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The ATLAS detector

The ATLAS detector

@ Shell structure:

Tracking detectors
e Electromagnetic calorimeter
e Hadronic calorimeter (4 kt)
e Large toroidal magnets
@ Muon system

@ Significant number of neutrino

interactions in H-Cal

@ Excellent trigger and
reconstruction capabilities
@ No neutrino reconstruction
during LHC operation
= Cosmic/calibration runs

J. Kopp (MPI Heidelberg) Atmospheric neutrinos in ATLAS 28 July 2007



We consider only v, events.



We consider only v, events.
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The ATLAS detector

Signature of atmospheric neutrino events

We consider only v, events.

@ Contained events:
Muon track starting inside the detector, without anything going in

@ Upward going muon events:
Muon entering the detector from below
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The ATLAS detector

Time windows for neutrino physics at ATLAS

@ Ramp-down/Ramp-up
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The ATLAS detector

Time windows for neutrino physics at ATLAS

@ Ramp-down/Ramp-up

@ 16 weeks shutdown per year
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The ATLAS detector

Time windows for neutrino physics at ATLAS

@ Ramp-down/Ramp-up

@ 16 weeks shutdown per year

@ Regular short maintenance shutdowns (~ few days)
@ Minus: Time required for ATLAS maintenace

Estimate: 100 live days / year
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The ATLAS detector

Time windows for neutrino physics at ATLAS

@ Ramp-down/Ramp-up

@ 16 weeks shutdown per year

@ Regular short maintenance shutdowns (~ few days)
@ Minus: Time required for ATLAS maintenace

Estimate: 100 live days / year (?)
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The ATLAS detector

Pros and cons for neutrino physics

Pros:
@ Energy of all interaction products is seen
@ Excellent reconstruction of muon tracks

@ Estimate: 5% neutrino energy resolution
7° neutrino angular resolution
charge identification possible
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The ATLAS detector

Pros and cons for neutrino physics

Pros:
@ Energy of all interaction products is seen
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@ Estimate: 5% neutrino energy resolution
7° neutrino angular resolution
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@ Sophisticated triggering system
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The ATLAS detector

Pros and cons for neutrino physics

Pros:
@ Energy of all interaction products is seen
@ Excellent reconstruction of muon tracks
@ Estimate: 5% neutrino energy resolution
7° neutrino angular resolution
charge identification possible
@ Sophisticated triggering system
@ Muon system simultaneously acts as cosmic muon veto
Cons:
@ Small overburden (~ 50 m)
@ Small fiducial mass (for a neutrino experiment)
@ Short time window
@ No track reconstruction for v, and v,
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Expected sensitivities

Computation of event rates

Number of events in the i-th energy bin/;j-th angular bin

N}] =N dE, db, R[E,,0,,E,,0,]
bin (,5)
wop(Ey) Y Pl — [.Ey L(6,),©] ®p[E,, L(6,)]
f'=e,u,m

E, = Neutrino energy P(f'— f, E,, L,®) = Oscillation probability
E, =Reconstructed v energy o(E,) = Cross section
o = Source flux for flavor f*  R(E.,6,,E,,0,) = Response function
® =O0Osc. parameter vector N = Normalization
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Expected sensitivities

Atmospheric neutrino fluxes
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Expected sensitivities

High energy cross sections
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Expected sensitivities

The detector response function

@ Abstract parameterization in terms of Gaussian resolutions and
efficiencies:

_ 2
R(Er. 01, Bus0)) = (B (0,) - - ex0 (‘M)

oo (<R
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Expected sensitivities

The detector response function

@ Abstract parameterization in terms of Gaussian resolutions and
efficiencies:

_ 2
R(Er. 01, Bus0)) = (B (0,) - - ex0 (‘M)
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@ Energy and angular resolutions o and o,
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Expected sensitivities

The detector response function

@ Abstract parameterization in terms of Gaussian resolutions and
efficiencies:

_ 2
R(Er. 01, Bus0)) = (B (0,) - - ex0 (‘M)

7ol e ()

@ Energy and angular resolutions o and o,
@ Energy dependent part of efficiencies ¢”(F,) (assumed = 1 here)
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Expected sensitivities

The detector response function

@ Abstract parameterization in terms of Gaussian resolutions and
efficiencies:

_ 2
R(Er. 01, Bus0)) = (B (0,) - - ex0 (‘M)

7ol e ()

@ Energy and angular resolutions o and o,
@ Energy dependent part of efficiencies ¢”(F,) (assumed = 1 here)

@ Angular part of efficiencies ¢/(6,) (from geometry, important
especially for upward-going muon events)
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Expected sensitivities

Systematical errors

@ Incorporated into x? analysis by the pull method

| Error Type | Magnitude |
Overall normalization for contained events 20%
Relative normalization for antineutrinos 5%
Normalization for upward going muon events 20%
Tilt of the energy spectrum 5%
Tilt of the angular spectrum for contained events 10%
Tilt of the angular spectrum for upward going muons 2%
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Expected sensitivities

The leading atmospheric oscillation parameters

Confidence regions at 10, 20, 30

Assumptions:

@ 500 days exposure (~ 5 years)
~ 160 contained events,
~ 750 upward going muons

N

@ 5% energy resolution
7° angular resolution

@ Energy threshold 1.5 GeV

@ 100% reconstruction efficiency
100% charge ID efficiency
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o
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Super-K contours courtesy of Thomas Schwetz
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Expected sensitivities

The leading atmospheric oscillation parameters

Assumptions:

@ 500 days exposure (N 5 years) Confidence regions at 1o, 20, 30
~ 160 contained events, 4 ;
~ 750 upward going muons

| [
| |
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| [
|
|

@ 5% energy resolution
7° angular resolution

@ Energy threshold 1.5 GeV

@ 100% reconstruction efficiency
100% charge ID efficiency

P — S — - ~

’ e B \

Amg? [107% eV?]
o
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i
@ 250 days exposure 2 i i
@ Resolutions 10%, 17° E ‘}
ILC (optimistic) scenario: 4 1 | | i
@ 2,000 days exposure 2 ng?Degrees] % %

@ Energy threshold 0.3 GeV

@ Resolutions 2%, 2°
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Expected sensitivities

Three-flavour effects
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Comments and conclusions

Comments on other collider detectors

@ CMS: Even larger mass, but most of it is concentrated in massive
iron yokes
= Most secondary particles are scattered before their detection
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Comments and conclusions

Comments on other collider detectors

@ CMS: Even larger mass, but most of it is concentrated in massive
iron yokes
= Most secondary particles are scattered before their detection

@ ALICE and LHCb: Too small
@ |LC detectors: May be interesting
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@ Detection of atmospheric neutrinos in ATLAS should be possible



@ Detection of atmospheric neutrinos in ATLAS should be possible
@ Oscillations can be seen



Comments and conclusions

Conclusions

@ Detection of atmospheric neutrinos in ATLAS should be possible
@ Oscillations can be seen

@ More detailed input on efficiencies and resolutions required
(e.g. from ATLAS Monte Carlo)
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Comments and conclusions

Conclusions

@ Detection of atmospheric neutrinos in ATLAS should be possible
@ Oscillations can be seen

@ More detailed input on efficiencies and resolutions required
(e.g. from ATLAS Monte Carlo)

@ Can the shutdown phases of LHC be used for other physics
(e.g. detection of long-lived staus)?

see e.g. Buchmiiller, Hamaguchi, Ratz, Yanagida, 2004
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Details of our simulations

Calculation of event rates

Number of events in the i-th energy bin

Ni=N dEr/dEz Vf(EraEl)'/dEka(El’EV)Uf(E”)

bin %

> P(f'— f,E,©)0u(E,)

f'=e,u,T
E, = Neutrino energy P(f'— f, E,,®) = Osc. probability
E, =Charged lepton energy  o(E,) = Cross section
E, =Reconstructed v energy k;s(E;, E,) = Charged lepton distribution
o4 = Source flux for flavor f' V¢ (E,, E}) = Energy resolution function
® =O0Osc. parameter vector N = Normalization

@ Combine k; and V; to the “detector response function” R(E,, E,).
@ Perform integration over dE, only once = R/(E,).

@ Replace integration over dFE, by a sum.
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Ni=N ZR’(E’“) of(B)) Y P(f — f,B} ©)0(E})

f'=e.pu,m



Details of our simulations

Calculation of event rates

The final formula

Ni=N Y R(EE)-op(EE) S P(f — f,EE,©)0p(EL)
k

f/:e7l'l‘77-
Inclusion of angular dependence

NZW@%UMB

S P(f' = f.EE L(0)),©) bp (EE, L(0)))

f/:€7},L7T
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Details of our simulations

Verification of simulation code: Super-K rates
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Discrepancies are mostly due to solar modulation and NC backgrounds.
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Details of our simulations

Basics of the x? analysis

@ Goal: Compare “observed” event spectrum with different
theoretical predictions to find confidence regions in the parameter
space.

@ Typical x? function:

2= Z ]\1&_[(1 +a)N;(®') — N;(®))? + aé

Og

@ Example: Confidence regions in the 6;3-dcp plane
e Calculate N;(©®), where © = (012, 613, 023, 5cp, Am3;, Am3;)7 is the
vector of “true” oscillation parameters.
e Choose arbitrary test values 67; and d¢p.
e Minimize x? over the other oscillation parameters and over a.
e Compare the result with the tabulated y? distribution to find the
confidence level at which the experiment can rule out 05 and d¢p.

J. Kopp (MPI Heidelberg) Atmospheric neutrinos in ATLAS 28 July 2007



Details of our simulations

An example: Measurement of 613 and dcp

Correlation between sin“26,3 and dcp Projection onto sin“20,3—axis
200 20
1o iy
———————— 20 /
— — = 3
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8 100 103 | B
5
w
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s n2 2013
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