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Search strategies for dark matter (DM)

Direct searches
Look for DM—nucleus scattering.
Uncertainties:

@ Local DM density

@ Backgrounds

@ Calibration

Indirect searches

Look for astrophysical signatures
of DM annihilation or decay.

Uncertainties:
@ Profile of Milky Way’s DM halo
@ Cosmic ray propagation

Collider searches
Look for missing energy signatures.
Problem:

@ Can only find DM candidate (no proof that it is DM)

Model-dependent strategy: Cascade decays with £+
Less model-dependent strategies: THIS TALK
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Dark matter in an effective theory approach

Assumption: DM interactions described by effective field theory
Sample operators: (y = dark matter, f = SM fermion, A = suppression scale)

o (X7X) (Fy#1)

2 R (vector, s-channel)
Og = (;2;5\)2(?;‘) (scalar, s-channel)
O = (X st/\)2(77“75f) (axial vector, s-channel)
O = W + (L~ R), (scalar, t-channel)

A2 can be Fierz’ed into s-channel operators
Og = aS(XX)(/iz”GaW) ; . (scalar, s-channel)

In a full, UV complete theory:

N=M/\/9:9y ; .
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Mono-jet and mono-photon signatures of dark matter

Idea: Pair production of DM + some visible particles

Tevatron, LHC: Mono-jets
x—q coupling probed in jet(s) + £

q

q X

CDF (1.1 fo~—"): 0807.3132,

ATLAS (1 fo~"): ATLAS-CONF-2011-096,

CMS (1.1 fb~1) : CMS-PAS-EXO-11-059

Goodman Ibe Rajaraman Shepherd Tait Yu
1005.1286, 1008.1783

Rajaram Shepherd Tait Wijangco 1108.1196

Bai Fox Harnik, 1005.3797

Fox Harnik JK Tsai 1109.4398

v

LEP, Tevatron, LHC: Mono-~
x—f coupling probed in photon + £

f

f X

DELPHI (650 pb~"): hep-ex/0406019, 0901.4486
CDF (2 fo~—"): 0807.3132

DG(1 fo~'): 0803.2137

CMS (1.14 fo—'): CMS-PAS-EXO-11-058

Fox Harnik JK Tsai 1103.0240, 1109.4398
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Limit setting procedure

@ Simulate signal process pp/pp — j + xx or pp/pp/ete” — v+ xx in
MadGraph, Pythia, Delphes/PGS
(Simulate also SM backgrounds for verification)

1000

ATLAS7TeV , 1 b, veryHighPt 350F DELPHI 650 pb*
100} 300k
+ ATLASdaa ] DELPHIMC
10 [ ATLASBG || + 250} (i

g {7 orme a
5 . ] pMsgna || 3 200
5 ] 2 1500
@ — |

01l @ 000

(Z—wv)+j
00l (W — £™y) 4 —+— 50; 4
0 (Z—-wvv)+7y 8
300 400 500 600 700 02 04 06 08 10
Er [GeV] Xy = Ey/Epeam

» Our simulations in excellent agreement with the collaborations’
(after correcting normalization by 10-30%)
» Signal and background have different spectral shape
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Limit setting procedure

@ Simulate signal process pp/pp — j + Xx or pp/pp/ete” — v+ xx in
MadGraph, Pythia, Delphes/PGS
(Simulate also SM backgrounds for verification)

@ Compare signal + BG prediction to data:
(require x% = 2.71 to derive 90% C.L. limit on A)

2 _ [Nobs — Nsu — Nom(my, A)J?

LHC: =
X Now(my, N) + Nsut + o8y
) ) . ) N
LEP: X2 =2 NéM + N{)M(va /\) — N(I)bs + N(j)bs |Og : obs
jgs [ NéM + N{)M(mxv A)]

» Only total rate analysis for LHC mono-jet

(cannot model systematic uncertainties in background shape)
» LEP mono-photon analysis is statistics dominated

— can use spectral information
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Limit setting procedure

@ Simulate signal process pp/pp — j + Xx or pp/pp/ete” — v+ xx in
MadGraph, Pythia, Delphes/PGS
(Simulate also SM backgrounds for verification)

@ Compare signal + BG prediction to data:

ATLAS 7TeV,1fb?t

Solid : Observed 90% C.L. ‘ ‘ ‘
goo[ Dashed : Expected 5000 XY Eye 90% C.L. |
Y’}’“XU’)’)AU
< 700 ~
s 3 400
8 8
600F
s < 300
§ 500F Xy*x dy,d ?ﬁ
il = 200-
3 400} g
ATLAS 1 b1 O 100t DELPHI 650 pb—!
30, PP —j+Er ete” —y+Er
veryHighPt 0 ) ) ) )
208. 1 i 15 60 500 0 20 40 60 80 100

WIMP mass m, [GeV] WIMP massm, [GeV]
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Limit setting procedure

@ Simulate signal process pp/pp — j + Xx or pp/pp/ete” — v+ xx in
MadGraph, Pythia, Delphes/PGS
(Simulate also SM backgrounds for verification)

@ Compare signal + BG prediction to data:
ATLAS 7Tev,1fb?
900

Solid : Observed. " o0%CL.
800L Dashed : Expected 1

HighPt
700—Y19

HighPt

600F

LowPt

8

Cutoff scale A [GeV]
(o1}
o
o

[ CMS

Xy'x Uy
2081 1 10
WIMP mass m, [GeV]

w
Q
(=]

» High jet pr and £ cuts are very beneficial
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Limit setting procedure

@ Simulate signal process pp/pp — j + xx or pp/pp/ete” — v+ xx in
MadGraph, Pythia, Delphes/PGS
(Simulate also SM backgrounds for verification)

@ Compare signal + BG prediction to data:

@ Convert limits on A into limits on DM-nucleus scattering cross section or
DM annihilation cross section
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Outline

e Collider limits on direct detection cross sections
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LHC limits on the DM—nucleon scattering cross section

ATLAS7TeV, 1fb™* VeryHighPt

WIMP-nucleon cross section oy [cm?]
[
Q29 99 398 99

2 &5 8 & & 8

H
Q
&

[ Solid : Observed

Spin-independent

90% C.L/
;

@ Assumption here: Equal coupling to all quark flavors
@ Extremely competitive limits for

10° 10* 10?
WIMP massm, [GeV]

10°

WIM P-nucleon cross section oy [cm?]

ATLAS 7TeV, 1fb™* VeryHighPt

107%
Solid : Observed 90% C.L.
10-35] Dashed : Expected <D
N
10-% DAMA s WO
(q+33%) \ N O\)??
a7 |
10 5 N\?&
10738 A
10739
ol e
o )
10 P Spin-dependent
10t 10° 10t 102

WIMP mass m, [GeV]

10°

See also work by

Rajaraman et al. 1108.1196

» Light dark matter (below direct detection threshold)
» DM coupled to gluons (high gluon luminosity at the LHC)
» Spin-dependent DM interactions (DD suffers from loss of coherence)
@ v + £ final state slightly less sensitive, but could provide confirmation or
discriminate between models if signal is observed in j + £



LEP limits on the DM—nucleon scattering cross section
Equal couplingsto al SM fermions Equal couplingsto al SM fermions
— 107%®
£ J| wxcL| € 90% C.L.
8 107% AR — ) S 10
g 10—37%_ S d
5 = Tyuf g 107 &'A
.g 10-38EX Lk o 10 DAMA RN 4‘%&/10
10—39 L=~ ﬁ Qq= 33%) T\ = ™= Cokﬁ
8 - 8 109 S\N\ﬁ
6 1074 5
% | CoGeN £ 10
8 107 S
S ) g 1g® P T /
210 wl o jERBSEEs
—~ o
S 10 AN e S 100
s w Spin—independent coM : . Spin—dependent
1070 10* 102 10° 1079 10 102 10°

WIMP massm, [GeV] WIMP mass m, [GeV]

@ LEP only constrains DM—electron coupling

@ Additional assumptions needed to set limit on DM—nucleon scattering

@ Here: Equal coupling to all SM fermions assumed

@ Limits only slightly weaker than those from the LHC, but slightly more
model-dependent



Direct detection phenomenology of leptophilic DM

What if dark matter couples only to electrons at tree level?

@ Scattering on an electron
Outer-shell electrons can be kicked out (WIMP-electron scattering)
Inner-shell electrons will remain bound (elastic WIMP-atom scattering)

v

\4

— recoil transferred to nucleus

v

Electrons can be excited to an outer shell, but remain bound

(inelastic WIMP-atom scattering) — recoil partly transferred to nucleus

v

v

10°

10

1071

P P eV

102

1074

10-16

B —

o L@ eV

105}

10-8F

10-10

10712}

1014}

10-1

Problem: Typically very small recoil energies (m,, > me)
Visible events probe high-momentum tail of e~ wave functions

165 166 - 167
plev]
JK Niro Schwetz Zupan arXiv:0907.3159
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Direct detection phenomenology of leptophilic DM

What if dark matter couples only to electrons at tree level?

@ Scattering on an electron
» Strongly suppressed
@ Loop-induced scattering on the nucleus
» Dominant if allowed
» Forbidden e.g. for axial vector operator (v.7vsx)(fy*~sf)
» Suppressed by loop factor

ko N, pu
! JK Niro Schwetz Zupan arXiv:0907.3159
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LEP constraints on leptophilic dark matter

@ Scattering on an electron (Loop forbidden), e.g. (x7.75x)(&7"s€):
LEP provides the only meaningful limit on DM—SM scattering

@ Loop-suppressed scattering on the nucleus, e.g. (x7.x)(&y"e):
LEP still has a great advantage:

Couplingsto leptons only

€ o 90% C.L.

= 1038

s 10 DAMA (q+33%) -—1
‘3 10739 o —

CoGeNT
40

g L —F

5 107 i Y \ 100
§ 1074 Xy N\ ,ENO“\//
g L — | CVU WS

7 1078t

o

S 0%

= 10 5 Spin—independent

10~
10° 10 102 10°
WIMP mass m, [GeV] Fox Harnik JK Tsai, arXiv:1103.0240
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0 Collider limits on annihilation cross sections
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Collider limits on DM annihilation

X — Gq (LHC limits)

Annihilation into qq

»
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@ Light thermal relic ruled out

@ Constraints weakens by 1/BR(xx — qq) resp. 1/BR(xx — /)
if DM has also other annihilation channels
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Velocity-dependent annihilation cross sections

1

05Viel = WM(mi — m?) V2 scalar
1 2 8m —22m m 17m?} .

TAViel = W’“ — % <24 e - n;2+ ! vrzel) axial vector

For some operators, oV, is suppressed by vZ2, or m?/m?
— advantage for colliders compared to astrophysical searches

Equal coupling to al charged leptons

0—22
022 90%CL.
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Outline

° Beyond effective field theory
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Beyond effective field theory

Assume DM interactions mediated by light particle
— effective field theory breaks down, have to include mediator explicitly

Collider cross section Direct detection cross section
1 . 1 2. m2
Ocoll ™~ S o N
(@~ M)+ TEea/4 Jscate M3 .o (My + my)?

@ For light mediators, colliders have a relative disadvantage
@ ...unless a narrow mediator can be produced on-shell and decays to DM
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Constraints on suppression scale A for light mediators

Continue to use A = M..a//9, 9 as measure for DM interaction strength

M
| Xy XEV”? | @ m, > My.q/2: Limit is weaker
10l 9% C.L.| than for the effective field
I=tm)  DELPHI650 pb~'|  theory (contact operator) case
= ) @ m, < Myq/2: Mediator
3 M = 200 GeV roduced on-shell
O ool e g 2 ED 20 | P
< 1 contact op. » Limit improves again .
ks > ...but depends on the partial
= width for Mediator — xx
2 102t » Note: If Mediator — SM SM
e} . . .
is possible, other constraints
M =10Gey, may apply.
1L . . . .
0% 20 40 6 8

WIMP massm, [GeV]
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DM-nucleon scattering with light mediators

X fyuf
10 DELPHI 650 pb—'
E o 90% C.L| __
zZ
S 37 M= GeV,
g 10 ool I—— &
5 108 ety i
g F gontact OF | m=20ce
@ 107% \'zl""“’ e "_,..'
S 107 M = 100 GeV
8 104 .
[}
2 10
d
= 10% -
§ 104 eqﬁal couplings
10° 10t 10? 10°

WIMP massm, [GeV]

@ my > Myeq/2: Limit weaker

@ m, < Myeq/2: Limit stronger
or weaker, depending on width
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DM annihilation with light mediators

WIMP mass m, [GeV]

XY'xey.e
7 192 DELPHI 650 pb~
E 123 90% C.L. > 1>
5 10 zj € O
107 8 =t 87
‘% 10°} Thermal relic i - AN
T 10% e ——
= 10-27 = =
[
5107%
> 107®
> 107%®
2102
S 10%
§ 10 (V) = 0.24 (freeze—out)
4] 10°% Annihilation only into e"e™
5 107%° L | |
© 10° 10t 102

my > Miea/2: Limit weaker
m,, < Mpeq/2: Limit stronger
or weaker, depending on width
“Spikes” due to resonant
annihilation
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Are our bounds within the regime of validity of EFT?

Question: Are there UV-complete models that saturate our limits
and can still be described by effective operators?

@ For LEP: No problem — /s ~ 200 GeV, A;,, ~ O(300-500) GeV.
— models with My,.q ~ 500 GeV and g,,gr ~ 1 are OK

Joachim Kopp Collider searches for dark matter
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Are our bounds within the regime of validity of EFT?

Question: Are there UV-complete models that saturate our limits
and can still be described by effective operators?
@ For LEP: No problem
@ For LHC:
» Models with Mnea 2 5 TeV and g, gr = 5 required
» For smaller (but not too small) Mid, gy, g, limits derived in EFT are
overly conservative

3 20000 ——

) Vector coupling /

£ —— m, =50GeV

S 1500] |- m, =500Gev ,

8 g oM M /

) Shading: T="...5" §

:g 1000 [---- /g, gq contours

© 7 7 P

< / / /

o / /

£ 500t

3 01g;

= Ll o S

=} 0 G = e :
@ 10 50 100 5001000 5000

Mediator massM [GeV]
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Are our bounds within the regime of validity of EFT?

Question: Are there UV-complete models that saturate our limits
and can still be described by effective operators?

@ For LEP: No problem
@ For LHC: No problem
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Are our bounds within the regime of validity of EFT?

Question: Are there UV-complete models that saturate our limits
and can still be described by effective operators?

@ For LEP: No problem
@ For LHC: No problem
@ EFT might work even better for more sophisticated UV completions

@ Note: EFT may be problematic for scalar operators
(SU(2) invariance requires Higgs insertions)
Fox Harnik JK Tsai 1109.4398
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e Invisible Higgs decays to dark matter
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Invisible Higgs decays to dark matter

A special case of a “light mediator” is the SM Higgs boson.

@ Best limits come not from the j + £ or v + £+ channels, but from
invisible Higgs searches

» Vector boson fusion: forward jets + £+
» Associated production witha Z: Z + £+

@ Limits on BR(h — inv) can be translated into Higgs—DM coupling y,
r(h— xx)
(h— xx)+T(SM)’

J%: om.\ 2 2
r(h—>>_<X)=8thl1—< )] ,

s

BR(h— Xx) = ¢
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Projected limits from invisible Higgs decay

No invisible Higgs search yet — compute future sensitivity
(based on projected BR(h — inv) sensitivity from Gagnon et al. ATLAS CSC NOTE 10)

ATLAS 30 fb~* upper bound ( projected )

zZ
b
k]
?
o
o
c
3
[5}
2
d
=
2 10% LHC 14 TeV, 30 fb~— 1 4
Spin-independent  fyture sensitivity
1074
10° 10 10? 10°

WIMP massm, [GeV]
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A lower limit on DM—nucleon scattering

@ Assume DM interacts through Higgs exchange

@ Assume specific value for my

@ Non-obervation of Higgs at my can be interpreted as a lower limit on
BR(h — inv)

CMS Higgs combined lower bound

40

=
e

10—41

104

8
&

8
2

WIMP-nucleon cross section oy [cm?]

10—45

Spin—independent
10—46
10° 10 10 10°
WIMP massm, [GeV]
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Summary & Conclusions

@ Mono-jet and Mono-photon searches at LEP and LHC provide strong
constraints on dark matter properties in an effective field theory formalism

@ Colliders are superior to direct searches if dark matter is very light
(< O(5 GeV)) or if interactions are spin-dependent or leptophilic

@ Colliders are superior to indirect searches if dark matter is light
(< few x 10 GeV))

@ ...and always independent of astrophysical uncertainties
@ Limits can become stronger or weaker if mediator is light

@ Special case: DM interacting through the Higgs
— Invisible Higgs searches will be very sensitive
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Thank you!



Simulation of the DELPHI detector

@ CompHEP: Event generation
@ Hacked MadAnalysis: Detector response

DELPHI, hep-ex/0406019, arXiv:0901.4486
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Simulation of the DELPHI detector

@ CompHEP: Event generation
@ Hacked MadAnalysis: Detector response

Three EM calorimeters:
@ High Density Projection Chamber (HPC)
45° < 9 < 135°
Xy = E/Eneam > 0.06
Trigger efficiency: 52% @ E, = 6 GeV, 77% @ 30 GeV, 84% @ 100 GeV
Cut efficiency: 41% @ 6 GeV, 78% @ 80 GeV
Resolution: 0.043 @ 0.32/VE

v

vy vy VY

DELPHI, hep-ex/0406019, arXiv:0901.4486
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Simulation of the DELPHI detector

@ CompHEP: Event generation
@ Hacked MadAnalysis: Detector response

Three EM calorimeters:

@ High Density Projection Chamber (HPC)

@ Forward EM calorimeter (FEMC)

» 12° < 0 < 32°

Xy = E—Y/Ebeam > 0.1
Trigger eff.: 93% @ 10 GeV, 100% @ 15 GeV
Cut efficiency: 57% @ 10 GeV, 75% @ 100 GeV
Noise/machine bg: 11% loss
Resolution: 0.03 @ 0.12/VE @& 0.11/E)

v

vy vy VvVYy

DELPHI, hep-ex/0406019, arXiv:0901.4486
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Simulation of the DELPHI detector

@ CompHEP: Event generation
@ Hacked MadAnalysis: Detector response

Three EM calorimeters:
@ High Density Projection Chamber (HPC)
@ Forward EM calorimeter (FEMC)

@ Small Angle Tile Calorimeter (STIC)

» 3.8° <0 <8

» Xy = E,/Eyeam > 0.3

» Efficiency: 48%

» Resolution: 0.0152 ¢ 0.135/VE

DELPHI, hep-ex/0406019, arXiv:0901.4486
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Simulation of the DELPHI detector

@ CompHEP: Event generation
@ Hacked MadAnalysis: Detector response

Three EM calorimeters:
@ High Density Projection Chamber (HPC)
@ Forward EM calorimeter (FEMC)
@ Small Angle Tile Calorimeter (STIC)
In addition (fudge factors):
@ 90% efficiency fudge factor
@ Lorentzian energy smearing, width 0.052 £

DELPHI, hep-ex/0406019, arXiv:0901.4486
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LHC mono-photon limits

WIMP-nucleon cross section oy [cm?]

CMS 7TeV, 1.14 fb~* Mono—photon

103} Solid : Observed 90% C.L.
Dashed : Expected /

107t 100 10t 10? 10%
WIMP mass m, [GeV]
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