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Jet Algorithm requirements

A jet-finder must be
 infrared and collinear safe

 identically defined at parton and hadron level

soft emission shouldn’t change jets
collinear splitting shouldn’t change jets

so that perturbative calculations can be compared to experiments

It is nice if a jet-finder is

 not too sensitive to hadronisation, underlying event, pile-up

 realistically applicable at detector level (e.g. not too slow)

(because we are not very good at modeling non-perturbative stuff)

(this allows one to use perturbation theory)



Jet Algorithms

Two main jet-finder classes: cone algorithms and sequential clustering algorithms

Detailed definition can be messy. 
Infrared/collinear safety must  be 

carefully studied.

Simple definition,
 infrared and collinear safe.



Until some time ago cone was infrared unsafe 
and kt was slow

What happened next?

- kt made fast (MC, Salam, hep-ph/0512210)

- cone made safe (Salam, Soyez, arXiv: 0704.0292)

Both implementations (and a lot more) available via FastJet
www.lpthe.jussieu.fr/~salam/fastjet



Cone algorithms



A modern cone algorithm

 try an initial location

How do I decide where to place the cones?

 sum 4-momenta of particles inside cone, find axis
 use axis as a new trial location, and iterate
 stop when axis is stable
 merge overlapping cones, or split them into two

Issues:
☠ Where do I start?

Seedless (i.e. everywhere)? Very slow
Some particles above a threshold? Collinear unsafe
Calorimeter towers? Expt. dependent

☠ How do I split/merge?

Complicated procedure, risky, not necessarily physical
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MidPoint Infrared Unsafety

Three hard particles 
clustered into two cones

Addition of a soft particles 
changes the hard jets 

configuration: three stable 
cones are found









Infrared (un)safety

Q: How often are the hard jets changed by the addition of a soft particle?

A:
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SISCone speed

SISCone

MidPoint

kt (FastJet)

SISCone as fast as MidPoint → no penalty for infrared safety!



Jet mass

Infrared sensitivity is not just an annoying theorists’ fixation

MidPoint-SISCone

Up to 70% difference between MidPoint and SISCone
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Recombination algorithms



kt and Cambridge/Aachen

The definition of a sequential clustering algorithm is extremely simple.

For instance, take the longitudinally invariant kt:

Calculate the distances between the particles: 

Calculate the beam distances: 

Combine particles with smallest distance or, if diB is smallest, call it a jet

Find again smallest distance and repeat procedure until no particles are left

diB = k
2

ti

This definition is infrared/collinear safe, has no artificial parameters, does not lead to dark towers or 
overlapping jets, can be applied equally well to data and theory

S. Catani, Y. Dokshitzer, M. Seymour and B.  Webber, 
Nucl. Phys. B406 (1993)  187
S.D. Ellis and D.E. Soper,  Phys. Rev. D48 (1993) 3160

di j =min(k2ti,k
2

t j)
!"2+!#2

R2

Variant: Cambridge/Aachen. Like kt, but with                           and  di j =
!"2+!#2

R2
diB = 1



Clustering speed

Time taken to cluster N particles:

Clustering quickly gets very 
slow: processing millions of 
events at LHC is simply not 

feasible with standard clustering 
algorithms
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e.g. clustering a single heavy 
ion event at LHC would take 

1 day of CPU!

The kt jet-finder has, however, an apparent drawback: finding all the distances is an N2 

operation, to be repeated N times

⇒ naively, the kt  jet-finder scales like N3



FastJet
To improve the speed of the algorithm we must find more efficiently which 

particle is “close” to another and therefore gets combined with it

Observation (MC, G.P. Salam, hep-ph/0512210):

If i and j form the smallest dij
and

kti < ktj
⇒ Rij ≤ Rik         ∀  k ≠ j

Translation from mathematics:

When a particle gets combined with another, and has the smallest kt,  its 
partner will be its geometrical nearest neighbour on the cylinder 

spanned by η and ϕ

This means that we need to look for partners only 
among the O(N) nearest neighbours of all particles

i.e.      j is the geometrical nearest neighbour of i



FastJet

Our problem has now become a geometrical one:
how to find efficiently the (nearest) neighbour(s) of a point
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Widely studied problem in computational geometry
Tool:  Voronoi diagram

Definition: each cell contains the locations which 
have the given point as nearest neighbour

Key feature: once the Voronoi diagram is constructed, the nearest neighbour of a 
point will be in one of the O(1) cells sharing an edge with its own cell

Example : the G(eometrical) N(earest) N(eighbour) of point 7 will be found among 1,4,2,8 
and 3 (it turns out to be 3)
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The dual of a Voronoi diagram is a Delaunay triangulation



FastJet

The FastJet algorithm:

Construct the Voronoi diagram of the N particles 
using the CGAL library

O(N lnN)

Find the GNN of each of the N particles. Construct the 
dij distances, store the results in a priority queue (C++ map) O(N lnN)

Merge/eliminate particles appropriately

Update Voronoi diagram and distances’ map O(lnN)
repeat N 
times

MC and G.P. Salam, hep-ph/0512210

Overall, an O(N ln N) algorithm

NB. Results identical to standard kt algorithm. This is NOT a new jet-finder.



FastJet performance

Time taken to cluster N particles:
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Almost two orders of magnitude gain at small N (related O(N2) implementation)

Large-N region now reachable



Jet areas and subtraction

So far, old jet clustering, just better and/or faster

High speed and infrared safety allow for a qualitatively 
new use of jet clustering, through new features:

Jet areas



Jet areas

~ 2000 particles

Clustering takes O(20 s) with 
standard algorithms,  but only 
O(20 ms) with FastJet



Try to estimate the
active area of each jet 
Fill event with many very soft 
particles, count how many are 

clustered into given jet

~ 10000 particles

Don’t even think about it with 
standard algorithms,  O(1 s) 
with FastJet

Jet areas

[NB. This is a definition]



Jet areas



Jet areas are implemented in FastJet > v 2.0
// the input particles’ 4-momenta
vector<fastjet::PseudoJet> input_particles;

// choose the jet algorithm
fastjet::JetDefinition jet_def(kt_algorithm,R);

// define the kind of area
fastjet::GhostedAreaSpec ghosted_area_spec(ghost_etamax);
fastjet::AreaDefinition area_def(ghosted_area_spec);

// perform the clustering
fastjet::ClusterSequence cs(input_particles,jet_def,area_def);

// get the jets with pt > 0
vector<fastjet::PseudoJet> jets = cs.inclusive_jets();

// a jet transverse momentum, area, and area 4-vector
double pt = jets[0].perp();
double area = cs.area(jets[0]);
fastjet::Pseudojet area_4vector = cs.area_4vector(jets[0]);

What do I need them for?
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What are areas
good for? Challenge at high-luminosity machines:

reconstruct objects from jets when a lot of 
spurious activity is present

You’d like to be able to 
subtract this extra stuff 

from the jets and get back 
to the correct Z mass

Can knowledge of jet areas help?



pT (jet) ~ pT (parton)

The intuitive picture

+

Average underlying
momentum density

×
‘size’ of the jet

But how do we get the momentum density of the radiation?

The ‘size’ of the jet can be the active area we just defined



Areas distribution

They can have very 
different areas

The jets adapt to the 
surrounding environment



Area vs. pT
Key observation:

pT/Area is fairly constant, except for the hard jets

The distribution of 
background jets establishes 

its own average 
momentum density

(NB. this is true on an 
event-by-event basis)



Subtraction

A proper operative definition of jet area can be given

When a hard event is superimposed on a roughly uniformly 
distributed background, study of transverse momentum/area 
of each jet allows one to determine the noise density ρ (and its 
fluctuation) on an event-by-event basis

Once measured, the background density can be used to correct the 
transverse momentum of the hard jets:

p
hard jet, corrected
T = p

hard jet, raw
T −!×Areahard jet



// the input particles’ 4-momenta
vector<fastjet::PseudoJet> input_particles;

// choose the jet algorithm
fastjet::JetDefinition jet_def(kt_algorithm,R);

// define the kind of area
fastjet::GhostedAreaSpec ghosted_area_spec(ghost_etamax);
fastjet::AreaDefinition area_def(ghosted_area_spec);

// perform the clustering
fastjet::ClusterSequence cs(input_particles,jet_def,area_def);

// get the jets with pt > 0
vector<fastjet::PseudoJet> jets = cs.inclusive_jets();

// a jet transverse momentum, area, and area 4-vector
double pt = jets[0].perp();
double area = cs.area(jets[0]);
fastjet::Pseudojet area_4vector = cs.area_4vector(jets[0]);

The subtraction

// get the median, i.e. rho
double rho = cs.median_pt_per_unit_area(rapmax);
double rho_4v = cs.median_pt_per_unit_area_4vector(rapmax);

// subtract
double pt_sub = pt - rho * area;
fastjet::Pseudojet p_sub = jets[0] - rho_4v * area_4vector; 

NB.  The “_4vector’’ variants also correct jet directions, and are better for large R





Dijet subtraction
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Reconstructed Z’ mass
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Conclusions

Cone and recombination are alternative and complementary 
approaches to defining jets

So far, cone algorithms were extremely messy and generally infrared 
unsafe. Now we finally have a really infrared safe (and reasonably fast) 
cone algorithm, SISCone. Phenomenology will have to follow

Recombination algorithms like kt and Cambridge enjoy much simpler 
definitions. They are always infrared safe

FastJet (http://www.lpthe.jussieu.fr/~salam/fastjet) resolves the speed 
issue, and allows one to calculate the area of jets

The area of jets can be used for background subtraction, opening the 
way to a more widespred use of kt/cambridge clustering in high 
luminosity and heavy ions collisions environments


