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XIII. Classic Problems with Cosmology and Inflation

A major virtue of the Big Bang theory is its simplicity: given the fact that the
universe is expanding, one is able to derive the equations governing the expansion
with very little freedom in the details of the theory. However, the theory is hardly
complete: there is no explanation of how or why the Big Bang began in the first
place. Furthermore, the observed universe is hardly smooth on very small scales,
and there is no explanation of how structure formed or what its amplitude should be.
Rather than attacking the origin question head-on (it is still an unsolved question),
the most sensible approach is to extrapolate the observed universe back in time and
see what properties of the universe at early times manifest themselves today.

In the context of classical cosomology there are two paradoxes (to be explained
below) that appear to place extremely demanding constraints on the big bang.
These paradoxes are known as the flatness and horizon problems. The resolution
of these paradoxes may well be found, not in the big bang itself, but rather in the
physics of the universe at subsequent times.

The physics of the early universe is a fascinating and still developing field. It
will largely be ignored here, mainly to keep the scope of the book limited. Ex-
trapolating backwards in time beginning with the radiation-dominated phase of the
universe, one finds that at early times the evolution of the universe depends as
much on processes involving microscopic physics (atomic, nuclear, particle) as it
does on macroscopic (gravitational) physics. Because the density and temperature
of the universe increase without limit as one extrapolates back in time, one quickly
finds that there is an epoch beyond which our current physical understanding is
incomplete. (Roughly speaking, “known physics” referes to the physics of temper-
atures that correspond to energies that can be reproduced in present day particle
accelerators). At present this epoch occurs at roughly t = 10~"* seconds, when the
universe has a temperature 7 = 10'° K.

A. Flatness problem

This problem has already been alluded to. In an expanding universe, the pa-
rameter Q (= p/perit) is not constant with time. Rather, if it deviates from 1 (either
high or low), then that deviation grows with time. Conversely, if we look back in
time, then 2 becomes ever closer to unity. The exact dependence during the matter
dominated phase is given by Eq. (6.10):

(In this equation, z is used instead of time ¢). The value of € is uncertain, but we

know that the mass in observable stars and gas make 2 > 0.02, and the dark matter
imputed to be in galaxy clusters gives 2 > 0.2. At the time of recombination, then,
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Q deviated from unity by at most 3% and possibly as little as 0.3%. At the time
that “known physics” begins (of order 10732 seconds), the value of  must be 1 to
an accuracy of 107437, In standard cosmology there is no known way to make Q be
this close to unity; it must be input as an initial condition. Futhermore, for most of
the history of the universe, € is either very close to 1 or very close to 0; if {2 is, in
fact, of order 0.2 today, then we live at a very special time. This fact has led some
astronomers to argue that since we probably don’t live at a special time and €2 is
certainly not close to 0, then it must be very close to 1.

B. Horizon Problem

In a universe with 2 > 0, any observer can see only a limited portion of the
universe at any given time. The size of this portion can be found by computing the
proper distance that corresponds to infinite redshift. This is given by:
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For €2 = 0 we can barely see to infinite distance, while for {2 = 1, we can see to a
horizon limit of 2/Hy. The total mass enclosed within the horizon is of order 1/Hj,.
As we go back in time, H gets bigger and the amount of mass within our horizon
gets smaller. This means that parts of the universe that are well within our horizon
today were causally disconnected at very early epochs. In particular, the microwave
background radiation coming from different portions of the sky was emitted at a
time when those portions lay outside of each other’s respective horizons; had they
been at different temperatures initally, they could not have equilibrated. In short,
the universe could not have evolved to the high degree of homogeneity and isotropy
that we observe today; those properties too must have been imposed as an initial
condition.

C. Inflation

The physics that lies behind the concept of inflation lies well outside the scope
of this book; a good reference is “The Early Universe” by Kolb and Turner. Briefly,
however, standard physics is inadequate to describe the nature of matter (in partic-
ular the equation of state) above temperatures of order 10" K, and one must resort
to so-called Grand Unification Theories, which attempt to unite the theories of the
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strong, weak, and electromagnetic forces. These theories conjecture that when the
universe cools below a temperature of order 7' = 10?7 K, matter is trapped for a
while in a state known as a false vacuum. The details need not concern us; what is
relevant, however, is that the equation of state for such matter is given by P = —p
(rather than the conventional P = p for ordinary relativistic matter). The major
consequences of inflation follow directly from this equation.

The calculation of the behavior of the universe during the inflationary phase
follows the same procedure as was used in chapter 8 for a universe of ordinary
matter. The only extra step needed is that we need to determine the relation
between p, and P as a function of radius R. This relation can be derived using the
first law of thermodynamics. Take a sphere of matter with volume V' (= (4/3)7R3).
The total enclosed mass-energy is £ = pV. The first law of thermodynamics is

dE = dQ — PdV, (13.5)

where d(@ is the heat flow into or out of the volume. For a homogeneous universe,
d@ = 0 always (no temperature gradients). Then it immediately follows that

dE = pdV + Vdp = —PdV. (13.5)

Given an equation of state relating p and P, this equation can be integrated to give
the relation between p and R. For the inflationary universe, this relation is quite
simple. Inserting p = —P, we find that dp = 0, or p = py = constant. The value of
po comes from Grand Unification Theories.

The expansion equations are particularly simple to solve for the inflationary
universe. Beginning with Eq. (8.2), we have
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Integrating once gives
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where the integration constant R¢ is introduced in place of the previously used e.
The choice of a + sign is appropriate for an open universe; a — sign would be used
for a closed universe. Only the open case will be worked out here, although the
closed case can be solved in a comparable fashion. Note that R is not the initial
radius at any particular time. If Ro = 0, we have a critically bound universe.

For convenience, let w? = (8/3)7Gpy.

One further integration gives:

sinh ™ (;j) — sinh™* (?) +w(t —t;), (13.8)
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with integration constants defined so that R = R,; at time ¢t = t; that corresponds
to the start of the inflationary epoch. For a closed universe, the sinh function is
replaced by cosh.

The behavior of R with time is quite different from the previous radiation and
matter dominated universes. At large time, Eq. (13.9) shows that R grows expo-
nentially with time (hence the term “inflation”).

Examination of Eq. (13.8) shows that once again the critical density for a
marginally bound universe is given by
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Perit B R2 + RQC
Rc/R; is a measure of how close to critically bound the universe is at the

beginning of the inflationary epoch. In fact, we have
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If the ratio is small, the universe is close to critically bound; if large, the uni-
verse is open. However, Eq. (13.11) shows that as R increases and exceeds R¢, (2
approaches unity; furthermore, this process occurs exponentially fast. At the end
of the inflationary epoch, when R = Ry, Q has the approximate value
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From Eq. (13.9) we see that
R ~ Rc explw(ty —t.)] (13.14)

regardless of the initial value of R; provided Ry >> R¢ by the end of inflation.

The inflationary epoch lasts from 10734 to 10732 seconds, during which time
the universe undergoes about 100 e-foldings, or a factor 10*3 increase in size. Thus
by the end, Q differs from unity by a factor 10786, At 10732 seconds, the universe
undergoes a phase transition at which point the equation of state returns to that of
ordinary radiation.

At any epoch, we have
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(This follows from the Lemaitre equation and the definition of ). At the end of the
inflationary era, ) starts increasing again at rate proportional to ¢ (for the radiation
dominated phase) or t2/3 (for the matter dominated phase). The relevant times are:
end of inflation, t; = 10732; end of radation epoch, t = 3 x 10'1; today, t = 3 x 1017,
Combining, we find Q¢ — 1 = 3 x 10739, so unless §2; was extremely small at the
start of the inflationary phase, we expect the universe today to be extremely close
to being critically bound. This solves the flatness problem.

The horizon problem is solved as follows. Equation (13.14) gives the growth of
the universe during the exponential phase of the inflationary period. Just before
the entry into the exponential growth phase, the universe is thermalized and made
uniform out to a radius corresponding roughly to the horizon size 1/H at that time.
We now demonstrate that this radius encloses all of the mass visible today and much
more. At the start of the exponential growth phase, we have H = R/R = w, so the
comoving distance corresponding to the horizon at that time is
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This comoving distance corresponds to a linear distance today of
R
Rouma:v = (.U]{Oc. (1317)

If R, is the radius of the universe at the end of the radiation dominated era (at
t, = 3 x 101), then we have R, /Ry =5 x 102! and Ry/R, = 10%; hence Ry/R. =
5 x 10%%. Within factors of 2, we have
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Combining and inserting in Eq. (13.17), we find that the universe is thermalized
over a size today that is
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This is enormously larger than the current horizon size, so we have solved the
horizon problem.

Inflation also solves a problem unique to GUTs, namely the magnetic monopole
problem (indeed, solving this problem was the original impetus for developing the
process of inflation). Briefly, GUTs predicts the existence of massive magnetic
monopoles which, if there were no inflationary epoch, would dominate the mass
density of the universe today. Inflation reduces the density of monopoles to the
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point that their density today is negligible. Finally, inflationary theory predicts that
at the end of the inflationary period, when the universe makes a state transition to
that of ordinary matter, there will be a massive overproduction of matter relative
to that of antimatter. The details are well beyond the scope of this book, and the
reader is referred to a text such as The Early Univerese (Kolb and Turner) for more
details.



