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We review the analytical solution for the infinite spin (classical) Heisenberg model in one di-

mension.

The partition function, internal energy, spin-spin correlation function, and zero-field

susceptibility are shown. We compare these results to those of a Monte Carlo simulation in one
dimension in order to confirm accuracy of the numerical solution. We also determine the zero-field
magnetization and the magnetization as a function of field in the one dimensional simulation. We
then use the simulation of the three-dimensional classical Heisenberg model to find critical behavior
in the magnetization, zero-field magnetization, and susceptibility.

PACS numbers:

I. INTRODUCTION

In 1925, E. Ising created a model of atomic spins which
attempted to explain the phase transition of ferromag-
nets at the Curie temperature. The Ising model is a
chain (one dimension) or lattice (two or three dimen-
sions) of spins, and therefore magnetic moments, which
can be in either of two orientations, up or down. The only
interactions on the lattice are between nearest neighbor
spins with parallel spins possessing an energy -J and an-
tiparallel spins, +J. Ising also hoped this model would
demonstrate a zero-field phase transition to ferromag-
netic behavior at low temperatures. The simple solution
of the one-dimensional problem revealed no critical be-
havior disappointing Ising who wrongly postulated that
higher-dimensional models would also fail in that regard.

In 1928, W. Heisenberg applied the new quantum me-
chanics to this same problem, and invented a similar
model using a vector coupling of the total quantum me-
chanical spin operators, still restricted to nearest neigh-
bor interactions.[1] One can obtain a model of interacting
classical spins by allowing the magnitude of the spin in
this model to become infinite. The spin operators be-
come normalized three dimensional vectors. The classi-
cal Heisenberg model is essentially the three-dimensional
spin analogue of the one-dimensional spin Ising model,
i.e. in the Ising model J = J, and J; = J, = 0 while
in the classical (isotropic) Heisenberg model J = J, =
Jy = J;.

Solutions to one-dimensional models are important not
only because some physical systems can be modeled well
in one dimension, but also as a comparison for numer-
ical solutions that can then be generalized to higher
dimensions.[2] In this way, we will show the accuracy of
our simulation in one dimension by comparing it to ac-
cepted analytical solutions, and then obtain numerical
results for the analytically insoluble three-dimensional
model.

II. ANALYTICAL SOLUTION TO THE
ONE-DIMENSIONAL CLASSICAL HEISENBERG
MODEL

We present a short review of the exact solution in one
dimension.[3] The hamiltonian for the classical Heisen-
berg chain of N spins in a magnetic field H is

N N
H o= —JY si-siai—py H-s; 1)
=1 =1

Where p is the magnetic moment and J is the spin-spin
coupling constant. Clearly, J is positive for a ferromag-
net, negative for an anti-ferromagnet, and zero for a para-
magnet. In the ferromagnetic case, with which we are
primarily concerned, the spins minimize energy by align-
ing with their nearest neighbors and the field. Letting

= J/ksT, 2)
the zero field partition function is
dQ dQ a
Zy = -0, /—Nea:p[KZsi -si—1]- (3)
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If the polar coordinates of the ith spin vector are taken
to be the polar axis of the (i-1)th spin in each integral in
Eq. (3) then the integrals separate and

dQ 1
/ 0 H/o ieK cos % gin 6,d0;. (4)
=1

Now the partition function reads

sinhK .y

In the thermodynamic limit N — oo, this partition func-
tion for the open chain of N spins agrees with that ob-
tained for a ring of NV spins, as one would expect.[4] The
zero field internal energy, Fig. 1, is
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FIG. 1: The analytical zero-field internal energy per particle
(scaled by J) versus temperature. The linearity of the internal
energy for low temperature is explained later.

The spin-spin correlation function is defined

9i(R) = (si-Sitr) = 3(5i,25i+R,2)» (8)
ds} dQ}
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and can be determined using a procedure similar to
that for the partition function. However, in this case,
only the first i and last N-i+R integrals can be sepa-
rated, and the remaining R integrals are computed using
a somewhat complicated approach.[5] With the numeri-
cal solution of these models being our focus, we will not
investigate that approach here. Nevertheless, the corre-
lation function is found to be

gi(R) = [w(K)]F, (10)

where u(K) is the Langevin function coth K — %[4].
Notice that |u(K)| < 1, and so the correlation drops
off exponentially as R increases, i.e. the farther spins
are from one another the less they are correlated, as one
would expect.

The zero-field susceptibility, Fig. 2, is found from this
correlation function, for large N and T # 0, to be

Np? 1+u(K)
3k‘BT1—u(K)'

xo(T) = (11)

III. MONTE CARLO SIMULATION

We performed a Monte Carlo simulation using the
Metropolis algorithm for a system of N classical, unit
vectors with periodic boundary conditions. As noted
above, the solutions for a ring and an open chain are
identical in the thermodynamic limit.
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FIG. 2: The analytical zero-field susceptibility versus temper-
ature; in the one-dimensional case there is no critical behavior
other than at T = 0.

The Metropolis algorithm is widely used to simulate a
number of systems such as spin, scalar field theories, and
gauge theories, because of its simplicity. As is the case in
most Monte Carlo algorithms, the Metropolis algorithm
begins with, in our case, a pseudo-random (random) con-
figuration of the system and evolves this intial state and
all of its successors by making random, small changes to
system variables.

A system, in our case, of spins, {s;}, is altered by
changing a single element s;+¢ — s}, and then accepting
the new system {s;} if the new energy E’ is less than
the previous E or else with a probability of e=#(F'~F) [6]
This process is repeated for all other elements in the ar-
ray; one attempted change of each element in the array
is considered one Monte Carlo step (MCS).

In our simulation we changed the z, y, and 2z compo-
nents of each array element by a random length [, with
—e < I < +e€ for a tunable simulation parameter e. We
then renormalized the vector and checked it’s new energy
as described.

After a number of MCS, the system relaxes into a low
energy equilibrium state which is completely uncorre-
lated to the initial configuration and about which it will
make only small flucuations. Once equilibrium is reached
one begins sampling the system for any relavent data, in
our case, energy and spin.

A. Simulation Optimization

We increased the precision of our simulation by varying
the size of our random, small change €, and in effect our
correlation time 7. We also maximized the number of
samples taken at equilibrium M. If the time correlation
function, ¢ for any thermodynamic quantity A can be
written



_ (ADA) = (AD)A)
o0 = SO (1)

then the correlation time 7, with T being the first time
that ¢(t) < 0, is

T~ Z #(i). (13)

The correlation time shows how correlated two config-
urations are in a simulation. For a large 7, two system
states separated by many MCS are still highly correlated.
This clearly has a significant effect on the validity of any
results; and even more precisely, the uncertainty in any

% . Ideally,

one would make 7 arbitrarily small while maximizing M,
but these parameters are tied to our only tunable param-
eter € in a way that makes such a strategy impossible.
Additionally, minimizing 7, even without regard for M,
is not as straightforward as it seems.

A simulation with € too small will take many MCS to
reach equilibrium, thereby making a large sample difficult
to obtain. Furthermore, an arbitrarily small € does not
imply an arbitrarily small 7. As e gets too small the
configurations can change only very little from step to
step, making successive MCS very correlated.

An € too large will result in a large 7, but will very
quickly reach equilibrium making a large M easy to ob-
tain. By looking at plots of the correlation function for
different € at several temperatures, Fig. 3, we empirically
determined that a value of € ~ .6 minimizes 7. We also
ran each simulation as long as feasible to increase M and

measurement of an observable scales as

minimize %

Another concern was when to begin making measure-
ments on the system, or how to determine when the
system had reached equilibrium. Several different auto-
mated methods were attempted to tell the program when
(after how many MCS) to start sampling the data. How-
ever, because this determination depended sensitively on
other parameters such as temperature, field, and €, we
ultimately found it easiest to run a short simulation, vi-
sually inspect the energy data for a point just beyond
equilibrium, and use this as our initial sampling spot in
the following simulations.

We also greatly improved this aspect of the simulation
by using an equilibrated sample from the end of a pre-
vious simulation as the starting configuration for a new
simulation, although we still waited the empirically de-
termined number of MCS before sampling to ensure that
configuration correlation had gone to zero.

B. Simulation of the One-Dimensional Ring

For the simulation of the 1-D, zero-field Heisenberg
ring of 50 spins, the energy check for each new array
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FIG. 3: The time correlation function versus MCS at ’”’%T

1.5. The correlation time is the area under each curve. This
area is minimized at e = 0.6. The optimal ¢ depends weakly
on temperature near the critical point; small flucuations in 7
were neglible due to large samples , M ~ 20,000, gathered
during simulations for final results.

configuration was merely a matter of checking interac-
tions with nearest neighbors, left and right, along the
chain. While no critical behavior was expected for tem-
peratures above T' = 0, we were eager to measure results
that agreed with the analytically determined properties
shown above.

The only information sampled from the simulation was
the spin and energy of each site on the chain, s; and E;.
From this we were able to calculate the average spin of
the system in a certain direction, say z, (s,), the spin-
spin correlation function (s¢ ;so+r,.) and the energy per
particle; and from these the magnetization, susceptibility,
and internal energy.

When finding quantities in zero-field that require a
“reference” spin or a preferred direction (called the z-
direction) such as the magnetization or pair correlation
function, the z-direction was taken to be the direction of
the first spin vector in the configuration (after the system
has reached equilibrium). In the case of the pair corre-
lation function the spin of the initial configuration was
used as s;. The pair correlation function behaves just as
predicted analytically in Eq. 10. The correlation of any
two spins on the chain, g;(R), falls exponentially as the
distance between them R, Fig. 4.

To determine the behavior of the ring as a function of
temperature or field, we simply ran a series of simula-
tions stepping through different values of the parameter
calculating the interesting quantity at each value. Two
such quantities are the internal energy and the zero-field
susceptibility as functions of temperature.

The internal energy is linear for low T due to the
equipartition theorem, ¥ = 1kpT x gd where gd is the
number of quadratic degrees of freedom of the hamil-
tonian. The Heisenberg hamiltonian is essentially the
scalar product of two unit vectors, s; and s;_;, charac-



\ Spin-Pair Correlation Function

i«
Temperature i
1 g

0.150

Analytic 0.150

TS

0.8

-=+ Analytic 0.400

<0 Analytic 0.650

0.6

Correlation Function

0.4

LA B R o

o
N}

o
S

o b b b b b L L Ly
2 4 6 8 10 12 14 16
R

FIG. 4: Spin-spin correlation function versus distance along
the ring for several temperatures. The correlation is predicted
to fall exponentially with distance; numeric correlation func-
tions decay exponentially, but fluctuate much than we would
prefer. As we expected, high temperature correlations drop
to zero faster than low temperature correlations.

terized by angles 0;, ¢;, 6;—1, and ¢;_1. This hamiltonian
contains the term cos ¢; X cosf;, which in the low tem-
perature expansion can be written 1 — 82 — ¢2.[5] Two
quadratic degrees of freedom, at low temperature, result
in the direct variation of the internal energy with tem-
perature, ¥ = kgT. The linearity and agreement with

theory of the internal energy are both apparent in Fig. 5
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FIG. 5: The internal energy versus temperature for the 1-D
Heisenberg ring agrees very well with the theoretical predic-
tion.

The susceptibility was calculated from the simulation
as

N/2 N

Xo = <% DD sitsisn). (14)

R=11i=0

Periodic boundary conditions assured that these sums

were over sites on the array that made sense to simula-
tion, i.e. sites that exist. The zero-field susceptibility
diverges as T — 0 in the theory and simulation as shown
in Fig. 6.
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FIG. 6: The zero-field susceptibility versus temperature dis-
plays no critical behavior for 7" # 0 in one dimension, but
agrees very well with the theory.
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FIG. 7: The zero-field magnetization versus temperature in
one dimension also diplays no phase transition, but is inter-
esting as a comparison for the 3-D case.

Having determined that the spin-spin correlation func-
tion, internal energy, and susceptibility all behave as pre-
dicted analytically, we calculated the magnetization ver-
sus temperature and field, Figs. 7 and 8, respectively,
in anticipation of the critical behavior of these quantities
in three dimensions. The magnetization was calculated
as M = (Zfil si,.) where, again, the z-direction in the
zero-field case was taken as the spin direction of the first
vector measured in each configuration.



\ Magnetization vs. Field \

0.8
0.6 ,‘f“"‘g’
[ ;“‘;
0.4 — ;}
r =
L E
02— =
s r Z
g F =
s oF £
g2 r =
= o2 ig
L ;"
0.4 &
r ~
-0.6[— -
Fo——
08

b b b b b b b b L
-2 -1.5 -1 -0.5 0 0.5 1 1.5

OH O

FIG. 8: The magnetization versus field in one dimension at
T=1K.

C. Simulation in Three Dimensions and Critical
Behavior

The simulation of the 3-D array with periodic bound-
ary was very similar to that of the 1-D ring, except near-
est neighbor interactions involved six neighbors rather
than two. The simulation was run on a 10 x 10 x 10 array
with periodic boundary conditions. We were particularly
interested in the three dimensional simulation in order to
observe the phase transitions and critical temperatures of
the magnetization and susceptibility.
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FIG. 9: The zero-field magnetization versus temperature
shows a phase transition in three dimensions with a critical
temperature % ~ 1.6. This transition would be infinitely
sharp in the thermodynamic limit.

For low T, the zero-field magnetization, Fig. 9, is lin-
ear. This is also due to equipartition[7]; in low tempera-
ture the spins are aligned, and again, the cosines in the
Hamiltonian can be taken as the first two terms of their
Taylor expansions. This will again result in two squared
degrees of freedom in the Hamiltonian and linearity in

the related quantities.

The susceptibility and magnetization were calculated
just as in one dimension, but again, s; - s;+g in Eq. 14
refers to six interactions rather than two. The zero-field
susceptibiliy and magnetization versus field, Figs. 10
and 11, respectively, also show phase transitions in three
dimensions, as expected, with a critical temperature of
% = 1.6. The susceptibility clearly peaks at k?, but
is does not truly diverge because these simulations were
performed on a 10 x 10 x 10 array. Though this is a
large array to simulate, in terms of CPU time, it is by no
means approaching the thermodynamic limit. The small
size of the array likewise dulls the sharpness of the phase
transition in the magnetization.
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FIG. 10: The zero-field susceptibility versus temperature ex-
hibits criticality at a temperature, again k?;‘: ~ 1.6, that
agrees very well with that of the zero-field magnetization,
Fig. 9.
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FIG. 11: The magnetization versus field in three dimensions
has infinite slope at 7' = 1K as opposed to the smooth curve
for the quantity in one dimension, Fig. 8.



IV. CONCLUSIONS

The Classical Heisenberg Model is a valuable tool in
the study of critical phenomena. It’s exact solution in one
dimension is useful as a model for several one dimensional
systems. It can be simulated accurately in one dimension
by using the simple Metropolis Monte Carlo algorithm,
and the one-dimensional case can be generalized to higher
dimensions where interesting critical behavior occurs.

We have presented an analytical solution to the One-
Dimensional Classical Heisenberg Model, and performed
a Monte Carlo simulation of the model in one and three
dimensions. Theoretical predictions for the energy, mag-
netization, and susceptibility in one dimension coincided
with results obtained from the simulation. No phase

transitions were observed in the one-dimensional model,
but the three-dimensional model exhibited criticality in
the variable-field and zero-field magnetization as well

as zero-field susceptility; all with critical temperature

kT ~
T piiny 1.6.

An interesting expansion of this Monte Carlo approach
to the isotropic, J = J, = J, = J,, Heisenberg model
would be to consider the anisotropic model with J, #
Jy # J, or probably J, = J, # J,. The anisotropic
model is also exactly soluble in one dimension, but its
behavior differs largely from the isotropic model at low
temperature.[8] Monte Carlo simulations in three dimen-
sions could reveal interesting differences between the two
models in critical behavior or in general.
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