The missing 95%: Theory and Phenomenology of Dark Matter and Dark Energy

Joachim Kopp

DPG Spring Meeting Göttingen, March 2012
Outline

1. Evidence for dark matter

2. Finding dark matter
 - Direct detection
 - Indirect detection
 - Production at colliders

3. Modelling dark matter

4. Dark energy
Outline

1. Evidence for dark matter

2. Finding dark matter
 - Direct detection
 - Indirect detection
 - Production at colliders

3. Modelling dark matter

4. Dark energy
Celestial mechanics

Stellar/galactic dynamics relates:

- The mass distribution
 (inferred from brightness)
- Kinetic energy
 (inferred from Doppler shifts)

Fritz Zwicky
1898–1974

Vera Rubin
1928–

Observations of rotational velocities in galaxies show:
Rubin 1975

The gravitational pull on peripheral stars is stronger than predicted from the mass of the luminous matter M

$$m \frac{v^2}{r} = G_N \frac{mM}{r^2} \quad \text{at } r \to \infty$$

M33 Rotation Curve
Collisions of galaxy clusters

Artist’s rendering (Image: NASA)

red = gas (from x-ray observations)
blue = (dark) matter distribution (from gravitational lensing)
Collisions of galaxy clusters

Image: NASA (Chandra [x-ray], ESO WFI [lensing], HST [optical])

red = gas (from x-ray observations)

blue = (dark) matter distribution (from gravitational lensing)
The Cosmic Microwave Background (CMB)

WMAP’s observation of the CMB: A fingerprint of the universe at $t \sim 300,000$ yrs (when electrons and protons first combined to form atoms).

red = overdense, hot regions ($0 \ldots +200 \ \mu K$)
blue = underdense, cold regions ($-200 \ldots 0 \ \mu K$)

Image credit: NASA
The Cosmic Microwave Background (CMB)

WMAP’s observation of the CMB: A fingerprint of the universe at $t \approx 300\,000$ yrs (when electrons and protons first combined to form atoms).

More useful: The CMB fluctuation power spectrum

Image credit: NASA
The Cosmic Microwave Background (CMB)

WMAP’s observation of the CMB: A fingerprint of the universe at $t \approx 300,000 \text{ yrs}$ (when electrons and protons first combined to form atoms).

Image credit: NASA

red curve = theory prediction
black points = WMAP data
The Cosmic Microwave Background (CMB)

WMAP’s observation of the CMB: A fingerprint of the universe at \(t \approx 300,000 \) yrs (when electrons and protons first combined to form atoms).

too little DM \((0.04\rho_c)\) right amount of DM \((0.22\rho_c)\) too much DM \((0.74\rho_c)\)

Image credit: NASA
What is this stuff?

- **Modified laws of gravity?**
 - Hard to explain all observations

- **MACHOs (Massive Compact Halo Objects)?**
 - Planets, Brown dwarfs, neutron stars, . . .
 - Ruled out as dark matter in the mass range $0.6 \times 10^{-7} M_\odot < M < 15 M_\odot$ by searches for gravitational microlensing
 - Searches for candidate objects yield too few of them

- **Hot (relativistic) Dark Matter (neutrinos or other relativistic particles)?**
 - Cannot explain large scale structure of the universe (hot dark matter would smoothen the galaxy distribution)

- **Cold or Warm Dark Matter**
 - **Axions**
 - Ultra-light, but non-relativistic due to non-thermal production
 - **Gravitinos**
 - Only gravitational couplings → bad for direct/indirect/collider detection
 - **WIMPs (Weakly Interacting Massive Particle)**
 - New, heavy, stable particles
 - Should have some non-gravitational interaction with SM particles for production in the early universe
Outline

1. Evidence for dark matter

2. Finding dark matter
 - Direct detection
 - Indirect detection
 - Production at colliders

3. Modelling dark matter

4. Dark energy
Outline

1 Evidence for dark matter

2 Finding dark matter
 • Direct detection
 • Indirect detection
 • Production at colliders

3 Modelling dark matter

4 Dark energy
Direct Dark Matter detection

Idea: A WIMP (Weakly Interacting Massive Particle) can scatter on an atomic nucleus.

Strategy: Look for feeble nuclear recoil

Problem: Many background processes (radioactive decays, cosmic rays, ...) can mimic the signal
Direct DM detection — The experimental challenge
Direct DM detection — The experimental challenge
Direct detection results

Assumptions here: Elastic DM scattering \propto target mass (often realized in SUSY)
Direct detection phenomenology of alternative models

- Previous slide: Elastic dark matter (χ) scattering through scalar current \[(\bar{q}q)(\bar{\chi}\chi) \] or vector current \[(\bar{q}\gamma_\mu q)(\bar{\chi}\gamma^\mu \chi) \] assumed
 \[\Rightarrow \text{Cross section } \propto \text{target mass} \]

- In models with different coupling structure, the relative detection efficiencies of different experimental technologies may be different
Direct detection phenomenology of alternative models

- Spin-dependent couplings
 - E.g. coupling through axial vector current \[(\bar{q} \gamma^\mu \gamma^5 q)(\bar{\chi} \gamma^\mu \gamma^5 \chi) \]
 - Cross section \(\propto \) target spin
 - Cannot explain DAMA, CoGeNT, CRESST results
Direct detection phenomenology of alternative models

Spin-dependent couplings
- E.g. coupling through axial vector current \[(\bar{q} \gamma^\mu \gamma^5 q)(\bar{\chi} \gamma_\mu \gamma^5 \chi) \]
- Cross section \(\propto \) target spin
- Cannot explain DAMA, CoGeNT, CRESST results

Inelastic dark matter Tucker-Smith Weiner hep-ph/0101138
- There may be two DM states \(\chi \) and \(\chi' \) with \(m'_\chi = m_\chi + \delta \) (\(\delta \sim 100 \) keV)
- Scattering \(\chi N \rightarrow \chi' N \Rightarrow \) heavy target nuclei kinematically preferred
- Could explain CRESST, but not DAMA JK Schwetz Zupan 1110.2721
Direct detection phenomenology of alternative models

- **Spin-dependent couplings**
 - E.g. coupling through axial vector current \([\bar{q}\gamma^\mu\gamma^5 q](\bar{\chi}\gamma^\mu\gamma^5 \chi)\]
 - Cross section \(\propto\) target spin
 - Cannot explain DAMA, CoGeNT, CRESST results

- **Inelastic dark matter**
 - There may be two DM states \(\chi\) and \(\chi'\) with \(m'_\chi = m_\chi + \delta\) (\(\delta \sim 100\) keV)
 - Scattering \(\chi N \rightarrow \chi' N\) \Rightarrow heavy target nuclei kinematically preferred
 - Could explain CRESST, but not DAMA

- **Leptophilic dark matter**
 - Bernabei et al. 0712.0562; Fox Poppitz arXiv:0811.0399; JK Niro Schwetz Zupan arXiv:0907.3159
Direct detection phenomenology of alternative models

- **Spin-dependent couplings**
 - E.g. coupling through axial vector current \((\bar{q} \gamma^\mu \gamma^5 q)(\bar{\chi} \gamma_\mu \gamma^5 \chi)\)
 - Cross section \(\propto\) target spin
 - Cannot explain DAMA, CoGeNT, CRESST results

- **Inelastic dark matter** Tucker-Smith Weiner hep-ph/0101138
 - There may be two DM states \(\chi\) and \(\chi'\) with \(m'_\chi = m_\chi + \delta\) (\(\delta \sim 100\) keV)
 - Scattering \(\chi N \rightarrow \chi' N\) \(\Rightarrow\) heavy target nuclei kinematically preferred
 - Could explain CRESST, but not DAMA JK Schwetz Zupan 1110.2721

- **Leptophilic dark matter** Bernabei et al. 0712.0562; Fox Poppitz arXiv:0811.0399; JK Niro Schwetz Zupan arXiv:0907.3159

- **Isospin-violating dark matter** Feng Kumar Marfatia Sanford 1102.4331
Direct detection phenomenology of alternative models

- **Spin-dependent couplings**
 - E.g. coupling through axial vector current \[(\bar{q} \gamma^\mu \gamma^5 q) (\bar{\chi} \gamma_\mu \gamma^5 \chi) \]
 - Cross section \(\propto \) target spin
 - Cannot explain DAMA, CoGeNT, CRESST results

- **Inelastic dark matter** Tucker-Smith Weiner hep-ph/0101138
 - There may be two DM states \(\chi \) and \(\chi' \) with \(m'_\chi = m_\chi + \delta \) (\(\delta \sim 100 \text{ keV} \))
 - Scattering \(\chi N \rightarrow \chi' N \Rightarrow \) heavy target nuclei kinematically preferred
 - Could explain CRESST, but not DAMA JK Schwetz Zupan 1110.2721

- **Leptophilic dark matter** Bernabei et al. 0712.0562; Fox Poppitz arXiv:0811.0399; JK Niro Schwetz Zupan arXiv:0907.3159

- **Isospin-violating dark matter** Feng Kumar Marfatia Sanford 1102.4331

- ...

Conclusion: Hard to explain all data simultaneously
Direct detection uncertainties

- Large uncertainty in local DM density

Scattering rate depends strongly on DM velocity

- DM streams?
- Debris flow?

Predicting WIMP–nucleus cross sections is difficult

- Models predict WIMP–quark cross section
- Need to know quark content of the nucleon
- Especially problematic for Higgs-mediated scattering: coupling \(\propto \) quark mass \(\Rightarrow \) sea quarks dominate
- Need to know nuclear form factor especially difficult for spin-dependent scattering
Direct detection uncertainties

- Large uncertainty in local DM density
- Large uncertainties in DM velocity distribution
 - Scattering rate depends strongly on DM velocity
 - DM streams?
 - Debris flow?

Maxwell-Boltzmann Debris Flows Streams

\[y \]

\[x \]

\[v_y \]

\[v_x \]

\[v_y \]

\[v_x \]

\[v_y \]

\[v_x \]

Fully Virialized \(-\) Not Virialized

Kuhlen Lisanti Spergel arXiv:1202.0007, graphics courtesy of Mariangela Lisanti

Joachim Kopp

Dark Matter and Dark Energy
Direct detection uncertainties

- Large uncertainty in local DM density
- Large uncertainties in DM velocity distribution
 - Scattering rate depends strongly on DM velocity
 - DM streams?
 - Debris flow?
- Predicting WIMP–nucleus cross sections is difficult
 - Models predict WIMP–quark cross section
 - Need to know quark content of the nucleon
 - Especially problematic for Higgs-mediated scattering: coupling \propto quark mass \Rightarrow sea quarks dominate
 - Need to know nuclear form factor
 especially difficult for spin-dependent scattering
Outline

1. Evidence for dark matter

2. Finding dark matter
 - Direct detection
 - Indirect detection
 - Production at colliders

3. Modelling dark matter

4. Dark energy
Indirect Dark Matter detection

Idea: WIMPs (Weakly Interacting Massive Particles) χ can annihilate (or decay) into Standard Model particles (f) in an astrophysical environment.

Strategy: Look for annihilation products in cosmic rays

Problems:
- Many other sources of cosmic rays
- Propagation of charged particles in the galaxy poorly understood

Advantage:
- Many sources to look at
Indirect DM detection — The experimental challenge
Indirect DM detection — The experimental challenge

look at many sources
Indirect DM detection — The experimental challenge

look at many sources
Indirect DM detection — The experimental challenge

look at many sources
Indirect DM detection — The experimental challenge

look at many sources
Indirect DM detection — The experimental challenge
Indirect DM detection — The experimental challenge
Indirect DM detection — Examples

γ-rays from dwarf galaxies

Idea:
Look for anomalous γ-ray flux

Pro:
Few stars ⇒ few backgrounds

Con:
- Relatively low DM density
- Results model-dependent
- Large astrophysical uncertainties

Other indirect DM searches:
- Cosmic anti-matter (e^+, \bar{p}, ...) — PAMELA, Fermi-LAT, ...
- γ-rays from the galactic center — Hooper et al.
- High-energy neutrinos from the Sun — IceCube, SuperKamiokande, ...
Indirect DM detection — Examples

γ-rays from dwarf galaxies

Idea:
Look for anomalous γ-ray flux

Pro:
Few stars ⇒ few backgrounds

Con:
- Relatively low DM density
- Results model-dependent
- Large astrophysical uncertainties

Other indirect DM searches:
- Cosmic anti-matter (e+, ¯p, . . .) PAMELA, Fermi-LAT, . . .
- γ-rays from the galactic center Hooper et al.
- High-energy neutrinos from the Sun IceCube, SuperKamiokande . . .
Indirect DM detection — Examples

\(\gamma \)-rays from dwarf galaxies

\textbf{Idea:}
Look for anomalous \(\gamma \)-ray flux

\textbf{Pro:}
Few stars \(\Rightarrow \) few backgrounds

\textbf{Con:}
- Relatively low DM density
- Results \textit{model-dependent}
- Large \textit{astrophysical uncertainties}

\begin{center}
\begin{tabular}{l}
\textbf{Other indirect DM searches:} \\
- Cosmic anti-matter (\(e^+ \), \(\bar{p} \), \ldots) \textit{PAMELA, Fermil-LAT, \ldots} \\
- \(\gamma \)-rays from the galactic center \textit{Hooper et al.} \\
- High-energy neutrinos from the Sun \textit{IceCube, SuperKamiokande} \\
\end{tabular}
\end{center}
Outline

1 Evidence for dark matter

2 Finding dark matter
 - Direct detection
 - Indirect detection
 - Production at colliders

3 Modelling dark matter

4 Dark energy
Dark matter at colliders
Dark matter at colliders

make your own needles!
Generic collider searches for dark matter

Idea:
- **Produce** WIMPs in collisions of Standard Model particles
- WIMPs can **recoil** against a **jet** or a **photon** from initial state radiation

Experimental signatures: Mono-jets $+ \slashed{E}_T$ and mono-photons $+ \slashed{E}$
LHC limits on DM–quark couplings

Assumptions here:

- Effective field theory approach valid (limits may be better or worse if EFT not valid)
- Equal coupling to all quark flavors

Extremely competitive limits for

- Light dark matter (below direct detection threshold)
- DM coupled to gluons (high gluon luminosity at the LHC)
- Spin-dependent DM interactions (DD suffers from loss of coherence)
Model-dependent collider searches: SUSY-DM

Idea:
- In many models, DM is produced in the decay of heavy, strongly interacting particles (for instance squarks and gluinos in SUSY)
- Experimental signature: something + missing energy
- Example: $pp \rightarrow (\tilde{g} \rightarrow jZ\chi^0)(\tilde{q} \rightarrow jjW\chi^0)$

- Advantage: Very sensitive
- Problem:
 - Minor modifications to the model may drastically change the phenomenology
- Problem (all collider searches):
 - Collider can only find DM candidate(s)
Outline

1. Evidence for dark matter

2. Finding dark matter
 - Direct detection
 - Indirect detection
 - Production at colliders

3. Modelling dark matter

4. Dark energy
Electroweak-scale DM? — The “WIMP Miracle”

- In the early universe, DM is in chemical equilibrium with other particles.
Electroweak-scale DM? — The “WIMP Miracle”

- In the early universe, DM is in chemical equilibrium with other particles.
- As the temperature drops, DM begins to annihilate away: $\bar{\chi}\chi \rightarrow \bar{f}f$

Conclusion: If dark matter originates from electroweak-scale new physics, it automatically has the right abundance.
In the early universe, DM is in chemical equilibrium with other particles. As the temperature drops, DM begins to annihilate away: $\bar{\chi}\chi \rightarrow \bar{f}f$

When the annihilation rate $\Gamma(\bar{\chi}\chi \rightarrow \bar{f}f)$ drops below the Hubble expansion rate H, annihilations cease

\Rightarrow DM abundance remains constant ("thermal freeze-out")
In the early universe, DM is in chemical equilibrium with other particles. As the temperature drops, DM begins to annihilate away: \(\bar{\chi} \chi \to \bar{f} f \). When the annihilation rate \(\Gamma(\bar{\chi} \chi \to \bar{f} f) \) drops below the Hubble expansion rate \(H \), annihilations cease. \(\Rightarrow \) DM abundance remains constant ("thermal freeze-out"). From this requirement, and from the observed DM abundance today, cosmology predicts the DM annihilation cross section

\[
\langle \sigma v \rangle \simeq 3 \times 10^{-26} \text{ cm}^3/\text{s}
\]
Electroweak-scale DM? — The “WIMP Miracle”

- In the early universe, DM is in chemical equilibrium with other particles.
- As the temperature drops, DM begins to annihilate away: $\bar{\chi}\chi \rightarrow \bar{f}f$
- When the annihilation rate $\Gamma(\bar{\chi}\chi \rightarrow \bar{f}f)$ drops below the Hubble expansion rate H, annihilations cease
 \Rightarrow DM abundance remains constant (“thermal freeze-out”)
- From this requirement, and from the observed DM abundance today, cosmology predicts the DM annihilation cross section
 $\langle \sigma v \rangle \simeq 3 \times 10^{-26}$ cm3/s
- Consider generic DM coupling:
 $\mathcal{L} \supset \frac{g^2}{M^2}(\bar{\chi}\chi)(\bar{f}f)$

Conclusion: If dark matter originates from electroweak-scale new physics, it automatically has the right abundance

The Wimp Miracle

Joachim Kopp
In the early universe, DM is in chemical equilibrium with other particles. As the temperature drops, DM begins to annihilate away: $\bar{\chi}\chi \rightarrow \bar{f}f$. When the annihilation rate $\Gamma(\bar{\chi}\chi \rightarrow \bar{f}f)$ drops below the Hubble expansion rate H, annihilations cease. This implies DM abundance remains constant ("thermal freeze-out"). From this requirement, and from the observed DM abundance today, cosmology predicts the DM annihilation cross section

$$\langle \sigma v \rangle \simeq 3 \times 10^{-26} \text{ cm}^3/\text{s}$$

Consider generic DM coupling:

$$\mathcal{L} \supset \frac{g^2}{M^2} (\bar{\chi}\chi)(\bar{f}f)$$

For typical coupling $g \sim 0.1$, suppression scale $M \sim 100 \text{ GeV}$, DM mass $m_\chi \sim 100 \text{ GeV}$, this yields the right value for $\langle \sigma v \rangle$. The "WIMP Miracle"
Electroweak-scale DM? — The “WIMP Miracle”

- In the early universe, DM is in chemical equilibrium with other particles.
- As the temperature drops, DM begins to annihilate away: $\bar{\chi}\chi \rightarrow \bar{f}f$
- When the annihilation rate $\Gamma(\bar{\chi}\chi \rightarrow \bar{f}f)$ drops below the Hubble expansion rate H, annihilations cease
 \Rightarrow DM abundance remains constant (“thermal freeze-out”)
- From this requirement, and from the observed DM abundance today, cosmology predicts the DM annihilation cross section
 $$\langle \sigma v \rangle \simeq 3 \times 10^{-26} \text{ cm}^3/\text{s}$$

- Consider generic DM coupling:
 $$\mathcal{L} \supset \frac{g^2}{M^2}(\bar{\chi}\chi)(\bar{f}f)$$

- For typical coupling $g \sim 0.1$, suppression scale $M \sim 100 \text{ GeV}$, DM mass $m_\chi \sim 100 \text{ GeV}$, this yields the right value for $\langle \sigma v \rangle$
- Conclusion: If dark matter originates from electroweak-scale new physics, it automatically has the right abundance

The **Wimp Miracle**
Relating the DM and baryon abundances

Motivation: The DM and baryon energy densities in the universe are similar

$$\Omega_{DM} \approx 5 \Omega_b$$

($$\Omega$$ = energy density as fraction of “critical density” for flat universe)
Motivation: The DM and baryon energy densities in the universe are similar

\[\Omega_{DM} \approx 5 \Omega_b \]

(\(\Omega \) = energy density as fraction of “critical density” for flat universe)

If the DM and baryon number densities are similar and

\[m_{DM} \sim 5m_p - 10m_p \sim 5\text{–}10 \text{ GeV} , \]

this is quite natural.
Relating the DM and baryon abundances

- **Motivation:** The DM and baryon energy densities in the universe are similar

 \[\Omega_{DM} \simeq 5 \Omega_b \]

 (\(\Omega = \) energy density as fraction of “critical density” for flat universe)

- If the DM and baryon number densities are similar and

 \[m_{DM} \sim 5m_p – 10m_p \sim 5\text{–}10 \text{ GeV} \]

 this is quite natural.

- This is precisely the mass range where the direct detection hints (DAMA, CoGeNT, CRESST) have been observed!
Relating the DM and baryon abundances

- **Motivation:** The DM and baryon energy densities in the universe are similar

\[\Omega_{DM} \sim 5 \Omega_b \]

(\(\Omega \) = energy density as fraction of “critical density” for flat universe)

- If the DM and baryon number densities are similar and

\[m_{DM} \sim 5m_p - 10m_p \sim 5-10 \text{ GeV} \]

this is quite natural.

- This is precisely the mass range where the direct detection hints (DAMA, CoGeNT, CRESST) have been observed!

- Baryon density \(\Omega_b \) generated by *yet unknown* dynamics behind the particle–antiparticle asymmetry of the universe (not by thermal freeze-out)
Motivation: The DM and baryon energy densities in the universe are similar

\[\Omega_{DM} \sim 5 \Omega_b \]

(\(\Omega = \text{energy density as fraction of "critical density" for flat universe} \))

If the DM and baryon number densities are similar and

\[m_{DM} \sim 5m_p - 10m_p \sim 5-10 \text{ GeV} , \]

this is quite natural.

This is precisely the mass range where the direct detection hints (DAMA, CoGeNT, CRESST) have been observed!

Baryon density \(\Omega_b \) generated by yet unknown dynamics behind the particle–antiparticle asymmetry of the universe (not by thermal freeze-out)

Assume dark matter (\(\chi \)) density is also determined by \(\bar{\chi} - \chi \) asymmetry \(\Rightarrow \) Asymmetric dark matter
Models of asymmetric dark matter

Example 1

- $B - L$ asymmetry generated at high T (e.g. via Leptogenesis)
- Effective superfield operator

$$\mathcal{L} \supset \frac{1}{M} \bar{X}^2 L H_u$$

Transfers $B - L \leftrightarrow 2X$, e.g. via

Final X (DM number) asymmetry depends on # of SM species contributing to (*) at freeze-out.
Models of asymmetric dark matter

Example 1

Kaplan Luty Zurek, arXiv:0901.4117

- **$B - L$ asymmetry generated at high T** (e.g. via Leptogenesis)
- **Effective superfield operator**

\[\mathcal{L} \supset \frac{1}{M} \bar{X}^2 L H_u \]

(*)

transfers $B - L \leftrightarrow 2X$, e.g. via

![Diagram showing particle interactions](image)

- **Final X (DM number) asymmetry depends on # of SM species contributing to (*) at freeze-out**

Example 2

*Buckley Randall 1009.0270
Blennow et al. 1009.3159*

- **Generate X asymmetry in hidden sector**
- **Transfer to $B - L$ asymmetry in the SM sector**
 - via $B - L$ violating interactions (e.g. (*)
 - via sphaleron processes**
Models of asymmetric dark matter

Example 1

- \(B - L\) asymmetry generated at high \(T\) (e.g. via Leptogenesis)
- Effective superfield operator

\[
\mathcal{L} \supset \frac{1}{M} \bar{X}^2 LH_u \quad (*)
\]

transfers \(B - L \leftrightarrow 2X\), e.g. via

\[
\begin{array}{cccc}
X & \bar{X}^0 & X \\
\bar{\nu} & \nu & \bar{\nu} & \nu
\end{array}
\]

Final \(X\) (DM number) asymmetry depends on # of SM species contributing to (*) at freeze-out

Example 2

- Generate \(X\) asymmetry in hidden sector
- Transfer to \(B - L\) asymmetry in the SM sector
 - via \(B - L\) violating interactions (e.g. (*)
 - via sphaleron processes

Example 3

- New heavy particles decay partly into DM, partly into SM particles
- \(B - L - X\) is conserved
- DM \((X)\) does not participate in SM sphaleron processes
 ⇒ Asymmetry frozen in
Outline

1. Evidence for dark matter

2. Finding dark matter
 - Direct detection
 - Indirect detection
 - Production at colliders

3. Modelling dark matter

4. Dark energy
Evidence for dark energy: Type Ia Supernovae

- When a white dwarf accretes matter from a companion star, it becomes unstable once it reaches $\sim 1.4M_\odot$
 - Re-ignition of nuclear fusion
 - Thermonuclear explosion
- Since the progenitor mass is always $\sim 1.4M_\odot$, all Type Ia Supernovae are very similar
 - Energy release precisely known
 - SN Ia are standard candles
- Measurement:
 - Apparent brightness \rightarrow distance
 - Redshift \rightarrow velocity
- Result:
 - Long ago (very distant SN Ia, low brightness), the universe was expanding more slowly than we thought!
 - It must be accelerating
- CMB and Large Scale Structure observations confirm this

Joachim Kopp
Dark Matter and Dark Energy
What is accelerating the Universe?

- A cosmological constant?
 - An ad-hoc addition to the Einstein equations
 \[R_{\mu\nu} - \frac{1}{2} g_{\mu\nu} R^\alpha_{\alpha} = 8\pi G T_{\mu\nu} + g_{\mu\nu}\Lambda \]
 - Observations require \(\Lambda \sim (10^{-12} \text{ GeV})^4 \)
 - Extra source of energy with negative pressure
What is accelerating the Universe?

- **A cosmological constant?**
 - An ad-hoc addition to the Einstein equations
 \[
 R_{\mu\nu} - \frac{1}{2} g_{\mu\nu} R_{\alpha}^{\alpha} = 8\pi G T_{\mu\nu} + g_{\mu\nu} \Lambda
 \]
 - Observations require \(\Lambda \sim (10^{-12} \text{ GeV})^4 \)
 - Extra source of energy with negative pressure

- **QFT vacuum energy?**
 - A vacuum expectation value (vev) or condensate of a quantum field behaves like a cosmological constant
 - **Problem:** All known condensates/vevs are way too large!
 (We expect \(\Lambda \sim M_{\text{Pl}}^4 \sim (10^{19} \text{ GeV})^4 \))
What is accelerating the Universe? (cont’d)

- **Quintessence**: A new, slowly rolling scalar field
 - Introduce new scalar field ϕ slowly rolling down its potential $V(\phi)$
 - Lagrangian:
 \[
 \mathcal{L}_\phi = \frac{1}{2} \partial_\mu \phi \partial^\mu \phi - V(\phi)
 \]
 - Energy and pressure:
 \[
 \rho = \frac{1}{2} \dot{\phi}^2 + V(\phi), \quad p = \frac{1}{2} \dot{\phi}^2 - V(\phi)
 \]
 - A cosmological constant corresponds to $\rho = -p \Rightarrow$ require $\dot{\phi}^2 \ll V(\phi)$

for a review see Caldwell Kamionkowski 0903.0866
What is accelerating the Universe? (cont’d)

- **Quintessence**: A new, slowly rolling scalar field
 - Introduce new scalar field ϕ slowly rolling down its potential $V(\phi)$
 - Lagrangian:
 \[
 \mathcal{L}_\phi = \frac{1}{2} \partial_\mu \phi \partial^\mu \phi - V(\phi)
 \]
 - Energy and pressure:
 \[
 \rho = \frac{1}{2} \dot{\phi}^2 + V(\phi), \quad p = \frac{1}{2} \dot{\phi}^2 - V(\phi)
 \]
 - A cosmological constant corresponds to $\rho = -p \Rightarrow$ require $\dot{\phi}^2 \ll V(\phi)$

- Extensions of general relativity
 - Scalar-tensor gravity: Modified Einstein-Hilbert action
 \[
 S = \frac{1}{16\pi G} \int \sqrt{-g} \, d^4x \, R \rightarrow S = \frac{1}{16\pi G} \int \sqrt{-g} \, d^4x \, f(\phi) \times R
 \]
 - A special case: $f(R)$ gravity:
 \[
 S = \frac{1}{16\pi G} \int \sqrt{-g} \, d^4x \, f(R)
 \]

for a review see Caldwell Kamionkowski 0903.0866
Summary

- **Overwhelming evidence** for dark matter
- **A lot of data available**
 - **Direct detection**
 - Difficult to reconcile possible evidence with null results
 - **Indirect searches**
 - Strong exclusion limits
 - Suffers from poorly understood astrophysical backgrounds
 - **Collider searches**
 - Generic searches (monojets + E_T, mono-$\gamma + E$) and model-specific searches (cascade decays) are underway full-steam

- **Dark matter models**
 - Dark matter from electroweak scale new physics:
 - Correct cosmic abundance due to WIMP Miracle
 - Light (10 GeV) dark matter:
 - Correct cosmic abundance if related to baryon–antibaryon asymmetry

- **Dark energy**
 - Accelerated expansion of the Universe well-established
 - So far, a cosmological constant is the leading explanation
Thank you!
Bonus material
Spin-dependent DM couplings?

- Previous slide: Dark matter (χ) couplings through scalar current $[(\bar{q}q)(\bar{\chi}\chi)]$ or vector current $[(\bar{q}\gamma_\mu q)(\bar{\chi}\gamma^\mu \chi)]$ assumed
 ⇒ Cross section \propto target mass
- Alternative: Axial vector $[(\bar{q}\gamma_\mu \gamma^5 q)(\bar{\chi}\gamma_\mu \gamma^5 \chi)]$ interaction
 ⇒ Cross section \propto target spin

Note: CoGeNT & CRESST have very low sensitivity to spin-dependent DM scattering.
Inelastic dark matter?

Idea: There may be two DM states χ and χ' with

$$m_{\chi'} = m_\chi + \delta$$

Scattering proceeds via

$$\chi + N \rightarrow \chi' + N$$

- Modified kinematics compared to elastic scattering
- Affects different target nuclei differently
Inelastic dark matter?

Idea: There may be two DM states χ and χ' with

$$m_{\chi'} = m_\chi + \delta$$
Isospin-violating dark matter?

Idea: Dark matter could couple differently to protons and neutrons

⇒ Detection efficiencies of different target materials change

\[\frac{A_{\text{eff}}^2}{\hat{A}^2} \quad \text{vs.} \quad \frac{f_n}{f_p} \]

- f_n, f_p: DM couplings to protons and neutrons
- A_{eff}: Effective nuclear mass for DM scattering

Plot from JK Schwetz Zupan 1110.2721
Isospin-violating dark matter?

Idea: Dark matter could couple differently to protons and neutrons ⇒ Detection efficiencies of different target materials change
Leptophilic dark matter?

Idea: DM could couple only to leptons at tree level

- DAMA and CoGeNT do not reject electron-recoils as background
- But: Electron recoils above threshold ($\gtrsim 1$ keV) strongly suppressed
 (electron needs large initial momentum \rightarrow probe high-p tail of wave functions)
Leptophilic dark matter?

Idea: DM could couple only to leptons at tree level
- DAMA and CoGeNT do not reject electron-recoils as background
- But: Electron recoils above threshold ($\gtrsim 1$ keV) strongly suppressed
- Thus: DM–nucleus scattering dominates, even if loop-induced
Leptophilic dark matter?

Idea: DM could couple only to leptons at tree level

- DAMA and CoGeNT do not reject electron-recoils as background
- But: Electron recoils above threshold ($\gtrsim 1$ keV) strongly suppressed
- Thus: DM–nucleus scattering dominates, even if loop-induced
- But: Loop diagrams forbidden for some models
 e.g. axial vector couplings $g^2/M^2 (\tilde{\chi} \gamma_\mu \gamma_5 \chi)(\bar{f} \gamma^\mu \gamma_5 f)$
Leptophilic dark matter?

Idea: DM could couple only to leptons at tree level
- DAMA and CoGeNT do not reject electron-recoils as background
- But: Electron recoils above threshold ($\gtrsim 1$ keV) strongly suppressed
- Thus: DM–nucleus scattering dominates, even if loop-induced
- But: Loop diagrams forbidden for some models
- Problems then:
 ▶ Very large couplings needed to compensate wave function suppression
 ▶ Poor fit to DAMA and CoGeNT energy spectra

![Graph](image)
Indirect DM detection — where to look

The Galactic Center

Pros:
- Highest DM density

Cons:
- DM distribution uncertain
- Many background sources

Dwarf Galaxies

Pros:
- Few backgrounds

Cons:
- Relatively low DM density
Indirect DM detection — where to look

The Galactic Center

Pros:
- Highest DM density

Cons:
- DM distribution uncertain
- Many background sources

Dwarf Galaxies

Pros:
- Few backgrounds

Cons:
- Relatively low DM density
Indirect DM detection — where to look

The Galactic Center

Pros:
- Highest DM density

Cons:
- DM distribution uncertain
- Many background sources

Pros:
- Few backgrounds

Cons:
- Relatively low DM density

Dwarf Galaxies

Pros:
- Highest DM density

Cons:
- DM distribution uncertain
- Many background sources

Fermi-LAT, 1108.3546
see also Geringer-Sameth Koushiappas 1108.2914
Indirect DM detection — where to look (2)

Cosmic antimatter

Pros:
- Few background sources

Cons:
- Backgrounds uncertain
- Propagation of charged particle has large uncertainties
- Non-directional
Indirect DM detection — where to look (2)

Cosmic antimatter

Pros:
- Few background sources

Cons:
- Backgrounds uncertain
- Propagation of charged particle has large uncertainties
- Non-directional

PAMELA collaboration, 0810.4995
Cosmic antimatter

Pros:
- Few background sources

Cons:
- Backgrounds uncertain
- Propagation of charged particle has large uncertainties
- Non-directional

High-energy neutrinos

Idea:
- DM capture/annihilation in the Sun
- Flux dominated by capture rate

Pros:
- Few backgrounds

Cons:
- Low neutrino cross sections
Indirect DM detection — where to look (2)

Cosmic antimatter

Pros:
- Few background sources

Cons:
- Backgrounds uncertain
- Propagation of charged particle has large uncertainties
- Non-directional

High-energy neutrinos

Pros:
- Few backgrounds

Cons:
- Low neutrino cross sections

Idea:
- DM capture/annihilation in the Sun
- Flux dominated by capture rate
What is a sphaleron?

- **SU(2)** gauge field vacuum configurations are classified according to their winding number (or Chern-Simons number)

\[
N_{CS} = \frac{1}{16\pi^2} \int_0^t dt \int d^3 x \, \text{tr} \, F_{\mu\nu} \tilde{F}^{\mu\nu}
\]

Configurations with **different winding number** cannot be continuously transformed into each other.
What is a sphaleron?

- **SU(2)** gauge field vacuum configurations are classified according to their winding number (or Chern-Simons number) \(N_{CS} = \frac{1}{16\pi^2} \int_0^t dt \int d^3 x \, \text{tr} \, F_{\mu\nu} \tilde{F}^{\mu\nu} \)

- Sphalerons are processes (with \(E > 0 \)) that change the winding number. Their energy is of order \(m_H \), the symmetry breaking scale (100 GeV)
What is a sphaleron?

- \(SU(2) \) gauge field vacuum configurations are classified according to their winding number (or Chern-Simons number) \(N_{CS} = \frac{1}{16\pi^2} \int_0^t dt \int d^3 x \text{ tr } F_{\mu\nu} \tilde{F}^{\mu\nu} \)

- Sphalerons are processes (with \(E > 0 \)) that change the winding number

- In the SM, a change in winding number corresponds to a change in \(B + L \). In fact, considering only left-handed \((SU(2)_L\)-charged) fermions:

\[
j^{\mu}_{B+L} = \sum_{\psi=q,\ell} \frac{1}{2} \bar{\psi} \gamma^\mu (1 - \gamma^5) \psi
\]

A change in \(B + L \) is equivalent to a change in \(N_{CS} \):

\[
\partial_t \int d^3 x j^0_{B+L} \equiv \int d^3 x \frac{1}{2} \partial_\mu \bar{\psi} \gamma^\mu \gamma^5 \psi
\]

\[
= -\frac{1}{16\pi^2} \int d^3 x \text{ tr } F_{\mu\nu} \tilde{F}^{\mu\nu} \quad \text{(since } \partial_\mu \bar{\psi} \gamma^\mu \psi = 0)\]

\[
= -\partial_t N_{CS} \quad \text{(chiral anomaly)}
\]