16

T UL T@STIINE. c.ttteetiieeiteeeite ettt ettt te et e ettt e et eesbt e e s sbteesabeeesabeeesaseeenabeeesbaeensseeensseesnsseesnssaesssnnssnes 17
® O GIAPRS. ...ttt ettt et e et e ettt e s bt e e st e e sabee e e b bbaeeeeeeeaas 17

® O REPOTTS. ...ttt ettt et ettt e st e e s bt e e st e e e e bbeaeeeeeesnaas 17

Introduction

This document provides detailed information regarding the development of metrics for nessquik.
Developers will need this information if they decide to modify the metrics or add new metrics.

nessquik stores the vulnerability scan results in a database table. Using this information, nessquik is
able to create metrics. Metrics are only available to administrators at this point in time. This
functionality will be extended to the end user in the future.

The metrics system in nessquik is specifically designed to be a largely manual process. There is no
glorious front-end that allows the user to wield absolute power over all the various forms of data in the
nessquik database to generate graphs and reports.

Security metrics themselves are usually particular to the organization. I found it very difficult to
implement a functional metrics system that allowed the user to select arbitrary data values and plot
them on demand. These reasons are primarily why metrics must be created manually.

Before progressing any further with this document, I must warn you that creating a new metric is not
easy. It involves a keen understanding of the data that you want to graph or report on. There's a method
to the madness which you may not agree with. Fine, but you'll have to accept it.

If you develop a metric and want to have it included in the nessquik distribution, please send it to me.
Please only send metrics that are applicable to the general nessquik release. If you develop metrics that
rely on other systems in your organization, I'm not likely to place them in the distribution.

Prerequisites

I'm making the assumption that the reader has the following proficiencies.

Advanced knowledge of the PHP scripting language
Moderate to advanced knowledge of the PHPlot graphing library
A solid understanding of what type of metric they want to create

A plan detailing how to retrieve the needed data from the database

Without knowing what you want to create, you're already at a disadvantage. I firmly suggest not

blindly beginning to pull data from nessquik to graph it. Developing metrics is a time intensive task
and there is no general data retrieval methods available to the developer. For these reasons and others,

please plan before you start creating a metric.

Rules
The following is a list of rules that all metrics must abide by to make sure they work with nessquik 2.5.
Not following these rules may result in your metric not working in the way you expect it to, and/or,

nessquik behaving strangely.
1. All metrics must implement at least the methods included in the API. Aside from that, metrics

are free to add their own methods and class variables.

2. All metrics are single classes. Do not use multiple classes.
3. All the code, except for templates, is contained in the single class file.

Caveats

1. nessquik does not support multiple class files per metric. Taking this approach will not give you
the desired results. No support will be provided to people who refuse to follow the API.

What's Available and Where

Directory Hierarchy

nessquik's metrics file structure is organized into several subdirectories. There is a separation of graphs
from reports in both the templates and the metric library. The following directories are relative to the
root nessquik directory.

lib/metrics/

Contains general metric classes that user created metrics should extend. Also includes metric sub-

directories where user metrics should be placed.

The parent classes contained in this directory do not need to be completely understood to create a
metric. They do provide several functions though that will be inherited by your metrics. For this reason
you'll want to read the API section of this document. In that section the available methods are listed
and explained.

lib/metrics/graphs/

Contains all metrics that generate only graphs. These graphs can be considered dynamic because they

should be generated at run time. Also, graph options are usually available to narrow the range of data.

The format of the classes is documented in the API section of this document.

lib/metrics/reports

Contains all metrics that generate only reports. A report is usually a text based summarization of

various bits of data extracted from the nessquik database. They may also include static graphs.

The format of the classes is documented in the API section of this document.

templates/metrics/
Contains sub-directories that hold the graph and report metric templates.

Other than the gr aphs and r epor t s sub-directories, there should be no other relevant files in this
specific directory. All relevant templates are contained in sub-directories of this directory.

templates/metrics/graphs/
Contains templates specifically related to graph metrics.

The name of the template should closely resemble the name of the class it is associated with. For

example, the NunmberOf Scans. php class has an associated template called
nunber of scans. t pl

templates/metrics/reports/
Contains templates specifically related to report metrics.

The name of the template should closely resemble the name of the class it is associated with. For
example, the Syst enfSt at s. php class has an associated template called syst em st at s. t pl

API

The metrics API includes two base classes that all metrics should extend.
® GraphCommon.php
® ReportCommon.php

You metric only needs to extend one of these depending on the type of metric you have chosen to
create. These classes provide general functions that metric classes may find useful. They also include
abstract functions that define how a metric class should look. You must implement the abstract

methods. Failing to do this will prevent your class from being installed properly.

Graph Metrics

A graph metric class must extend the G aphCommon class. For example.

requi re_once(_ABSPATH. ' /1i b/ metrics/ G aphConmon. php');

cl ass Nunmber O Scans extends G aphConmmon {
__construct () {

/1 Enpty constructor

The base class G aphCommon defines five abstract public methods that must be defined in the metric
subclasses. These are.

1. install()
Used by nessquik to install your metric in the database. This method expects you to define
three descriptive properties for your metric
1. $nane
2. $di spl ay_nane
3. $description
After defining these values, you must call the i nsert _i nt o_dat abase function

provided in the base class. The example below shows the contents of the _i nstall ()
method for the Nunber OF Scans metric.

public function _install() {

$nane = get _cl ass($this);
$di spl ay_nane = "Nunber of Scans";
$description = "Create graphs based on scans";

parent::insert_into_database($nane, $display_name, $description);

2. _config($nmetric_id)

Used by nessquik when displaying your metric. This method should define default values to
include in the template so that a default graph can be created.

You must retrieve a Smarty object to use when creating the template. This is shown in the
example below.

As per convention, you will need to assign variables to this template using an array. If you
only assign a single value, then you do not need to use an array. The only required value
that must to be assigned to the template is

e Snetric id

After assigning the variables to the template, you must call the di spl ay method of the
template to show the metric to the user. The only argument that should be given to the
di spl ay method is the path to the metric template. This path is relative to the
t enpl at es/ directory of the nessquik installation.

The example below shows the contents of the _config() method for the
Nunber Of Scans metric.

public function _config($nmetric_id) {
/1l Retrieve a Smarty object for tenplating
$tpl = SmartyTenpl ate: : getlnstance();

/1 Assign default values to tenplate
$t pl - >assi gn(array(

"sub_types_arr' => $t hi s- >sub_t ypes,
'scan_status_arr' => $t hi s- >scan_st at us,
"metric_id' => $metric_id,

‘type’ => $t hi s- >t ype,
"status' => $t hi s->stat us,

' begi n' => $t hi s- >begi n,

"end' => $t hi s->end

)

$t pl ->di spl ay(' metri cs/ graphs/ nunmber _of _scans.tpl');

3. _prepare($parans)

4.

nessquik metrics can have dynamic data sent to them so that minor customization can be
performed at runtime when generating graphs. This method allows the metric author to
receive and store any dynamic values that they assigned to the template during
configuration.

The variable $par ans is an associative array. The index of the array will be the form input
names as they were received from the metric's template.

You should check the values of the $par ans array using if statements. The if
statements should include the warning suppression operator (@) in case a warning is
generated. These warnings can cause your graphs to fail to display. During debugging it is
recommended the operator is removed. For production, please put the operator in place.

The example below shows a sample of the contents of the _pr epar e() method for the
Nunber OF Scans metric.

public function _prepare($parans) {

i f(@parans[' sub_type']) {

$t hi s- >t ype = $parans[' sub_type'];
} else {
$t hi s->type = sel f:: DEFAULT_SUBTYPE;
}
/1
_renove()

nessquik will call this method before it deletes the metric class from the filesystem. Use this
method to cleanup files or tables that you may have created during installation. As a general

rule you should at least remove your metric's template file.

The example below shows the contents of the _renove() method for the
Nurmber OF Scans metric.

public function _renove() {
unl i nk(_ABSPATH. ' / t enpl at es/ gr aphs/ nunber _of scans.tpl');

. _Create()

nessquik calls this function to generate your graph. If your graph provides no dynamic
values that can be changed, you can just use this function to create your standard graph.
Developers who provide dynamic values on the other hand, may find this function better
used as a wrapper around separate graph creation paths.

In the example provided, I use the wrapper approach. A separate method is used to generate
the graph. Since I provide the user with values that can be changed, I use a switch statement
in the create function to generate a different graph based on the value of the parameter that
was sent in the form.

The example below shows the contents of the _create() method for the
Nunber OF Scans metric.

public function create() {
if (!$this->is_date($this->begin)) {
$t hi s- >begin = sel f:: DATE_BEG N,

if (!$this->is_date($this->end)) {
$t hi s- >end = sel f:: DATE_END,

switch ($this->type) {
defaul t:
case "nost":
$t hi s- >graph_scans("DESC', $this->status,...);
br eak;
case "least":
$t hi s- >graph_scans("ASC', $this->status,...);

br eak;

10

The method that is actually called to generate the graph then is contained in a private
function. See the sample code below.

private function graph_scans($order, $status, $begin, $end) {
/...
$t hi s->graph =& new PHPI ot ($t hi s- >wi dt h, $t hi s->hei ght);
$t hi s- >gr aph- >Set Pl ot Type("bars");
/1 Must be cal | ed before SetDataVal ues
$t hi s- >gr aph- >Set Dat aType("text-data");
$t hi s- >gr aph- >Set Dat aVal ues($dat a) ;

$this->set_titles($this->status);

$t hi s- >gr aph- >Set XTi ckLabel Pos(' none');
$t hi s- >gr aph- >Set XTi ckPos(' none');

$t hi s- >gr aph- >Dr awGr aph() ;

/1 Print the inage
$t hi s- >graph->Print| mage();

The creation of the graph requires that the developer understand how PHPlot works.

Documentation is available from the Sourceforge project page.

htt p://sourceforge. net/ projects/ phpl ot/

If this is unavailable, up-to-date documentation is also available from the nessquik home
page.

htt p: // hone. f nal . gov/ ~t ar upp/ downl oads/ phpl ot docs-20061201. zi p

11

Report Metrics

A report metric class must extend the Repor t Conmon class. For example.

requi re_once(_ABSPATH. ' /1ib/ metrics/ Report Conmon. php');

cl ass Systenfstats extends Report Common {
__construct () {

/1 Enpty constructor

The base class Repor t Conmon defines five abstract public methods that must be defined in the
metric subclasses. These are.

1. _install()
Used by nessquik to install your metric in the database. This method expects you to define
three descriptive properties for your metric
1. $nane
2. $di spl ay_nane
3. $description
After defining these values, you must call the i nsert _i nto_dat abase function

provided in the base class. The example below shows the contents of the _i nstall ()
method for the Syst enfSt at s metric.

public function _install () {

$name get _cl ass($this);

"System Statistics";

$di spl ay_nane

$description = "Create reports based on systemstatistics";

parent::insert_into_database($nane, $display name, $description);

2. _config($netric_id)

Used by nessquik when displaying your metric. For reports, this method is primarily a
wrapper around the _create() method. If you intend on providing dynamic

12

customizations in your metric, then I would advise you refer to the API documentation for
the _confi g() method in the Graphs API as the two methods have the same purpose in
the long run.

The example below shows the contents of the _conf i g() method for the Syst entSt at s
metric.

public function _config($nmetric_id) {

$this-> create(true);

3. _prepare($parans)

For the report metrics, the prepare method is mostly not used. If you plan on using it, it
should obey the same rules as defined in the graphs metric API. Otherwise, it should simply
return the boolean value t r ue.

The example below shows a sample of the contents of the _prepar e() method for the
Syst enf5scans metric.

public function _prepare($parans) {

return true;

4. _renove()

nessquik will call this method before it deletes the metric class from the filesystem. Use this
method to cleanup files or tables that you may have created during installation. As a general
rule you should at least remove your metric's template file.

The example below shows the contents of the _r enbve() method for the Syst enfSt at s
metric.

public function _renove() {

unl i nk(_ABSPATH. ' / t enpl at es/ reports/system stats.tpl');

5. create()

nessquik calls this function to generate your report. If your report provides no dynamic

13

values that can be changed, you can just use this function to create your standard report.
Developers who provide dynamic values on the other hand, may find this function better
used as a wrapper around separate report creation paths.

In the example provided, I use the simple creation approach.

The example below shows a sample of the contents of the _creat e() method for the
Syst enfst at s metric.

$tpl = SmartyTenpl ate: : getl nstance();

$t ot al _pl ugi ns = $thi s->count _total _plugins();
$not _ready_scans = $thi s->count_not _runni ng_scans();
/...

$t pl - >assi gn(array(

"total _plugins' => $total _plugins,
'not _ready_scans' => $not _ready_scans,
' pendi ng_scans' => $pendi ng_scans,

' runni ng_scans’ => $runni ng_scans,
'fini shed scans' => $fi ni shed_scans,

' count ed_users' => $count ed_users,
'top_user _nane' => $t op_user _nane,
"top_user_count'’ => $top_user_count,

' bott om user _nane' => $bott om user nane,
' bottom user _count' => $bottom user _count

));

$tpl ->di splay(' metrics/reports/systemstats.tpl');

The creation of the report requires no further knowledge of external libraries (like the
graphs metrics do) unless you package your own libraries with the report. In that case
though, you should understand how to use your own libraries.

14

Templates

Metrics should use a template to display themselves to the user. Only a single template needs to be
used for any given metric unless you really want to get complicated. I'm not entirely sure that the
design of the metrics API even allows for that kind of complexity though because none of the metrics
written so far have used multiple templates.

Where do I put the template?
Templates should be placed in the following locations depending on whether your metric is a graph or
a report.

e tenplates/netrics/graphs/

e tenplates/netrics/reports/

What should be in the template?

The template should include table code to display any dynamic options the graph may support. It
should include hidden form elements as well in case you need to store these values and submit them to
nessquik when updating the graph.

Templates should also include a direct link to nessquik's adm n_met ri cs. php script for displaying
the default graph and any customizations to the graph. The i g tag that is needed is shown below.

<ing id='the_graph' src="async/adm n_netrics. php' >

This image tag must also include at least the following parameters.
® action=view netric
® netric_id={$metric_id}
® begi n={ $begi n}
® end={%$end}

These values should be appended to the Sr C attribute of the image tag. Your Sr C attribute is welcome
to contain more values depending on how many dynamic customizations your graph supports.

Do templates support javascript?

Templates support javascript just like the rest of Smarty does. To include runtime javascript, you must
include it between the Smarty { | i teral }{/|iteral} tags

15

Can javascript functions be defined in templates?

Yes, although it is done differently than you may expect. The prototype.js documentation explained
what needs to be done. Functions must be defined like a variable would be defined.

The following javascript will not work.

function set_scan_status(status) {

al ert (status);

Instead it must be written like this. This javascript will work.

set _scan_status = function(status) {

al ert (status);

Are there any best practices | should follow?

Sure, I can recommend some. You'll want to look at the templates and metric classes that are included
with nessquik for solid examples. The Nunber OF Scans metric is a good example in case you need to

examine sample code.

1. Include an updat e_i ng_src() function in your template for changing the graph during
runtime if you allow customizations in your metric class. See the nunber _of _scans

template for an example of how to add this.
Use ond i ck changes for your dropdown menus if you include them on your form.
Include your customization options above the graph in their own table.

Place the graph in it's own table.

A S

Include a horizontal rule between your options and the graph.

16

Unit Testing

Metric classes currently have no unit testing requirements at this point in time. This is likely to change
in the future however. Currently my suggestions for unit testing are to follow the current format for

unit tests.

For Graphs

When generating graphs and checking their validity I suggest the following.
® Write the graph to a file on disk
® Hash the file using MD5

® Compare the hash to a pre-calculated, valid, hash of a graph that is stored as a constant in your

metric class.

For Reports

® Pre-calculate valid output that will be sent to the graph template.
® Store those values as an array in your class.
® Generate the test data from the database

® Compare test data with valid data to confirm functionality of the method of the class

17

	Introduction
	Prerequisites
	Rules
	Caveats

	What's Available and Where
	Directory Hierarchy
	lib/metrics/
	lib/metrics/graphs/
	lib/metrics/reports
	templates/metrics/
	templates/metrics/graphs/
	templates/metrics/reports/

	API
	Graph Metrics
	Report Metrics

	Templates
	Where do I put the template?
	What should be in the template?
	Do templates support javascript?
	Can javascript functions be defined in templates?
	Are there any best practices I should follow?

	Unit Testing
	For Graphs
	For Reports

