
Storage Manager Mini-Review

 - 1 -

Storage Manager Mini-Review

DRAFT

Jim Kowalkowski
Liz Sexton-Kennedy

Marc Paterno
Luciano Piccoli

1 Introduction
This report contains the results of the Storage Manager (SM) mini-review. The purpose of the
review was to look at the SM design and code, and make specific recommendation for improve-
ment. The two day time limit for this review greatly restricted the scope of this review. Harry
Cheung and Kurt Biery pointed out specific areas that could be problematic.

We concentrated on the following areas:

• bigger structural problems (has the problem been decomposed well? is the design rea-
sonable?),

• poor memory use or management,

• areas of code that might cause performance problems,

• and areas of code that might have maintenance or stability problems.

We recognize that the SM has gone through several feature enhancements and that many people
have edited the code since the early prototype. Kurt Biery kindly provided overview talks and pre-
sented the reviewers with documentation and reference material. Kurt has also taken on the task
of troubleshooting problems in this application and has been making many changes to it. All of
this material provided by Kurt was very useful to introduce the SM and explain is functions. We
also recognize that some of the code in the SM is a moving target and is still under development.

We did not have time to review the output and input modules used in the HLT and consumer ap-
plications. We also did not look through the SMProxyServer.

We were hoping to get a performance profile of the SM, but were unable to coordinate this effort
with Kurt before the review. Such a profile would have allowed us to more easily focus on busy
areas.

2 Overview
The SM is a XDAQ, multithreaded application. Our understanding is that there are three different
activities going on: XDAQ message delivery and handling, event collecting and file output
streams, and event delivery to remote consumers. There is somewhat of a mixed programming
model present in the SM. Some of the classes use message passing as a means of data ex-
change. Other classes directly share the data structures using locking or assume concurrent
access is appropriate. The former method makes data sharing between threads easy to under-
stand. The latter is more difficult to manage and know if access to data structures is being safely
done. It was difficult to explore data structures that allow shared access for thread safety given
the time limits of this review.

 - 2 -

The SM application has been adapted to accommodate some additional difficult requirements.
Our understanding is that the SM is successfully carrying out its main role and these additional
features.

3 Major Concerns
These are areas of major concern in the current design:

• Class decomposition,

• State machine use,

• Failure to use standard c++ idioms,

• Underdeveloped infrastructure,

• And resource monitoring and conservation

Details on the observations in these areas are described within the following sub-sections, with
some examples from the source code.

3.1 Structural Problems
State handling: I2O callback functions perform state checks that belong to the state machine,
e.g. in StorageManager.cc:

802 if(fsm_.stateName()->toString() != "Enabled")

3.1.1 Class decomposition
The StorageManager need factorizing. This class contains I2O callback functions, processes web
page requests, and contains data members that belong to distinct structures as indicated by fur-
ther comments.

The JobController class should be eliminated. This class appears to be unnecessary in the de-
sign.

3.1.2 Underdeveloped infrastructure
Type safe thread safe queue: The EventBuffer is missing higher-level functionality to add spe-
cific types of events to a queue. The EventBuffer is a queue of fixed length buffer. Queues are
used in this application to hold specific data objects of type FragEntry. The CMS framework has a
queuing class called SingleServerQueue in the utility library that is a replacement for the Event-
Buffer. The following code is repeated several times in file StorageManager.cc and the new
illustrates the issue.

434 // queue for output
435 EventBuffer::ProducerBuffer b(jc_->getFragmentQueue());
436 // don't have the correct run number yet
437 new (b.buffer()) stor::FragEntry(&(*serializedProds)[0], &(*serializedProds)[0], serializedProds->size(),
438 1, 1, Header::INIT, 0, 0, 0); // use fixed 0 as ID
439 b.commit(sizeof(stor::FragEntry));

Configuration parsing: Some of code reproduces functionality within the framework to parse
configuration strings and generate parameter sets (e.g. ServiceManager.cc).

3.2 Bad Memory Usage
Auto_ptr issues: Auto pointers are used as data members. The ownership rules of auto_ptr
make it difficult to use properly as a data member, especially with regards to copy and assign-
ment operations. Following are examples in FragmentCollector.cc:

Storage Manager Mini-Review

 - 3 -

142 std::auto_ptr<edm::ServiceManager> writer_;
143 std::auto_ptr<stor::DQMServiceManager> dqmServiceManager_;

Shared_ptr issues: Shared pointers are sometimes used where no sharing is intended. We do
understand that many times the shared_ptr class was used to automatically manage the object
lifetime. The StorageManager constructor contains as example of this:

216 boost::shared_ptr<stor::Parameter> smParameter_ = stor::Configurator::instance()->getParameter();

Ever increasing data structures: Some of the data structures may increase in size, but never
decrease. Abnormally large events can cause the memory usage of the process to grow large
and never return to the typical size. An example of this is StorageManager::mybuffer_, which in-
creases in several places in StorageManager.cc:

4193 if(mybuffer_.capacity() < len) mybuffer_.resize(len);

Strange caching: The pointer attribute StorageManager::pool_ is checked on every I2O callback
(see the code snippet). It is unclear what the lifetime of this pool object really is since that is man-
aged elsewhere. The second problem we see is that we do not know if this referenced pool object
is always the correct one for the entire length of the run. It is also unclear if this first encountered
pool object is really the one active for all the requests, including those on secondary network in-
terfaces. Note that “pool_is_set_ == 0” has the same meaning as “pool_ == null”, which means
that the state variable “pool_is_set_” can be eliminated.

337 if(pool_is_set_ == 0)
338 {
339 pool_ = ref->getBuffer()->getPool();
340 pool_is_set_ = 1;
341 }

Copy and Assignment operators: The storage manager appears to allow copy and assignment.
Should these operations be allowed or should they be private (blocked)?

3.3 Performance
Duplicate Events: Events with the same ID and run number are currently allowed in the test en-
vironment and are illegal in an actual run. This feature complicates processing by requiring extra
control logic to handle this special test case.

Single threaded work: The FragmentCollector, StreamService, and EventService run within the
same thread, which serializes the tasks of assembling events, writing to disk and serving con-
sumers. An arrangement such as this might not optimize throughput.

Redundant checks: Checking for a complete event is done both in the I2O callback function and
also in the FragmentCollector. The former is used for sending a discard message. The latter is
used for sending the event to storage.

Polling: The command queue is checked for empty in the JobController thread. This effectively
changes the processing to a polling system, rather than one that awakes when there is work. This
polling is usually only necessary when the function is performing more than one task. In this case
it appears to be handling incoming work and also checking for other conditions. With polling, you
impose two penalties: the response time is determined by the sleep time, and extra process is
required even when there is no work.

130 if(!(collector_->getCommandQueue().empty()))

3.4 Maintenance
Duplicated code: Many of the I2O callback functions within the StorageManager contain code
that is very similar. It looks like much of the code has been added using copy/paste.

Vectors on the heap: The use of vectors on the heap within EventServer is somewhat unusual
since vectors themselves dynamic data structures. We suspect that there is a better organization
available for these objects. There is also an improper use of iterators in EventServer.

 - 4 -

State machine use: The evf::StateMachine avoids good use of a state machine and therefore
encourages coding that makes the understanding of the behavior of the program difficult. See
StoreManager.cc:355 as an example:

if(fsm_.stateName()->toString() != "Enabled" && fsm_.stateName()->toString() != "Ready")

There are many pieces of code that reply on a certain state structure and make explicit check
concerning it. If states or transitions are added, changed, or removed, there may be unexpected
results. Testing is also made difficult by the presence of these explicit state checks. Another issue
here is that many of these checks are compound conditions, meaning that the actual behavior
may not be obvious from the state diagram.

3.5 Error Handling
Compression error checking: It is not clear in the StreamDQMSerializer::serializeDQMEvent
member function how errors returned from the compression routines are handled. It appears as
though the uncompressed data is sent if there is a failure when compressing. Currently the re-
ceiving end (the storage manager) needs to perform a check on the data size to discover whether
the data buffer has really been compressed or not.

Use of throw specifications: A throw specification does not guarantee that the functions do not
throw other exceptions. If an exception of an unlisted type is thrown, the runtime system will just
abort the program (core dump).

Use of asserts: We found a use of assert, in StorageManager.cc:4946. If assert fails, the pro-
gram is terminated (abort is called).

4943 else assert("Unknown discard message type" == 0);

3.6 Poor Language Use
Use of PODs: There is a mix of C and C++ in the I2O data structures in i2oEvtMsgs.h. The struc-
tures which appear to be simple ‘PODs’ (plain old data) are using public inheritance simply to
aggregate data attributes. This is not a valid use of inheritance.

082 typedef struct _I2O_SM_PREAMBLE_MESSAGE_FRAME : _I2O_SM_MULTIPART_MESSAGE_FRAME

Preprocessor use: We found uses of #define for defining constants within i2oEvfMsgs.h:
021 #define I2O_SM_PREAMBLE 0x001a

Casting: There are many C-style casts. These casts do not give much protection if the types are
incompatible. See StorageManager.cc for examples:

2437 unsigned char* pos = (unsigned char*) &mybuffer_[0];

Return values: The member function EventServer::getConsumerTable() inappropriately returns
by value a large object. It is unclear whether this was supposed to address some threading safety
concerns (which it most likely does not properly do).

Stack variables: We found the data member StorageManager::wlMonitoring_ was used when a
local variable would suffice.

Needless virtual functions: The FUProxy and EvtMsgRingBuffer classes have virtual destruc-
tors but no subclasses.

4 Design Recommendations
The recommendations in the following sub-sections are divided according to the concerns identi-
fied previously. The general design recommendations are: class decomposition and code
refactoring, reviewing the state machine use, the removal of duplicated code, and the handling of
errors.

Storage Manager Mini-Review

 - 5 -

4.1 Structural Problems
First we will propose a small structural change to the StorageManager. Fig. 1 is a simplified class
diagram that illustrates many of these proposed changes. The main feature is that the functional-
ity of the original StorageManager is split into smaller, more maintainable classes. The
StorageManager now takes on more of a coordination role. The responsibilities of each class are
described in the next few paragraphs.

StorageManager: coordinates all the activities of all the objects in the system based on configure
and commands received at its input queue. It is a state machine. It receives commands through
the SOAP interface (from higher-level authority such as run control), monitoring commands, and
internally generated commands. The state machine can be implemented directly here using the
XDAQ tools. This object controls the functions that are active for processing incoming data de-
pending on the state we are in.

In the associated diagram, this is illustrated by the abstract "State" class and the set of derived
state classes. The derived classes use functions in the "HandlingFunction" classes that are ap-
propriate for the state we are in. This means that no state checking is needed in any particular
handling function. An example of an internally generated message is a request to send a "dis-
card" message, sent by the fragment collector.

I2OMessageHandlingFunctions: a collection of static functions that are used to handle the in-
coming I2O message (registered callbacks). These are reentrant, and can be enabled or not
enabled. This organization refactors the state checking code present in the current I2O receive
functions. Each of these will perform only one function which is valid for the state we are in.
These functions are invoked through the concrete state classes.

DataHandler: manages objects that process event data. This includes event assembly, event
writing to files, and delivery of events to the DQM system. The diagram shows the FragmentCol-
lector, EventWriter and EventServer contained within this class.

Figure 1. Proposed class diagram.

FragmentCollector: this class is similar to the one in the current SM, except that completed
event notification and error handling of incomplete events is handled here.

EventWriter: performs its current duties. This class should be enhanced to write concurrency to
disks while event collection is happening.

EventServer: performs its current duties.

ConfigData: this is a refactoring of the configuration data currently held within the Storage Man-
ager class. This class should have appropriate internal classes to group the configuration data
further.

 - 6 -

WebPageHandlingFunctions: callbacks from XDAQ to construct the web pages that contain
status information.

PerformanceMonitoring: this is the place where all statistic gathering is done. Thread safety
might be an issue here. This is also the place where problem checking can be done.

Figure 2. Storage manager threads and queues.

4.1.1 Additional recommendations:
Thread safe queue: The framework ought to provide a type safe, bounded queue to help clean
up the code and make it more robust (see StorageManager.cc:434 – 439). What is missing from
the EventBuffer (and SingleServerQueue) is a class on top of it that makes it act as a queue of
specific objects i.e. Queue<stor::FragEntry>.

Refactoring: The code within the “if” statement within file StogareManager.cc:626 should go into
a separate function for processing frames.

StorageManager clean up: Refactor as suggested in Fig. 1. Most of the refactoring affects the
StorageManager class.

State machine use: Implement the StorageManager as a state machine.

I2O structures: All of the I2O data structures in i2oStorageManagerMsg.h appear to be overlays
for i2o buffers. All of these structures must be converted to PODs (simple C structs). This means
removal of all the inheritance. Casting the data structures should be hidden by using free func-
tions returning the correct type.

Configuration information: Currently this information is held within the StorageManager class. It
should be moved into a number of different structs, which allows groups of parameters to be ref-
erenced as a whole.

I2O callbacks: We recommend that the data receiving functions in the data path be very simple
to minimize thread safety problems, contention for data structures, and bad interaction with the
data delivery system.

Discard messages: We recommend that the discard messages be generated from the Frag-
mentCollector, since it is where events are reconstructed.

4.2 Bad Memory Usage
Queue entries: Investigate the use of boost::shared_ptr as the queue entry type, allowing all the
memory management (deletion of buffer) to be done automatically. This will allow the code for
creation and management of buffers to be removed. This also changes the model from one dele-
ter for all messages (given to FragmentCollector) constructor, to a deleter per object queued.

StorageMan-
ager (thread)

Monitoring (web pages)
Run Control
Internal Messages (e.g. fail transitions)

FragmentCol-
lector (thread)

Discard event
Fail transitions

EventWriter(
s) (threads)

EventServer
(thread)I2O Messages

I2OMessageHandlingFuncti
ons (theards)

Storage Manager Mini-Review

 - 7 -

Question: In the Event Server, what are the counters and stats generated on the heap for?

4.3 Performance
Bandwidth test: We discussed test the application throughput by varying I2O fragment size from
64KB to 256K (more if possible – 1MB), to examine the data rates.

Test stand: Ensure there is easy access to a test stand at FNAL to test functionality and a per-
formance test stand at CERN. Install VTUNE on the test stands (requires kernel patches).

Duplicate Event IDs: Avoid allowing for events with the same ID and run number (StorageMan-
ager.cc:587). Disallowing duplicate IDs is a feature that is needed for running the production
system. The complex code for handling the special test case with duplicate IDs should be elimi-
nated.

Local/Remote fragment handling: When receiving fragments generated locally, the I2O call-
back (StorageManager.cc:622-626) iterates twice on the fragments to check for error conditions.
Only a single iteration is needed. Additionally, the code should be rearranged so as to not distin-
guish between local and remote chains. Both cases should be handled by the same loop and the
processing should assume that any chained elements must be broken.

Profiler run: Run the profiler to check time spent on the receiving threads and on the Fragment-
Collector.

Polling: Avoid polling by checking for data in a queue on the FragmentCollector. If it is necessary
to wake the FragmentCollector, consider adding a watchdog thread that periodically runs a user
supplied function that puts a command into the queue which causes the alternative processing.
This has the advantage that you can independently control and schedule the other activities of
the storage manager, and the extra check appears as the other command processors appear.

4.4 Maintenance
Bounded queue again: The bounded queue class (for arbitrary data) needs a layer on top of it to
manage a queue of objects of the same type. The older Event Buffer class is used, and there is a
common one now in framework/utilities used by the message logger that should be used here.

HLTInfo as a parameter: Remove the HLTInfo pointer from the fragment collector, it is not used.

Python parameter sets: What implications are there when Python is used as the parameters set
language? Is there a dependency on parameter handling within the storage manager that is not
easily seen?

Local I2O messages: The local chain determination code is overly complex and looks like it
makes a number of difficult assumptions. The only reason for the local/remote distinction is so
that additional integrity checks can be made. With the local, chained message, the cleanup on the
head of a chain release all the members of the chain. Currently Harry sets the next pointers on
the chain of frames to zero so that this automatic cleanup does not happen.

// the condition that determines if this is a local transfer that is chained or not

msg->frameCount == 0 && msg->numFrames > 1 && ref->getNextReference()

4.5 Error Handling
Run number checks: The check for run number consistency should be done in the Fragment-
Collector, which can decide to send bad events to an error stream.

Corrupt data feed: Do not feed the SM data that is corrupt i.e. do not allow events with the same
event ID. Remove the special code for bad test data. Throw an exception if a bad event is re-
ceived (repeated event ID) and send it down an error event path. An alternative is to always
allow the downstream systems to digest files/runs with same event IDs (the problem would sur-
face downstream).

 - 8 -

Buffer release: Automatically release buffers using the ctor/dtor idiom (RAII) so that cleanup
happens properly under alternative return paths and exceptional conditions.

Casting: Add a set of utility functions to do casting on behalf of the user.

Callback functions: Do not put checks for events for data in old runs in the event receive call-
back functions, let the fragment collector do this work and send error messages upon failure. The
junk should be stored in an error file.

Discard messages: Do not check for receipt of last frame to trigger the discard message, but
send a discard if all the frames have been received. Also, move the discard message sending to
the fragment collector (this implies restructuring so that the fragment collector can send the dis-
card).

Errors detected in callbacks: Let the message receiver code report observed failures to the
fragment collect e.g. if local mode and not all fragments present.

Missing event fragments: If you do not get all the fragments from an event in a reasonable time
frame, then the event should be purged. This can be implemented using the watchdog thread.

Exception handling: The output modules from the HLT need to be examined for proper excep-
tion handling. Is the exception and error codes put into the uncompressed part of the streamer
header (to be examined in the storage manager)?

Error handling: Need to monitor (collect statistics) most everything that uses a large amount of
resources. There should be a configurable notion of what are normal operating conditions for
each of these monitored things. If the monitored thing goes out of normal operating conditions,
there should be a log notice and possibly a set of corrective actions that occur.

4.6 Poor Language Use
Smart pointers: Use boost smart pointers to pass fragments from I2O receivers to FragmentCol-
lector, they are constructed on the receiving functions and deleted when events are assembled.

Large return types: Return const &X rather than X when X is large (e.g. Event-
Server::getConsumerTable ()).

Mixed C/C++ code: Concerning the I2O C structs using public inheritance, they should be pure C
structs.

Throw specifications: Remove throw specifications except where required by XDAQ.

Improve casting: Here is an example of difficult casting in StorageManager.cc:

570 I2O_MESSAGE_FRAME *stdMsg = (I2O_MESSAGE_FRAME*)ref->getDataLocation();

You should have functions that return the right type by using wrappers.

Idioms: Use RAII (exception safety, resource ownership).

Arguments: Reduce to two arguments the smrbsenders_.updateSender4data (e.g. StorageCol-
lector.cc:947).

FragmentCollector.cc: eliminate data members that are not used. Use scoped_ptr instead of
auto_ptr or shared_ptr for the data members. Shared and auto pointers should be revised (look at
the recommendations: http://www.uscms.org/LPC/lpc_offl/PointerGuidelines.html)

Auto_ptr use: Any class with auto_ptr data member should be revisited.

Discard messages: Do not check for receipt of last frame to trigger discard message, but send a
discard if all the frames have been received. Also, more the discard message sending to the
fragment collector (this implies restructuring so that the fragment collector can send the discard).

Storage Manager Mini-Review

 - 9 -

4.7 Robustness
Thread safety: look out for making copies of data structure such as vector and map, do not as-
sume that a clean copy can always be made (line 94 of Event Server with getConsumerTable).

5 Conclusion
The storage manager is a critical part of the online data flow of the CMS detector. Its perform-
ance and robustness is critical in minimizing CMS data loss due to DAQ dead time and data
corruption. As such we believe that a significant effort to refactor and improve the quality of this
application is well worth the effort. Even in the short amount of time allocated to this code review,
it is clear to us, the reviewers, that a significant amount of time and manpower will be needed.
We suggest that part time expert input combined with 1.5 people who can spend full time on this
task for an intense period of 3mo. would be sufficient to accomplish the desired goals. This esti-
mate takes into account only the reviewed part of the software (does not include the SMProxy,
input and output modules).

