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Some first studies on the size bias.

I. SIZE BIAS

In the following, I will use a very naive approach of measuring the shear; it might be wrong to use such an
oversimplified ansatz, hence this should be checked... Furthermore, I will use shear and convergence interchangeably.
Basically, the ansatz says that we wish to measure the average convergence in some solid angle bin on the sky. The
shear κ in this bin follows a distribution f(κ), so that the average shear in the solid angle bin is given by:

〈κ〉 =

∫

∞

−∞

dκ κ f(κ) (1)

We assume that somehow an estimate of 〈κ〉 is calculated by observing several galaxies in that patch of sky, estimating
κ for each one, and thus sampling from the κ distribution. If we sample fairly from this distribution, our estimate of
〈κ〉 should be unbiased. However, a cut in apparent size results in a distortion of this distribution.

For the shear to be measurable, we assume that the observed apparent angular size of the galaxy, s, has to be
greater than some minimal value smin. However, the observed size of the galaxy is not the actual one, since lensing
magnifies objects:

sobs = s0
√

µ =
s0

√

(1 − κ2) + |γ|2
= s0[1 + κ + O(κ2, γ2, κγ)], (2)

where s0 is the intrinsic apparent angular size of the object and µ the magnification, i.e. the ratio of apparent areas
of the lensed and unlensed objects. Note that if the cut is not on overall “size” but, e.g., on area, the coefficient of
the linear κ term will change. For a pure number count, this effect leads to a bias analogous to the magnification bias
for flux-limited surveys:

Nobs = N0(1 +
dN

d ln s
|smin

κ). (3)

However, the number count of galaxies in a bin does not influence the measured average shear (of course, if that is
oversimplified, and there is an effect of the number count in a bin on the shear measurement, this should be studied
as well). Size bias enters the shear measurement in a more subtle way (assuming the derivation here is correct).

Consider a galaxy with an intrinsic size s0 and a convergence κ in the direction of it. In order to be counted in the
〈κ〉 measurement, it has to satisfy:

s0(1 + κ) > smin ⇒ s0 >
smin

1 + κ
. (4)

Let f0(κ) denote the distribution of κ in the absence of size bias, i.e. if we were able to cut on the actual intrinsic
size of galaxies. Since intrinsic size and shear are uncorrelated, f0(κ) should be equal to the actual shear distribution.
Assuming this, the observed shear distribution fobs(κ) is given by:

fobs(κ) = f0(κ) +

∫ smin

smin/(1+κ)

ds
dN

ds
f0(κ) (5)

≈ f0(κ)

(

1 − dN

d ln s
|smin

κ

)

, (6)

where dN/ds is the distribution of galaxy apparent sizes normalized to unity, dN/d ln s = s dN/ds, and the second
line is the result to lowest order in κ, consistent with equation (2). This is the crucial point, and I hope it makes sense.
The fraction f(κ) of galaxies between κ and κ + dκ is enhanced by the fraction of galaxies below smin which can be
raised above smin by the magnification κ (or vice versa for κ < 0). Basically, at high convergences κ, we preferentially
pick lensed galaxies close to the size threshold, and hence bias the distribution towards larger κ (assuming dN/d ln s
is negative, larger galaxies being rarer). The bias in the estimated shear, again to lowest order in κ, is then given by:

〈κ〉 =

∫

∞

−∞

dκ κ fobs(κ) = 〈κ〉0 −
dN

d ln s
|smin

∫

∞

−∞

dκ κ2 f0(κ) (7)

= 〈κ〉0 −
dN

d ln s
|smin

(

〈κ2〉0 + 〈κ〉20
)

(8)



Here 〈·〉0 denotes averages according to the undistorted distribution f0(κ). Some interesting features are worth noting:
the effect depends on the distribution of κ, not only on its average value (like e.g. for the magnification bias). It is
quadratic in κ, but not simply in 〈κ〉0, so that a nonzero scatter in κ will lead to a bias even for very small 〈κ〉0. In
fact, even if there was zero average shear in the solid angle bin considered, size bias could lead to a nonzero observed
shear. Also, the effect is always positive (for a negative size count slope), whether 〈κ〉0 is positive or negative. The
relative size bias effect is then:

〈κ〉 − 〈κ〉0
〈κ〉0

= − dN

d ln s
|smin

( 〈κ2〉0
〈κ〉0

+ 〈κ〉0
)

(9)

Assuming dN/d ln s is not terribly small, the effect could thus well be above the percent level, if there is significant
scatter in κ. Large scatter in κ means even very small (and abundant) galaxies can be magnified over the threshold
size.

II. NEXT STEPS

If we have convinced ourselves that the derivation above is correct, the next steps toward an actual calculation of
the effect would be:

• What is the distribution of κ in a solid angle bin ? (first step: Gaussian)

• What is dN/d ln s ? This also depends on the redshift bin considered, since s = L/dA(z), where L is the physical
size of the galaxy.

• This leads to another interesting question: both κ and s depend on redshift, so there is a correlation between
apparent size and κ. Will that change the simple ansatz above ? To zeroth order, this effect is calibrated out
by using the observed redshift distribution of galaxies in the shear calculation.

• Generalize to smooth rather than sharp size cutoffs. Is the observational cut actually on size or on minor axis
(which should result in the same effect, to first order) ? Or in area (↔ photon count) ?

Another issue which might be worth investigating: other systematic lensing effects could be linked to the apparent
size; these will then also influence the measured κ via size bias.


