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Abstract. We summarize measurements of the CKM angle § at the B-factories emphasizing a

comparison of 8 measured in the B — ceK ()0 decay channels and B measured in b — ggs decay
channels, such as B® — ®K?, B® — 1n'K°, B® — nK?, and B® — KJK?KY.

INTRODUCTION

Measurements of time-dependent CP asymmetries in B — (c¢)K ()0 decays, which are
dominated by color-suppressed b — cCs tree amplitudes, have provided crucial tests of
the mechanism of CP violation in the Standard Model (SM). These amplitudes contain
the leading b-quark couplings, given by the Cabibbo-Kobayashi-Maskawa [1] (CKM)
flavor mixing matrix, for kinematically allowed transitions.

Decays to charmless final states such as ¢K0, 7'K?°, n’KO, and 0K are CKM-
suppressed b — qgs (¢ = d, s) processes dominated by a single loop (penguin) amplitude.
This amplitude has the same weak phase 8 = arg (—V.4V;, /Vi4V,},) of the CKM mixing
matrix as that measured in the & — cZs transition, but is sensitive to the possible presence
of new heavy particles in the loop [2].

The B-factories [3] are asymmetric-energy e e~ storage rings constructed at SLAC
National Laboratory, USA, and KEK, Japan, to measure the parameters of the CKM
matrix. There the BABAR and Belle detectors recorded 425 and 771 fb~! of data at an
energy corresponding to the mass of the Y'(4S), which has a branching fraction for decay
to BB that is essentially unity.

The CKM phase f is accessible experimentally through interference between the
direct decay of the B meson to a CP eigenstate and BB mixing followed by decay
to the same final state. This interference is observable through the time evolution of the
decay. At the B-factories, we reconstruct one BY from Y (4S) — BYB°, which decays to
the CP eigenstate (c2)K°, 0K?, n’K°, n°K?, or KYKYK? (Bcp). From the remaining
particles in the event we also reconstruct the decay vertex of the other B meson (Byag)
and identify its flavor. The difference Ar = fcp — fiag of the proper decay times 7cp and
ftag 1s Obtained from the measured distance between the decay vertices of the Bcp and
Biag and the boost (87 = 0.56) of the Y'(4S) system. In the 7°KY and K?K?K? analyses
we compute Az and its uncertainty with a geometric fit to the Y'(4S) — BB system
taking into account the reconstructed K9 trajectory, the knowledge of the average ete™
interaction point and the average B meson lifetime (for BABAR). The distribution of Az
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is given by

—|At|/T
F(Ar) = ¢ P LFAw =+ (1 =2w) [—1 7S sin(AmgAr) — Crcos(AmgAr)],

where 117 is the CP eigenvalue of final state f, the upper (lower) sign denotes a decay
accompanied by a B (B°) tag, 7 is the mean B lifetime, Am, is the mixing frequency, w
is the mistag rate, and Aw = w(B%) —w(B°) is the difference in mistag rates for B° and
BY tag-side decays. The tagged flavor and mistag parameters w and Aw are determined
with neural network based algorithms.

In the SM, we expect C = 0 and —7)S = sin23 to an accuracy of 1073 — 10~ for
BY — (co)K ()0 decays [4]. The same expectations hold for the penguin decays, assum-
ing penguin dominance of the b — s transition and neglecting other CKM-suppressed
amplitudes with different weak phases. However, these CKM-suppressed amplitudes
and the color-suppressed tree diagram introduce additional weak phases whose contri-
butions may not be negligible [5, 6,7, 8]. As a consequence, the measured S 7 (sin2Besr)
may differ from sin2f3 even within the SM. This deviation ASy = S — sin2f is es-
timated in several theoretical approaches: QCD factorization (QCDF) [5, 9], QCDF
with modeled rescattering [10], soft collinear effective theory [11], and SU(3) sym-
metry [0, 8, 13]. The estimates are channel dependent. Estimates of AS from QCDF are
in the ranges (0.0,0.2), (—0.03,0.03), and (0.01,0.12) for K2, 7’K°, and 7°K?, re-
spectively [9, 11, 12]; SU(3) symmetry provides bounds of (—0.05,0.09) for 1’ K° and
(—0.06,0.12) for £°KY [13]. Predictions that use isospin symmetry to relate several am-
plitudes, including the [ = % B — Kr amplitude, give an expected value for S o K¢ near

1.0 instead of sin23 [14].

In these proceedings, we summarize measurements of time-dependent CP parameters
in the aforementioned » — s and b — ggs B® decays. Detailed descriptions of each
analysis are given in Refs. [17, 18, 19, 20].

ANALYSIS TECHNIQUE

After applying loose selection criteria to reduce the dominant continuum e*e™ — gg
(g = u,d,s,c) background, we perform an unbinned maximum likelihood (ML) fit to
the data to separate signal from background and obtain the CP-violation parameters
for each decay channel. As input to the ML fit, we use two kinematic variables and
a Fisher or likelihood combination of event-shape variables. As kinematic variables we
use two nearly uncorrelated variables: the energy difference between the B candidate
and half of the known beam energy and the beam-energy-substituted mass, which is the
invariant mass of the reconstructed B candidate computed with the constraint that the
energy difference is zero.

At the B-factories, we can only reconstruct the direction of KB mesons. Because of
this partial reconstruction in analyses with a K°, we constrain the mass of the B meson
to the nominal value [21] during the determination of the B decay vertex. This constraint
causes the kinematic variables to be completely correlated, so BABAR uses only the
energy difference and Belle uses only the center-of-mass B momentum in the ML fit.
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TABLE 1. Measurements of CP parameters from BABAR and Belle. The first errors are statistical
and the second are systematic.

BABAR Belle
Mode —1y5; Sy Sy Sy |
| ceKM0 | 0.694£0.0340.01  0.034+0.02+0.02 | 0.64+0.03£0.02  0.02+0.02+0.01 |
| oK? | 0557035+£0.02 —0.527022+£0.03 | 0.11£046£0.07  0.09£0.29+0.06 |

| K | 0574+008+002 —0.08+0.06-:0.02 | 0.644+0.10£0.04  0.01+£0.07-£0.05 |
| ®%¢ | 05540204003  0.13+0.13+0.03 | 0.674+031+£0.08 —0.14+£0.13£0.06 |

| KOKOKY | 090703 0% —0.1640.17+0.03 | 0.304+0.32:£0.08 —0.31£0.20+0.07 |

RESULTS

The fitresults are shown in Table 1. All S results are consistent with SM expectations. In
particular, the world averages of Sy in ccK ()0 and the theoretically clean 77'K° channel
differ by less than 1. All Cr results are consistent with zero direct CP-violation.

Decay channels such as B® — J/wK** and B® — D®+TDH-KY are sensitive to
cos2f3 and can help resolve the 7 — 3 trigonometric ambiguity on the value of 8. In
these channels, BABAR determines that cos2f > 0 at 89% and 94% confidence level,
respectively [22]. Interference in the D)0 Dalitz plot (DP) allows BABAR and Belle to
determine cos2f3 > 0 at 86% and 98% confidence level in the DHOK0 channel [23].
Finally, through interference in the K™K~ K{ DP, BABAR determines cos2f > 0 at
4.80 [24].

CONCLUSIONS
We summarize measurements of mixing-induced CP-violation parameters in the b — cCs
modes and several b — ¢gs penguin-dominated B° decays at the B-factories. Discrepan-

cies between the measurements of sin2f and sin2S.s are consistent with expectations
from the SM.
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