Testing Survey

Original Questions and Answers posed in e-mail(adjusted for each product) in mid-Sep.
Rob Kennedy, Editor, 1 October 2007
Gabriele Garzoglio, Reviewer, 8 October 2007.

Rob Kennedy (FNAL CD D0 Grid Production Computing Initiative)
 As part of the D0 Grid Production Computing Initiative, I hope to learn what kind of testing is done by individual components (d0runjob, samgrid, D0 apps) before integration into the grid computing system. Establishing a defined process, even a very lightweight one, could help with planning for and software maintenance of the system over the long run. Perhaps a process already exists and I am just not aware of it 8^). To cover this, I am asking the same set of questions to several groups in the D0 grid system, personalized to their components.

A: Two scenarios: Suppose (a) a major new feature or (b) a minor well-contained bug fix is introduced into d0runjob. What is done each time to test that the new feature/bug fix works and that existing component functionality works before hand-off for integration and system testing? Is there a "standard" checklist of tests that you perform... a standard environment that you test d0runjob functionality in... before declaring a version ready for full-scale system testing? How do you communicate what has been tested (versions, environments) to the "other component" developers and to the integrators?

B: Turn this around: Suppose (a) a major new feature or (b) a minor well-contained bug fix is introduced into some other component of the grid computing system. What are your expectations of other people's testing to insure that d0runjob features are not broken or that assumptions in d0runjob are not violated?

C: Suppose a new operating system or hardware platform were being considered for use... something that has happened surely and will happen again eventually. Do you have a component-specific testing procedure or checklist for someone to use to qualify whether d0runjob works as expected before they attempt to test the entire system?

Peter Love (d0runjob)

A: We use three techniques to ensure a correctly working release.
1. unittests on a per-class basis

2. usecase testing

3. fully integrated testing

The unit tests are helpful to avoid the same bug appearing twice, we try to write a test for most bugs if it is obvious and simple to do so. Almost every class has a basic unittest which ensures there are no platform issues with python and these would be suitable if the platform was to change.

DZero has a finite number of use-cases and we have input files which mimic these cases. These are run (for a few events) before every release and if successful the release is tagged and passed to integration testing. The testing environment is on clued0. We only need the samclient code which has been configured in a similar manner to the SAMGrid environment. This has proven itself to be adequate. On some occasions we ask MC/Repro experts to take a look at the output files and metadata, but we only do this if a change to the metadata was intended.

B: The fully integrated tests are currently performed by Parag and Joel whereby they take the release tarball and run a real request. After Joel is satisfied with the output he announces the release and other remote farms use the new version. If the input to d0runjob has changed Parag and I sort the details via email. This issue has been alleviated with the de-coupled versions and we don't expect input changes to impact SAMGrid in the future. If changes are made to this (in SAMGrid) then we'll need to check these otherwise the interface may break.

These procedures apply to production on SAMGrid, non-SAMGrid production isn't covered by these tests because the input is more specialized.

Joel Snow (automc)

A: For automc I am the only developer and so far the only operator. In addition automc being a high level tool sits atop all the components you note in the introduction except d0reprotools which is similar to automc in this regard. These circumstances make development, testing, and integration simple. automc responds to changes in the tools upon which it relies and has no effect on those when it changes. Its only role in influencing those toolkits may be advisory if consulted.

There is then no need to coordinate changes in automc with the other toolkits whether for bugs fixes or new features. Testing and integration of bug fixes and new features occur any time they are ready. They are tested in the production stream. Automc can be started and stopped at anytime without negative consequences so that the production version can be stopped, the testing version started, and the production version restarted in case of test failure, or have the test version continue for extended testing or as the new production version.

Changes to the operator interface, functionality, and internal workings are documented in release notes distributed with the automc tarball.

B: The consequences of a bug/feature in a tool upon which automc relies will only have impact upon automc itself if the bug/feature modifies the way automc interacts with the tool. Otherwise the bug/feature will manifest itself in its usual way independent of automc. Automc adapts to changes in its underlying tools by necessity. Hopefully its adaptability allows it to most effectively accomplish its task. It is expected that component developers test adequately to provide what is advertised.

C: automc relies on sam client tools, the jim_client package, and the sam_python package (and their dependencies). As automc is written in python it is expected that it will run uniformly on any platform which supports its requirements. Testing automc on a new system would involve submitting a test request to the automc system manually with tools from the automc tarball. This would test the core of new job submission and the recovery/merge apparatus, which is about 95% of automc. One would monitor the progress of the test request from initial submission to merge completion and check the automc logs looking for problems.
Daniel Wicke (d0repro-tools)

> Is there a "standard" checklist of tests that you perform...
A: Well, kind of, but it isn't written down somewhere. Usually I investigate which steps of the tools could be affected and test only those subcomponents.

> a standard environment that you test d0reprotools functionality in... before declaring a > version ready for full-scale system testing?
Yes, I check out d0repro from cvs and use "source ./setuptest.(c)sh" instead of the regular "setup d0repro". This allows to test any cvs version of d0repro. It requires the remaining SamGrid environment to be functional. Also there's a test option that modifies the application name and version in the metadate to contain the "-test" extension, in order to avoid confusion with real production.

> How do you communicate what has been tested (versions, environments) to the

> "other component" developers and to the integrators?

Only tested versions are tagged with vxx.yy.zz in cvs and released to the ups db. Releases are announced on the mailing list.

B,C: As stated above I've estimated possible impacts [of other components or OS changes] on a case by case basis and verify the functionality of the corresponding steps.
2007.09.20 SAMGrid Testing Meeting. Notes.

Present: Eileen, Parag, Gabriele, Andrew, Rob, Adam (typist)

SAM-Grid undergoes 4 levels of testing:

(1) Unit testing:

 - Bug fixes / feature requests

 - There is no unit testing framework. Unit testing is done by hand.

There is no test suite.

 - Not all features can be unit tested (since many times tests require other components and perhaps on remote sites)

 - Do not keep track of old unit tests.

(2) Integration testing:

 - Put new code on development machines

 - Submit jobs with a test flag

 - No standard set of integration tests

 - Do tests according to level of changes (e.g. if big MC change, submit many MC test jobs; if small change, submit few jobs since don't need the coverage)

 - There is no suite of integration tests; all tests are independent

 - At this point the packages are in UPD marked as “test”

(3) Release tests

 - For MC, ask Joel to run on his quasi-production farm (for data reprocessing, in the past, we had a similar agreement with Daniel Wicke)

 - Joel has independent tests.

 - When Joel is satisfied, the upd packages are declared “current” and release is announced.

 - Note: In general, the person who made the request for change is asked to do the testing. Sometimes this phase doesn't happen if requester does not cooperate.

(4) Release cut

 - Web page describing releases is

http://www-d0.fnal.gov/computing/grid/releases/

- This page also documents what was tested.
Comments / Notes:

- Interaction with Runjob:

This process is also an independent test of RunJob. This helps verifying that RunJob does what is advertised. Parag does not test all features of RunJob. The end-to-end tests would need to use the latest releases. SAMGrid developers are willing to help Peter Love to develop test scripts to simulate the SAM-Grid environment at a worker node.

- Desire to automate SAM-Grid tests:

As part of the initiative, Andrew has written a SAM-Grid test package that currently simplifies the submission of “standard” jobs. The SAM-Grid Test package would be released with any new release to reflect new features/fixes. We need a process for updating the test package: we need to decide if it is the developers or the tester that keeps the package up to date.
How do we verify that the tests worked (sometimes difficult to do)? Will there be documentation on what the correct output should be ?
This is hard to automate.

Rob/Eileen: Over a long period of time, tests stop working and lose their value. What do we do about that? Automate.
Andrew: the test framework is a long project - but can be a huge benefit to the developers. Time for adding a new feature/fix needs to be increased to change the testing system.

Automation will be tried on a test-by-test basis. Parag/Andrew/Gabriele will continue to do their testing and will feed into Andrew changes to the test package. There's the NGOP testing too that hopefully will help: tests will fail if the deployments are NOT as expected.
Parag Mhashilkar’s Edited Response (SamGrid)

Problems we had in past [in integration testing] were related to bugs that were not caught in Peter’s testing environment. Samgrid writes a macro file containing attribute-value pairs. This file is used as input to the runjob when I do my testing. The macro file can be cooked up without the samgrid interface and can be easily used for limited integration testing. This only leaves some environment variables to tackle (those are set up by samgrid). Again, even these variables can be setup before this limited integration testing. In fact, this is the exact process I have to do when there are some changes to d0runjob which require my attention.

[Ed Note: Parag has describes the ability to setup this kind of environment on a test bed, which is something we would like to follow-up. Is this test bed being used like this?]

Gabriele Garzoglio’s Edited Response (SamGrid)

The tests discussed by the groups in the survey seem adequate. I would like, however, to provide some practical feedback on the SAM-Grid test interaction with the Runjob tests.

We have seen 2 types of problems with the Runjob testing process in the past. These problems were NOT discovered until the “fully integrated testing” phase of Runjob (run by Parag)
1) Runjob tests were not broad enough to uncover all possible uses of the macro language

2) use-case tests were performed in an environment different from the grid environment.

We are all less worried for (1), now that we have the macro pre-processor in Runjob. For (2), we should discuss our options with Peter to reduce the burden of integration tests. We believe that testing Runjob in an environment that simulates the Grid will greatly improve the integration process.
[Ed. Note: FNAL SamGrid developers are also transferring some or all of their integration role to the FNAL REX operations group, making it even more beneficial overall to catch all possible issues before integration since non-experts will be running tests just to determine pass/fail + symptoms without intensive debugging.]

