Tracking bunches of particles
* Aside: units
» Periodic longitudinal boundary conditions
» Characterizing distributions

- moments
— correlation coefficients
- histograms

» Statistical definition of emittance
* Generating matched beams

- including longitudinally uniform beams
 Compensating for statistical artifacts



Aside: units

Unit systems are the bane of accelerator
physics

Synergia uses two codes with two different
systems of units

Xz'mpact — UXchef



units, cont.

* The maps from gourmet are in impact units

* The chef unit of length is meters

* The impact unit of length makes more sense
when you realize that when you track an RF
system with frequency = scaling frequency, the

longitudinal bucket is +/- 1t




Periodic longitudinal boundary
conditions

Take a long periodic (or uniform) beam

Look at period n

n-1 n n+1

Each particle leaving n corresponds to another particle entering
n from the other slide

O VO




Characterizing distributions

* |f we are going to deal with large numbers of
particles, we need to have a set of observables
by which to characterize the distribution

» First moment (mean) <x>

e Second moment C:
Cij = <(CIJZ— < XT; >)(£Cj— < X >)>

e Correlation coefficient R:
Cy;

/GGy




characterizing, cont.

* These quantities are both useful in simulations
and closely related to typical measuring devices

- Beam position monitors report <x>

- Beam sizes are usually characterized by a width ~
sqrt(C”)

* One-dimensional histograms are also useful
and similar to the output of beam profile
monitors.

* Of course, in the simulation we both have
access to and require information not readily
available in experiments.



Statistical definition of emittance

® €= \/detC’ij

- note that this can be 2D (horizontal, vertical or
longitudinal), 4D (transverse) or 6D (full phase
space)

» Confusion danger: different conventions abound
- This is “one sigma” ~ 36%
- Unnormalized

 Numerical danger: taking determinants of even
modestly-sized matrices is numerically tricky.



Generating matched beams

 Good news: real beams are usually well
modeled by a Gaussian distribution in each
coordinate

- Gaussians are easy to generate. See, e.g., NR.
e Bad news: real beams contain correlations

- Simplest case: 1D Courant-Snyder

84
- Ra:a;’ —
_ V14 a2
- Beams with couplings between planes are much

more complicated.




Aside: random number generators

 Computing (pseudo-) random numbers is
difficult

« Canned routines can be bad

- e.g., Intel Fortran ca 2002 (I haven't checked it
lately)

 |deally, you should always know which random
algorithm you are using.

* You must always know how your random seed
IS being set.



Matching

A matched beam has the same distribution after
each period (turn, etc.)

Ty =Mz,
Za:f:c;": = ZMa:za:;‘FMT
C = Za:fa:;": = Z:cz:c;r

C=MCM?*
Me = Xe = {\;,e;}

B, = eieT Given a set of constraints (widths, emittances, etc.),

the problem is then to solve for the a.
C = Z aiEz- P !
i



Subtleties

* Will the given procedure always work?

- Only if the all degrees of freedom, including
longitudinal, are “matchable”

* |.e., stable RF
- If the procedure fails, the components E. will fail to

span the space: Jet (Z Ez> — 0

* \WWhat if we have a uniform longitudinal beam or
a bunching/debunching beam?

- One possibility: only match transversely
* Neglects to compensate for dispersion



Special case: uniform longitudinal
beam

* |If we are modeling a uniform longitudinal beam
with periodic boundary conditions, the map
does not tell the whole story.

- And if we are not using periodic boundary
conditions, the beam will not stay uniform!

- If the longitudinal coordinate is uniform, symmetry
prevents any couplings to other coordinates. All
couplings to the spatial longitudinal coordinate
(other than the self-coupling) should be set to zero
In the map for the purposes of matching.



Fixing the distribution

* |t is easy to generate a set of uncorrelated
vectors {v} with Gaussian distribution with unit
W|dthS < V;V; > 57;3-

* We want a set of vectors {r} with correlations
given by the C from our procedure.

e Solution: 7 = Gjkvk
« where C=GG*
« GG' is the Cholesky decomposition of C



Correcting for finite statistics

In reality, our set of random vectors with have
statistical fluctuations. These fluctuations are
non-physical because we are typically using
n macroparticles << N physical particles

If we have <v>=7%

and < vv; >= X

then another Cholesky decomposition X = HH"
allows the solution r; = A (v — )

with A =GH™!



