Team Project Report

System Description

Quality attribute Tree

1.  Functionality

a. Configurability (Direct)

1. Defining different areas

· Stakeholder: End User, Administrator

· Precondition: The system is up and running; users knows how to use the system

· Postcondition: The new area is defined and the system can control a new room.

· Successful flow: 

a. User select the add option from a main menu

b. User follow on screen instruction to add the room

c. User validate input and save configuration

d. User can access the defined area at a later time

2. Setting different temperature points

· Stakeholder: End User, Administrator

· Precondition: The system is up and running; users knows how to use the system; some areas are already defined

· Postcondition: The area is configured with the new temperature set point.

· Successful flow: 

a. User select the update option from a main menu

b. User follow on screen instruction to select the room of interest

c. User validate input and save configuration

d. User can access the defined area at a later time

b. Monitor and Control (Direct)

1. Allowing a human to override the current system settings

· Stakeholder: End User, Customer

· Precondition: The system is up and running; users knows how to use the system. The system is controlling the temperature of all the defined areas.

· Postcondition: A user has defined new control variables and the system react accordingly overriding its internal software strategy.

· Successful flow: 

a. User select the override option from a main menu

b. User follow on screen instruction to select the room of interest

c. The user sets up the new control strategy and validates it.

2. Integrability

a. Coherent Interface (Direct)

1. Being able to interface equipment from many different manufacturers

· Stakeholder: Customer (both the buyer of the system and the manufacturer of the hardware), Developer Organization, Developers

· Precondition: The system is heterogeneous in the hardware actuators and sensors.

· Postcondition: The software interfaces the hardware seamlessly.

· Successful flow: 

a. Manufacturers and the Organization conform to a standard interface.

b. Developers write a plug and play style of software using the defined interface

3. Modifiability

a. Extensibility (adding new functionality): (Indirect).

· Stakeholder: Customer, Developers, Developer Organization, Administrators

· Precondition: The current version of the system is up and running; Need for system upgrade arises (e.g. new control strategy, new sensor type, software updates)

· Postcondition: The system is upgraded with all the necessary new functionalities without compromises.

· Successful flow: 

a. Developers come up with a new software version that addresses the new functionality required and releases it.

b. Administrators install the new version and test the successful integration of the new system.

4. Testability

a. Control inputs / Monitor outputs (Direct)

1. Simulator to override sensors / Logging capabilities to record actions taken and results

· Stakeholder: Developers, Developer Organization, Administrator

· Precondition: The software is ready to be tested, but there is not enough hardware availability to simulate a large-scale test bed.

· Postcondition: The simulation completes and the reaction of the system can be observed.

· Successful flow: 

a. User starts simulation of the system

b. Simulation run to completion.

c. The test suite records the reaction of the system in a log service.

Architectural Design

· Integration:

Assumption: Each manufacturer provides an API for their hardware.

We use a layered architectural pattern to facilitate integrability for the various manufacturers.

· Modifiability:

We use MVC to allow flexibility in the choice of the view for a model that is likely to grow in complexity.

· Testability:

This is handled by the layered architecture by writing a simulation layer completely conformant to the bottom layer interface; this layer is capable of simulating input and of reacting to user requests; during the phase of testing, this layer is substituted to the bottom layer, so that a complete test of the system is possible.

· Functionality:

We use a passive data-centered architecture to implement persistency of our system e.g. a relational database. We rely on the MVC pattern to handle various displays when set points and variable condition change: this way we don’t need to implement an active data repository. The passive repository is used to store set points, locations and log sensible events.

In order for the various active distributed components of the system to interact with a central data repository, we implement a distributed system architecture, specifically Remote Method Invocation.

Architectural Analysis

· Layered Architecture

One of the risks associated with this architecture is that we assume that every manufacturer provides a useful API for our domain. Both integrability and functionality are quality attributes jeopardized by this risk.

Within the scope of this risk, integrability and functionality are sensitivity points of the bottom layer component of our architecture i.e. the interface to the hardware.

Having this kind of layered architecture we face the trade off of integrability (ease of interfacing to the hardware) with modifiability (adding a new view of a particular piece of hardware).

· MVC

· Passive Repository

· RMI

