
Recent Software Issues L3 Review of SM Software, 28 Oct 2008 1

Recent Software Issues

Occasional runs had large numbers of single-event files.
INIT message issues:

1. With large INIT messages (many HLT trigger paths) and a large number of
filter units, SM memory usage increased dramatically at the start of a run.

2. I2O buffers were not released after INIT messages were received.
3. Discard messages were not sent from the SM to the upstream resource

broker.
4. SM occasionally crashed at begin-run time.
Corrupt event messages were received in certain test configurations at CERN.
The event rate in the DAQ system drops noticeably for a short interval at the
end of each lumi section.
Running with a low rate of events into the HLT gives HLT DQM histograms
with a fraction of the expected statistics.

Recent Software Issues L3 Review of SM Software, 28 Oct 2008 2

Lots of single-event files

Symptom: Occasionally, a run would generate a large number of single-event files rather
than a reasonable number of files with many events per file (as was configured).
Trigger: It was discovered that this problem occurred when the global trigger would send
stale data from run N-1 early in run N. The data from the earlier run would have a lumi
section number greater than 1.
Root cause: When deciding whether to close files, the SM code assumed that lumi
section numbers would only increase or stay the same over time.
Solution: We removed the logic that used lumi section numbers when deciding whether to
close a file. Instead, a simple time-based algorithm is used. Now, when no events are
received for a given SM stream and lumi section in a configurable time interval (default =
45 sec), the file for that stream and lumi section is closed. If subsequent events are
received, a new file is opened, and the time interval for that stream/lumi section starts over
for the new file.
Related issues: We found that internal data was not correctly being cleared between runs
in ServiceManager.cc. This is now done in ServiceManager::start() and
ServiceManager::stop().
Relevant (new) code:

ServiceManager::closeFilesIfNeeded()
EventStreamService::closeTimedOutFiles()

Recent Software Issues L3 Review of SM Software, 28 Oct 2008 3

Historical INIT message handling

In general, I2O fragments are assembled by the FragmentCollector:
StorageManager::receiveXYZ() methods receive the fragments (link)

fragments are placed on the fragment queue
FragmentCollector::processFragments() delegates the work based on the message type
FragmentCollector::processABC() methods assemble the fragments and process the

assembled messages (link)
However, INIT message fragments are assembled in statistics classes (e.g. see
SMFUSenderEntry::addFrame()).
For quite some time, there have been plans to move the INIT message fragment handling
into the FragmentCollector, and this is in process now.
However, there were a number of issues caused by

The use of non-unique keys in identifying the source of the INIT message
The storage of redundant copies of INIT messages

These issues will definitely go away once the INIT message fragments are handled in the
standard way, however, short-term fixes were needed to help things run reliably in the
online during global runs.

Recent Software Issues L3 Review of SM Software, 28 Oct 2008 4

INIT message issues 1, 2, and 3

Symptom: With large INIT messages and a large number of filter units, SM memory usage increased
dramatically at the start of a run, I2O buffers were not released after INIT messages were processed,
and discard messages for INIT messages were not sent to the upstream resource broker.
Triggers: INIT messages needed to be large enough to be fragmented (> 64k) and multiple filter units
needed to be associated with each resource broker.
Root cause: INIT messages were identified by non-unique keys: the RB that sent them and the shared
memory buffer number (in the FU PC). When the same shared memory buffer was used by multiple
INIT messages, the SM added the fragments from the subsequent INIT message(s) to the end of the
list of fragments for that RB/bufferNumber instead of creating a new list. The test for receiving complete
INIT messages was (numberFragmentsInList == numberFragmentsExpected), not
((numberOfFragmentsInList % numberFragmentsExpected) == 0).
Short-term solution: Modified the test for receiving complete INIT messages to
((numberOfFragmentsInList % numberFragmentsExpected) == 0).
Medium-term solution: Use a unique key for identifying messages, move the INIT message fragment
collection into the FragmentCollector, and keep track of which fragments have been received instead of
using a simple list.
Relevant code:

SMFUSenderEntry::testCompleteRegistry()
FragmentCollector::assembleFragments()
FragmentCollector::removeStaleFragments()
FragmentCollector::processHeader() will be modified to be like FragmentCollector::processEvent()

Recent Software Issues L3 Review of SM Software, 28 Oct 2008 5

Crash at run start

Symptom: With large INIT messages, SM instances would occasionally crash at begin run
time. Also, requests to display the web page that lists the resource brokers that were
registered with the SM would occasionally crash the SM.
Triggers: INIT messages needed to be large.
Root cause: A list of INIT messages was not cleared between runs. Multiple, duplicate
copies of INIT messages were kept in memory. For the web page, copies of the INIT
messages were made instead of copies of pointers. A NULL return value was
occasionally returned when the INIT message was requested from the list.
Short-term solution: The causes listed above were fixed. A test for the NULL pointer was
added.
Medium-term solution: Move the INIT message fragment collection into the
FragmentCollector.
Relevant code:

SMFUSender*.cc
FragmentCollector.cc

Recent Software Issues L3 Review of SM Software, 28 Oct 2008 6

Corrupt Event Message

Symptom: In a test system at CERN used by Emilio to check for various
problems, the storage manager would stop processing events within
approximately 10 minutes, and it would complain about an invalid message type
when it expected an Event message.
Triggers: Events with the same event number sent by different resource
brokers; events large enough to be fragmented.
Root cause: Events were identified by the run number, event number, and
output module ID for the event. When overlapping fragments were received for
multiple events with the same event number, the SM became confused about
which fragments were received for which event.
Medium-term solution: Add the filter unit ID to the event/fragment identifier;
track individual fragments.
Relevant code:

FragmentCollector::assembleFragments()
FragmentCollector::removeStaleFragments()
FragmentCollector::processEvent()

