
TASI: Cosmology IV

Definitions

1. Temperature anisotropy, Θ, varies with incoming direction, n̂. This can be expanded in terms

of spherical harmonics

Θ(n̂) =
∑
lm

ΘlmYlm(n̂).

2. Using orthogonality of the spherical harmonics, the moments can be expressed as

Θlm =
∫

d2nY ∗
lm(n̂)Θ(n̂).

The monopole is Y00 and the three components of the dipole Y1m, etc. Before recombina-

tion, the monopole and dipole are significantly larger than the higher moments. This is a

characteristic feature of a fluid.

3. Theories do not make predictions for particular moments Θlm. Rather they predict the dis-

tribution from which these moments are drawn; in particular they predict the variance

〈ΘlmΘ∗
l′m′〉 = δll′δmm′Cl.

Think of the Cl’s as the variance in the CMB fluctuations on an angular scale of order l−1.

Note that the variance is identical for all m’s corresponding to a given l. Therefore, for each

l we can measure 2l + 1 numbers to try to estimate the variance from which the numbers are

drawn. So for low l it is hard to accurately estimate Cl. Quantitatively, there is a cosmic

variance of
√

2/(2l + 1)Cl associated with each Cl. no matter how accurately you measure

the Θlm’s you can’t extract a more accurate measurement of Cl than the floor set by cosmic

variance.

Exercises

1. The speed of sound of the coupled electron-proton-photon fluid is

c2
s ≡ 1

3(1 + 3ρb/4ργ)
.

Plot the sound speed as a function of redshift before decoupling at z = 1089.

2. The comoving sound horizon is the total comoving distance travelled by a sound wave. It sets

the fundamental scale physical size of hot and cold spots in the CMB. Using the result from

the first problem, compute the sound horizon at recombination:

rs(η∗) ≡
∫ η∗

0

dη′cs(η′).



3. Plot the sound horizon at recombination as a function of baryon density.

4. Compute the power spectrum of anisotropies today from the inhomogeneities on the last

scattering surface.

(a) Assume that the photons we see today from direction n̂ come from the surface of last

scattering: Θ(~x0, n̂, η0) = (Θ0 + Ψ)(~x = χ∗n̂, η∗) where x0 is our position, χ∗ is the comoving

distance to the last scattering surface, and η∗ is the conformal time at last scattering. Fourier

transform the right-hand side and expand the left in terms of spherical harmonics to get

∑
lm

ΘlmYlm(n̂) =
∫

d3k

(2π)3
ei~k·n̂χ∗(Θ̃ + Ψ̃)(~k, η∗).

Now expand the exponential using

ei~k·~x =
∞∑

l=0

il(2l + 1)jl(kx)Pl(k̂ · x̂)

where jl is the spherical Bessel function and Pl the Legendre polynomial. Expand Pl as a

sum over products of spherical harmonics. Then, equate the coefficients of Ylm(n̂) to get an

expression for Θlm.

(b) Square the Θlm you got in (a) and take the expectation value to get an expression for Cl.

You should find

Cl =
2
π

∫ ∞

0

dk k2P (k)j2
l (kχ∗)

(
Θ̃0(k, η∗) + Ψ̃(k, η∗)

δ̃(k, η0)

)2

.

Here P (k) is the power spectrum of the matter overdensity, δ, today.

5. On large scales, the ratio in brackets in the previous problem is

Θ̃0(k, η∗) + Ψ̃(k, η∗)
δ̃(k, η0)

= − c

k2

where c is a constant. [You can think of this as following from Poisson’s equation which relates

potentials (in the numerator) to overdensities (in the denominator).] Compute the large angle

anisotropy spectrum, the so-called Sachs-Wolfe effect. Equation 6.574.2 from Gradshteyn and

Rzyhik will be useful. Take the power spectrum to scale as kn, and set n = 1 which corresponds

to a scale invariant spectrum. An analytic form also exists for n 6= 1.


