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I. INTRODUCTION

In the early part of last century, scientists realized the usefulness of particle accelerators.
The first man-made accelerators employed electrostatic fields; in 1926 William Coolidge
accelerated a beam of electrons to 900 keV using a series of high voltage X-ray tubes [1].
The maximum particle energy in electrostatic accelerators is directly proportional to the
maximum voltage of these machines. Maximum voltages are on the order of megavolts
yielding electron energies around an MeV, quite far from the high energies of today’s electron
accelerators ~ 100 GeV.

Modern linear accelerators (linacs) use time-varying EM fields to continuously transfer
energy from the fields to the particles. To accelerate the particles, one must have a com-
ponent of electric field in the intended direction of acceleration and a field phase velocity
vp equal to the velocity of the accelerated particles ¢3. The first requirement is satisfied by
the use of TM fields in a waveguide. The second requirement v, = ¢f3 is not satisfied in a

uniform waveguide, but can be met by introducing periodic structure into the waveguide[2].

II. ENERGY GAIN IN A TIME-VARYING FIELD

One can find the energy imparted to an electron moving along the axis r = 0 with velocity

v = v(z)Z through a simple standing wave with an electric field [2]
E(r=0,z2,t) = E(2) cos(wt + ¢) Z. (1)

Setting t = 0 when the electron enters the accelerating gap of length L and assuming that
the phase of the wave |¢| < 7/2, i.e. the electron crosses the gap during the accelerating
(positive) phase of the wave. (We will see later that we need —7/2 < ¢ < 0 to maintain
synchronization.) The electron feels the field above but with ¢ = t(z) = [dz/v(z). The



energy gain is
L/2
AU = e/ E(z)cos(wt(z) + ¢)dz. (2)
—L/2
We can can define the average E-field amplitude

1 [
E, = Z/ E(2)dz (3)

—L/2
and transit-time factor

L2
—L/2
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—L/2

E(z) cos(wt(z)) dz
@ cosr@) dz

EyL

E(2) sin(wt(z)) dz

T = EoL . (4)

Using the indentity cos(wt + @) = coswt cos ¢ — sinwt sin ¢, we can succinctly contain the

physics in the Panofsky equation:
AU = eEyT cos(¢)L (5)

This is just the energy gain for an electron in a electrostatic field of voltage Ey over
a distance L, reduced by the factor cos(#)T. Even for an ideal phase cos(¢p = 0) = 1,
one can see that 7" < 1, and that the energy gain in an RF field is less than that for a
simple static field. There are many models for T each suggesting a specific tuning of the
wave frequency w and gap length L for maximizing AU, but the details are not specific to
classical electromagnetic theory.

This reduction in energy gain is greatly outweighed by the advantages of a time-varying
field: Assuming proper choice of gap lengths and wave frequency, these RF' gaps can be

linked in series to accelerate particles nearly indefinitely.

III. STANDING WAVES IN RESONANT CAVITIES

With only small beam holes bored on axis in the endplates, it is still instructive to
view the waves inside a resonant accelerating cavity as standing waves. The simple Alvarez
structure uses the lowest 7'M standing wave mode to accelerate particles through the cavity.
A series of conducting drift tubes are installed inside the cavity to shield the particles from
the negative phase of the standing wave. The drift tubes monotically increase in length to

account for the increasing velocity of the particles [3].



For a cylindrical cavity of radius r = R, we can determine the fields for TM waves from

a reworked form of Maxwell’s equations

1k
E, = iﬁvtw (6)
H, = i%i x B, (7)
Ez — weztikz (8)

with ¢ as the scalar solution to the Helmholtz equation for v* = pew? — k? and VZ =

V2% —0/0z:

(Vi+7)y =0 (9)
w = Jm(’Ymnp)eiimd)- (10)

For TM waves, boundary conditions require that ¢(p = R) = 0, and S0 Yymn = Tmn /R where

T are the n roots of the m* Bessel function. Boundary conditions also demand that E,

+ikz

vanish at the endplates (z = 0, L), so the z-dependence e becomes cos(prz/L) with p =

{0,1,2...} [4]. Notice the use of cos(prz/L) instead of sin(prz/L) even though the derivative
in Eq. (6) is independent of z. This is because this form of Maxwell’s equations (Egs. (6,7,8))

+ikz

were derived assuming an e z-dependence. One must look earlier in the derivation to see

how the z-dependence changes between longitudinal and tranverse components; specifically,
the choice becomes clear upon considering equations 8.23 in Jackson[4].
Using Egs. (8 & 10) and the reconsidered z-dependence, we find that

E, = EoJm(Ymmpp)e™™® cos(f?) et (11)

Equation (6) reveals (assuming €™ time dependence)
iEok
E, = + 20 pJTIn(menpp)e

2
mnp rymnp

+ime . mEok,

T (Ymnpp) €= . (12)
The transverse magnetic fields are found from Eq. (7)

1Eyeqw , mEyeow ;
H, — % T (Ympp) 5™ b £ %Jm(%wﬂ)eﬂm%- (13)
mnp mnp

The dispersion relation w(k) for the T'M,,,, modes can be found by manipulating the equa-

tion for vy, w, and k = pr/L.

772nnp = Newfnnp - kzzj (14)
O
Winnp = € 7 + 72 (15)



A. TM010 Modes

For the lowest T'M mode T'M,,,, = T Moo, the longitudinal component of the electric
field is constant with respect to z and the transverse components vanish since ky = 0. Only

the azimuthal magnetic field survives because m = 0. Notice also that for p = 0, wp10 = Y010

and ceg = 1/Zy where Zy = \/uo/€o is the impedance of free space. The fields are

E, = EOJO(’)’Olo,O) et (16)
1Foeoworo
Hy = 20500 gt (0r0p) (17)
Y010
—iFE
= 7 OJI(’YomP)- (18)
0

The dispersion relation for several 7'My, modes in Fig. (1) is useful for later comparison to

other linac geometries.
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FIG. 1: The dispersion relation for the three lowest T My, modes of the uniform cylindrical cavity
(left)[1]. The normalized electric field (blue) and magnetic field (red) for the lowest T'My19 mode
(right).

A drift tube linac (DTL) employing a standing T'My;y wave in its resonant cavity is
useful for particle acceleration. Figure (1) shows that charged particles at the center of the
cavity (p = 0) feel a force only along the z-axis varying only in time. As long as particles
are shielded by appropriately spaced drift tubes during the decelerating phase of the of the
wave, they can be accelerated to energies much greater than those achieved with electrostatic
machines. However, the energies of DTLs are limited by size of the machine. RF' frequency
on the order of G H z shortens the drift regions to less than a meter (fA = ¢), but still doesn’t
ameliorate the size requirements for high energy DTLs: Even with large DTL acceleration

gradients of 100 kV /m, particle energies of 50 GeV would require a 50 km DTL.
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IV. TRAVELING WAVES IN WAVE GUIDES

A possible solution to the size limit of drift tube linacs is to use traveling waves synchro-
nized with the particles’ velocities. Rather than shielding the particle during the decelerating
phase, the accelerating phase of the traveling wave follows the particle, and the particle feels
a continuous positive field. The T'M modes of a traveling wave in a circular cylindrical
waveguide of radius » = R are again most useful.

The fields for TM waves are determined from Maxwell’s equations above, Eqs (6-8). The
boundary conditions at p = R, and therefore the form of ¢/, are the same. Since there are no
endplates and no z boundary conditions, the z-dependence is properly expressed in Eq. (8).

The non-zero field components for the lowest T'My; mode are

E, = EyJy(yop) e'k== (19)
ZkEO i(kz—wt)

E, = - o Ji(vo1p) € (20)
iEOEOw i(kz—wt)

Hy = — or Ji(701p) € (21)

Just as in the case of a standing wave, a particle on axis will feel a force only in the z-
direction. Additionally, if the particle is synchronized with the positive phase of the wave
it will feel a force constant in time, see Sec. (IV A) below. However, the dispersion curve
(Fig. (2)) and form of the phase velocity (Eq. (24)) for the T'My; mode reveal the obstacle

in using traveling waves to accelerate synchronous particles:

h= Cr -k (22)
(2 = e+ ) (23)

$g1
v, = c\/1+ 2 (24)

For a uniform cylindrical waveguide, the phase velocity of the wave is always greater than c

preventing particle synchronization with the accelerating phase of the wave.

A. Synchronous Particles

Synchronous particles have velocity equal to the phase velocity of the wave. From

Eq. (19), a particle at phase ¢ on axis in the waveguide feels an oscillating electric field
E, = Eysin(wt — kz + ¢). (25)
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FIG. 2: The dispersion curve (blue) for the T'My; mode of the uniform circular cylindrical waveguide
including plot of cutoff freqency wy (red). The phase velocity is everywhere greater than the speed

of any particle, v, > c.

This wave has phase velocity v, = w/k and the particle’s velocity is called v(t) = z(t)/t.
Substituting into Eq. (25), one obtains
E, = Eysinfwt — (vﬂ)(vt) +4]. (26)
p

When v, = v the synchronized particle at phase ¢, feels a constant E-field
E, = Eysin(¢s). (27)

If the velocities differ slightly, the field will have some small effective freqeuncy but will be
nearly constant as felt by the particle. This will be explored in more detail, but for now

since the T'M traveling waves above have v, > ¢, particle synchronization is precluded.

V. IRIS LOADING

The phase velocity of wave can be lowered by introducing periodic structure into the
waveguide. An iris-loaded waveguide, Fig. (3), can be thought of as a waveguide fitted with
equally-spaced, axially-bored plates or as a series of resonant cavities coupled by fields that
penetrate the beam holes[5].

An analytic solution to Maxwell’s equation for the iris-loaded waveguide is beyond the
scope of this paper, but one can make conclusions about the dispersion and phase velocity
of waves in this waveguide. Arguing that solutions to the Helmholtz equation, Eq. (9),

must be z-periodic with frequency 27 /L to match the periodicity of the loaded waveguide,
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FIG. 3: A cross section of the circular cylindrical iris-loaded waveguide with beam holes of radius

A.

one can employ the Floguet Theorem. A paraphrasing of Floquet’s Theorem states that
the solution(s) to a differential equation with periodic coefficients are quasi-periodic in that
their form differs from period to period by only a phase[5]. For the TM modes, one can

write
E.(p, ¢, 2,t) = e ™**E,(p, ¢, 2)e™" = phase x periodic function, (28)

where, because of Floquet’s Theorem, E,(p, ¢,z + L) = E,(p, ¢, z). The periodicity of E,

allows for the expansion in a Fourier series
- —i27e,
E.p,¢,2) = Y folp,d)e™ 7% (29)
g=—0o

The functions f, must still satisfy the wave equation and boundary conditions, so f,(p, ¢) =

i (Ymngp) €™ as before. For the T'My; modes, the fields become

E, = ¢ K0 N B Jo(Yo100) (30)
g=—00
e e K E,
E = ie—(quz—zwt) q (IJ 31
p q_z:w Yora 1(Y0140) (31)
. (iKgz—iwt) = weg by
Hy = ie” " Z ” J1(Y014P) (32)
= Olq
g=—00

where K, = ko + 2mq/L, and o1, = zo1/R are still the Bessel zeroes over the radius. As
expected, particles on axis feel a force only in the z-direction.
One can think of the fields as the sum of ¢ space harmonics each with wave number K.

Taking g = 0 yields the fundamental space harmonic with wave number kq[2]. The equations



for the frequency and phase velocity of each space harmonic are

o . 2mq
w =2=cC ’}/glq + Kg = C\/’)/glq + (ko + 7)2 (33)
w w Upo

(34)

T K, ke+2nq/L 1+ 2mqfkL
For large enough ¢, the ¢"* space harmonic will have phase velocity well below the speed of
light, and it can even be shown that the phase velocity of the fundamental harmonic has
been brought less than c.

The dispersion curve can be constructed by making qualitative arguments about the
complicated fields in the iris-loaded waveguide. Plotting w(kg) from Eq. (33) for ¢ = —1,0,1
shows three typical dispersion curves shifted by 27/L. The curves for ¢ = —1,1 have
significant portions below the diagonal where v, = c. One might imagine, and it has been
show experimentally that the dispersion relation is continuous and smoothly varying. The

separate curves can be joined to form the periodic effective dispersion relation (red) in

Fig. (4).
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FIG. 4: The dispersion curve for the iris-loaded waveguide. In blue are the individual dispersion
curves for the ¢ = —1,0,1 space harmonics. In red is the experimentally confirmed effective

dispersion curve for the iris-loaded waveguide.

This dispersion curve contains much information. Apparently, even the phase velocity of
the fundamental space harmonic ¢ = 0 has been modified. Though it is difficult to see in
Fig. (4), the ¢ = 0 harmonic (corresponding to 0 < k£ < 7/L) has a small portion beyond the
vp = c line and therefore can be synchronized with particles. In practice, this fundamental
harmonic is primarily used to accelerate particles at phase velocity v, ~ c¢. The downward

slopes of the effective dispersion relation, between odd and even multiples of 7/L, are due
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to negative values of kg, waves traveling in the opposite direction, and are not used for
acceleration. The dispersion curve has zero slope at integer multiples of 7/L, and so the
group velocity there vanishes v, = dw/dk = 0; these are the wave numbers (kL = 0, 7, 27...)

of standing waves in the L-periodic waveguide[5].

VI. PARTICLE DYNAMICS

It is never the case that particles are exactly synchronized with the waves, so it is impor-
tant to understand how particles close to synchronization behave. Taking the energy, phase,
and time of synchronous and non-synchronous particles to be Uy, ¢, = wt,, t,, U, ¢ = wt,
and t, respectively; one can define AU = U — Uy, A¢p = ¢ — ¢, and At =t —t,. The energy
of a synchronous electron propagating in the field from Eq. (27), E sin ¢, is related to that
field as

dU .
— = eEj sin ¢ (35)

so one can relate the phases and energies of synchronous and non-synchronous particles[1]

% = eEy[sin(¢s + A¢) — sin ¢y]. (36)

For a small phase difference A¢
d(ﬁzU) = eEy[sin(¢s) cos(A¢p) + cos(ps) sin(A¢) — sin ¢] (37)
~r eFEgAdcos(ops). (38)

Assuming v — v; = Av < 1 and Taylor expanding in small Av, the rate of change of the
phase difference can be seen (note ¢ = wt above) to be

d(Ag) _ dt di,

= w2 = e =) = w((v+ Av)T - ) (39)
_ _w% (40)

dp 3

dv ym, (41)
dE ,dv dry o, 1 Y

dp me dp dv me (73m)( c? ) =2, (42)



one can show that Av = AU/~*mu, and therefore that

d(Ag) w

— AU. 43
dz my3v3 (43)

Differentiating again with respect to z and using Eq. (38), one obtains a second order

differential equation

PA9) | w dAU)_

dz? my3vd  dz

eFyw

eI

cos(¢s)|Ad = —K2Ad. (44)

This is just the equation for a simple harmonic oscillator. A particle with phase difference A¢
relative to a synchronous particle will oscillate in phase (and energy) about that synchronous
particle provided x? > 0. This constraint on x demands that cos ¢s > 0 and that —5 <95 <
5- Additionally, in Eq. (35) it is clear that for positive energy gain one needs sin ¢, > 0 and
SO

™
0< ¢s < 5 (45)

For high energies, 7232 in Eq. (44) is very large, and so x? is very small. The particles

oscillate very little about the synchronous phase, and the beam is a very tight bunch[1].

VII. PARTICLE CAPTURE AND BUNCHING

Along similar lines, one can investigate the conditions for the capture (into a synchronous
accelerating phase) of particles injected into the beam with v < ¢. These particles and the
accelerating wave with frequency w travel distances differing by dl = (¢ — v)dt in a time dt.

This can be expressed as a difference in phase dl = ¢/w d¢ implying[1]

do
= = w(l-B). (46)

The particle feels a force dp/dt according to Eq. (35)
d(v8) 4 B

— —[— " ]=¢eE,si 47
c dt dt[(l—ﬂQ)%] € 081n¢ ( )
Letting 8 = cosz one can write

d E

p cotr = em—co sin ¢ (48)
1 dz eE)

2= 20 49
sin? x dt me sin ¢ (49)



Using the chain rule, Eq. (46), and (1 — ) = 1 — cosz this expression can be prepared for

integration
1 do¢ dz eky .
s 50
sin?z dt do mc sin ¢ (50)
1—cosx eEy .
— 5 de = — Slngb d¢ (51)
sin® x wmece

Integrating both sides from initial injection to final capture (5; — 8. = 1 and ¢; — &)

and employing the trigonometric identity tanf = /(1 — cos26)/(1 + cos26), one obtains

the capture condition[1]

_wme [1 — Bi] 1
eEy "1+ 5

For a tuning of Ey, w, and §; such that the right hand side of Eq. (52) becomes —1, Figure (5)

COS ¢, — COS ¢p; = . (52)

shows the relation of captured phase to injected phase ¢. = arccos[cos ¢; — 1]. Injection at

¢; = 0 gives ¢, = m/2 which according to Eq. (35) maximizes energy gain.
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FIG. 5: Injected phase —7/2 < ¢; < 7/2 results in captured phase 7/2 < ¢, < 7.

Because injection techniques are not perfect, understanding the behavior of particles

injected near, but not quite at ¢; = 0 is important. Taking ¢; = d¢p < 1

¢. = arccos|cos(dp) — 1] (53)
~ (99)° (60)*, _ (09)?
~ arccos[l — T 1] arccos[—?] =7 — arccos[T] (54)
~ - [f - @1. (55)

The same process for ¢; = —d¢ yields a range of captured phase[1]

T (09)?
S¢c§§+ 9

7
— 56
4 (56)
for particles injected with a phase spread of d¢ about ¢; = 0. As hoped, in the capture
process, particles injected with phase ¢; = £0¢ will be bunched even tighter about the ideal

phase ¢ = 7/2.
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VIII. CONCLUSIONS

Charged particles are accelerated using an electric field. Time-varying electric fields yield
much higher particle energies than static fields. The use of traveling waves in a waveguide
instead of standing waves in a cavity gives further increase in the energy of synchronized
particles, because traveling waves continuously transfer energy to the particles. To attain
synchronization the phase velocity of the traveling waves must be slowed by the use of a
periodic, iris-loaded waveguide.

Within the range of synchronous phases 0 < ¢, < 7, particles with phase close to ¢, will
maintain stable orbits about the synchronous value. For a particular tuning of accelerator
parameters, particles injected into the beam with velocity v < ¢ at phase ¢; ~ 0 will be

bunched very tightly about ¢s; = /2 providing maximum acceleration.
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