Notes from 13-Feb-2008 Storage Manager Discussion
Harry Cheung, Jim Kowalkowski, Kurt Biery

Issues:

1. Performance – what is it capable of? How (and what) is it doing? How often?

2. Fault tolerance – what bad things can happen? What is reaction?

3. Current state of system – what is the state of all things that are active? How often?

4. DB access – buffered/cached? immediate? all state? external tool? C++ call directly

For reference, the various threads of execution in the storage manager are the following:
· tcp transport thread – receives I2O fragments from HLT nodes
· main thread (may not be relevant)

· HTTP thread – receives requests from consumers and SMProxy

· XOAP thread – receives commands from RunControl

· JobController thread – manages internal threads

· FragmentCollector thread – assembles event fragments and processes registry, event, DQM, and other messages

Looking first at fault tolerance and listing the problems that may occur in the various threads.
[22-Feb-2008, Kurt – I’ve added some proposals for the Desired Reactions in the tables below and made some guesses as to which things should cause a transition to the Failed state and which should simply be logged. For problems that are logged, I’m imagining some sort of dynamic prescale so that we see all of the first few occurrences of a problem but only a fraction of later ones (with information on how many were suppressed) so that we don’t fill up log files with thousands of the same message. All of this is open to debate, of course.]
FragmentCollector:
	Problem
	Cause
	Desired Reaction

	Corrupt data received from HLT such as invalid message types
	Logic problems in upstream applications or memory corruption
	Log error, keep statistics, discard fragment.

	Unrecognized data (unexpected fragment type)
	Logic problems in upstream applications or memory corruption
	Log error, keep statistics, discard fragment.

	Missing fragments
	
	Provide timeout, log error, keep statistics, discard the partial event.

	Out of order fragments
	
	[Update the code to handle out of order fragments so that this is not a problem?]

	System exception
	
	Transition to a Failed state and log an error message.

	Application exception
	
	For exceptions which are understood and can be handled, log them, keep statistics, and discard fragment. For exceptions which can not be handled, transitions to a Failed state and log the error.

	Incoming fragment causes application exception
	
	

	Event message view – bad protocol version
	
	Log error, keep statistics, discard fragment.

	No event server
	Logic error
	Transition to a Failed state and log an error message.

	Writer error
	
	See below

	Wrong run number
	
	[Update the code to determine the run number in a better way than from the cfg file?] For events with the wrong run number, Log error, keep statistics, discard fragment.

	Invalid fragment key
	
	Log error, keep statistics, discard fragment.

	Overlapping trigger selection from different output modules in same FU
	
	Transition to a Failed state and log an error message.

	Fragments in the queue after done message received
	
	Discard fragments, generate error message.

	Could not stop writer properly
	
	Transition to a Failed state and log an error message.

	Could not stop DQM event server properly
	
	Transition to a Failed state and log an error message.

ServiceManager (writer):

	Can’t write to a file
	
	Transition to a Failed state and log an error message.

	Can’t create a file
	
	Transition to a Failed state and log an error message.

	No space on disk
	
	Transition to a Failed state and log an error message.

	Update DB fails
	
	Fault tolerance should be done inside ServiceManager [Create functionality to provide non-blocking, robust DB updates?]

	Misconfiguration
	
	Transition to a Failed state and log an error message.

	Event from closed lumi section (no test now)
	
	Log error, keep statistics, discard event.

	DB write too long (CPU time)
	
	Log warning.

	Disk write too slow
	
	Log warning.

	
	
	

	
	
	

Event Server (propogates no exceptions; no wait)

	Write to queue fails
	
	Log warning.

	
	
	

DQM Event Server and Service Manager (archives to disk, summing histos, serves to DQM consumers):

	Deserialization of histo data fails
	
	Log error, keep statistics, discard the offending DQM update.

	Taking too long (too much CPU)
	
	[Throttle somehow?]

	Disk write/file create/disk space (same troubles as other writer)
	
	Similar responses?

	
	
	

Three queues:

· Fragment queue – we should track usage statistics and alarm when problems become apparent (e.g. average size over time increasing)
· Event server queues

· DQM event server queues

TCP Transport (registry, data, DQM data, other):
	Receive INIT message in wrong state (currently releases buffer, junks the message, and keeps going)
	
	Transition to the Failed state?

	Overlapping event selection in INIT (currently aborts, logs message)
	Misconfiguration of HLT output streams
	Transition to a Failed state and log an error message.

	InitMsgView constructor fails – throw exception?
	
	Log error, keep statistics, discard fragment.

	Receive event or DQM event data but not in run state (currently release mem, discard data, log msg)
	
	Transition to the Failed state?

	Run number wrong (currently just releases memory)
	
	Log error, keep statistics, release memory.

	Receive data from an unregistered FU
	
	Log error, keep statistics, discard fragment.

	I2O frame count is wrong (memory corruption)
	
	Log error, keep statistics, discard fragment.

	Receive Other message but not in enabled state
	
	Transition to the Failed state?

	Done from FU after Done from RunControl
	
	Transition to the Failed state?

	
	
	

Storage Manager – state machine callbacks – XOAP thread handles config, enable, stop, and halt commands
	
	
	

	
	
	

General notes:

· any process that does a thread join should be sure to check for taking to long waiting for child death

· every thread should be catching all exceptions before exiting [catch (...)]
· the stopAction and haltAction methods in the StorageManager class may be calling shutdown functionality repeatedly – we should check that the calls are robust against repeated calls

· direct interaction with objects that the JobController controls should be moved inside the JobController class (e.g. clearing eventServer and dqmEventServer queues)

· it may be desirable to provide a switch to disable the writing of data to disk during performance measurement tests

· the callout to a Perl script to handle DB writes may be replaced with C++ DB calls

· is it worthwhile to improve handling of bursts of events, for example at the beginning of a run?

· should we list the things that can go wrong from the point of view an event consumer (or DQM event consumer) and list desired reactions in each case?
· we should check that we are sending serious log messages to a central reporting facility rather than just printing them locally

· In the global DAQ at P5, a top-level Function Manager sends commands to regional FMs (DAQ, HCAL, ECAL, etc.). The DAQ FM sends commands to the trigger FM, FED FM, and BU/FU/SM FM.

2/22/2008 1:21:00 PM

Page 4

