Final Report
6-June-2007

ILC Data Management System Recommendation Committee

(P. Kasper (chair), J. Blowers, D. Finstrom, M. McCusker-Whiting, J. Nelson (SLAC), J. Nogiec, J. Ozelis, M. Paterno, C. Saunders (ANL))

1.0 Executive summary
This committee was charged with making a recommendation on the best choice for a data management system for ILC cavity production and testing in the US. The primary function of the system is to provide easy access to the data from both remote and on-site locations while, at the same time guaranteeing security and integrity of the data.

The committee examined the two major existing systems, Pansophy, used for SNS cavity production at JLab, and the database system used at DESY. We also looked at a commercial system, Tecnomatix, marketed by UGS. We then compiled a list of requirements against which the existing systems could be evaluated and from which we could estimate the cost and effort required to produce a final solution. These functional requirements are described in detail in section 2.0 and the Pansophy and DESY systems are evaluated against them in sections 2.1 and 2.2.

In producing the requirements document, we recognized that process control is essential to understanding cavity performance and needs to be integral to the system. Where possible, data from measurement and test systems should be submitted to the data management system electronically to avoid transcription errors. The system should allow for browsing and searching through collected data in an ad hoc manner as well as viewing standardized reports, which would supply information on performance and production of both cavities and cryomodules. A representative set of reports that any successful system should be able to provide is detailed in Appendix A. Since it is likely that some of the data will be commercially sensitive, the system must also provide a role-based security system to control access to the data.
Apart from the functional requirements described above, we also evaluated each system against a list of technical factors described section 3.0. These considerations are important in that they affect how easy the system will be to maintain and its long term life expectancy. Since the cavity production processes are going to evolve and the system should be prepared to accommodate changing procedures and since the ILC project is a long-term endeavor, support for its underlying technologies should be guaranteed for a decade or longer. In sections 3.1 and 3.2 we evaluate the Pansophy and DESY systems against our list of technical factors.

The Tecnomatix product was demonstrated to the committee by UGS representatives. Based on this demonstration and despite the high license fees, the committee deemed this product worthy of a detailed evaluation. Unfortunately, the evaluation could not be arranged in a timely manner and since there were several serious concerns associated with this path, the committee decided to not to hold up the process awaiting further evaluation. As mentioned above, biggest concern was the licensing costs. As initially proposed by UGS the costs for reporting client licenses would have been prohibitive for large scale use of their system. The other major concern has to do with the long term prospects for support of the product. UGS was recently acquired by Siemens casting in doubt the future of their product.

Of the two noncommercial products the one that comes closest to meeting our functional needs is Pansophy. The system was designed to fully integrate process control into the database and it is this that most distinguishes it from the DESY system which contains only rudimentary process information and no process control. Unfortunately it has a number of technical design flaws that make it difficult to maintain and cast doubts on its viability over the lifetime of a large scale project like the ILC. The Pansophy developers and maintainers at JLab have recognized some of its inherent weaknesses and have expressed a keen interest in forming a collaborative effort with Fermilab/ILC to produce an upgraded version of the Pansophy system.

Based on our functional and technical evaluations, the committee has concluded that no existing system fully meets our needs. We have therefore estimated the costs and manpower required to develop a new system and attempted to compare them with that required to modify the existing systems to meet our requirements. Though such estimations are fraught with uncertainty, it is our consensus that the efforts are comparable and would take 6 to 9 months to develop an initial version of the system, assuming 2.5 FTE developers. This outlook could potentially be improved if a collaboration were to be formed between JLab and Fermilab, and an agreement could be reached on the scope and choice of underlying technology. It is therefore our recommendation that an "in-house" system be developed, preferably based on open source technologies. We further recommend that discussions be held with JLab on the feasibility of a collaboration.
2.0 Functional Assessments

We compared the functional features of the candidate cavity data management solutions using a simple matrix. In this section we provide a summary of the matrix in spreadsheet format, describe the meaning of the columns (facets) of the matrix, and finally, a more detailed discussion of the cells in the matrix. A set of reporting use cases is utilized to illustrate some of the differences between the solutions as well. A detailed description of these can be found in Appendix A.

Function Matrix

[image: image3.png]OO [@G| Om feee= @8- 5 LA B

Step No. Tnstructions ata Input

= Enter redpe data, Redpe to, [7-cell

Total time in minutes [172

Forward flow (36) [100

The recipe data is locsted on the redpe screen,

Reverss flow () [0

Rinsa time (min) [5

[

g ConEoreazalora e
o005 vas Tiipped every Sown and 10 2
Tyl |1 " muors wfver saen process
R it craparacure o o et or wHCaF cauy e
e ey

Tinlet max [11
T outlet max [16

g ‘After programmed water finse, open the cabinat and finss the caufty

S Resisiity (ohm-cm) [0
]G B e e s
i watermemp el
o il and G Fineing

Number of fill-and-dumps [10

® Perform 15 fill-and-dump rinses
 Record the pH messured with pH paper during the last drain cycle
® prpep o v Final pH reached [5.5

[@pore [T [[D@

· Input – The means by which data is entered into the database. User entry is typically a web form, applet, or application. Batch entry is typically a custom script that either enters data directly into the database using SQL, or via an application programmer interface (API). Batch entry may or may not include transformation or validation of data. The input is considered “dynamic” if the application allows the user to define new structures of data to be entered without involving a developer. The input is considered “static” if new data requires the involvement of a developer to incorporate the changes.

· Reports – Existing (“canned”) reports provided out-of-the-box by the solution. A basic assessment of the difficulty of adding reports is also given. The supported report use cases are listed by number, with a more detailed discussion given below in the description of each cavity data management solution. Note that even for report use cases that are supported by a solution, it is expected there will be some level of modifications to the reports necessary to suit ILC requirements.

· Ad-hoc Data Access – Support for ad-hoc query of data not readily presented by one of the pre-existing reports. Frequently used queries can be saved for future use, or integrated into the standard set of “canned” reports. User domain query support means the solution explicitly provides a user interface for selecting desired data. SQL query support assumes the user knows the database schema, and is fluent in table selection and joins provided directly by the database engine.

· Quality Data – Support for storing measurements associated directly with the cavity components being tested. Example reports 3a and 3b illustrate what is meant by quality data. Quality data can also include time-based measurements such as clean room particle counts that are not directly associated with a cavity, but can be correlated by date as illustrated in example report 6.
· Process Data – Support for storage of process instructions and process history. Process instructions are the actual step-by-step guides for the assembly, polishing, and testing of cavities. These should be directly associated with measurement data in order to retrieve the precise steps that led to a given measurement. Process history involves the actual steps conducted, and the particular conditions (start time, end time, approvals, environmental conditions) surrounding the execution of process steps. Example reports 1, 2, 4, and 7 illustrate what is meant by process data reports.

· Genealogy Data – Support for representing the physical configuration of cavity components (cryomodule, cavity, cells), and tracking the serial numbers of key components within these structures. Answers questions such as “what is the list of all components in this cryomodule” or “what cavities has this probe been attached to”. Example report 5 illustrates what is meant by genealogy data reporting.

2.1 Pansophy

Input. Pansophy is primarily designed for the manual entry of data via web forms. Automated batch entry is possible, although only for data with a relatively unchanging structure. In general, the database structure is not conducive to automated batch entry. Pansophy strongly supports the idea that users should be allowed to define new structures of data without involving a developer. New data is introduced by creating a Microsoft Word document using particular design elements, and the word document is then converted to a set of database tables and web entry forms.

The input functionality of Pansophy is oriented towards manual entry of data resulting from processes applied to cavities, while at the same time imposing as few requirements as possible on the process manager who wishes to introduce new and/or modified processes and data. There is little to no dependence on a software developer to modify the system to accommodate new data, rather the process manager is expected to carefully follow various conventions. This makes Pansophy nimble and flexible, which is a strong positive for capturing as much data as possible. However, this emphasis on flexible input has the negative effect of making the reporting functionality of Pansophy more difficult to manage over time, and imposes more requirements on the process manager. It also makes automated batch entry of data similarly difficult to manage.

Reports. A number of canned reports are provided out-of-the-box, however it is expected that most of these would need maintenance before being re-used for a new deployment of Pansophy. Creation of these reports is a non-trivial task, as the underlying data is scattered across many process-oriented tables, and is named through a set of metadata tables. Procedural code (as opposed to just SQL) is necessary to work with this data. Pansophy supports all of the reporting cases, however it should be noted that maintaining the correctness of these reports over time is expected to be a challenge. As new data is introduced into the system, existing reports will likely need to be routinely updated, and due to the Pansophy database schema design, this maintenance is expected to be a challenge.

Ad-Hoc Data Access. A web-based user interface is provided for simple selection of data items by name, with some constraints, so basic data extraction does not require custom programming. There is no defined application programmer interface (API) to data.

Quality Data. Quality data is mainly stored as named fields within process oriented travelers. Time-based measurements, such as clean room particle counts are stored in custom created tables, and are not part of the flexible input system of Pansophy.
Process Data. Process data is stored as named fields within process oriented travelers.

Genealogy Data. Genealogy data is not explicitly stored, but can be recovered if the user incorporates adequate “assembly travelers” that list the components and serial numbers participating in a cavity or cryomodule. This is a mild negative in that conventions must be carefully followed to retain consistent genealogy for all involved components.
2.2 DESY

Input. The DESY cavity data solution provides for manual data entry via web based applets. Data entry, however, is often conducted through the use of perl scripts which transform data given in spreadsheet format, and insert the data directly into data tables. The scripts are coded by a developer as needed, however the conventional design of the database schema makes this relatively simple. New data structures require the involvement of a developer. The developer must create the additions to the database schema and user interface.
The input functionality of the DESY system is relatively inflexible, requiring involvement of a developer for even the most minor modifications. This is a negative in that it may result in data not being captured (due to the time delay required for the application development/release cycle). On the other hand, the data representation remains stable as it is managed by a knowledgeable developer and/or data architect. This allows for relatively simple report generation and maintenance, as well as relatively simple automated batch entry.
Reports. DESY’s solution provides many reports out-of-the-box, however one must keep in mind that these are oriented towards the cavity data structures needed by DESY, and may not apply universally without modification. The creation of new custom reports is relatively simple given the conventional database schema design. This is a strong positive feature.
The DESY system supports reporting cases 1, 3, 5, and 6. Absent presently are reports 2, 4, and 7. Adding these reports would require first defining a more thorough process data representation in the database. Also absent is a component genealogy report (5). Adding this report would also require defining a component hierarchy and method for maintaining it, although it is not expected this would be difficult.
Ad-Hoc Data Access. Ad-hoc data access is provided by a simple applet that allows a user to enter SQL statements, but assumes knowledge of both the database schema as well as how to select data and join tables via SQL statements. This is a negative, since the user is expected to know SQL and if extensively used, will become dependent on the data architecture, making future modifications difficult for developers.
Quality Data. Quality data is stored in a readily understandable set of tables.
Process Data. Process data is partially represented. An action code is associated with a set of measurements, and that action code has a start time, stop time, and a few other parameters. The actual instructions and steps leading to measurements are not represented, and the meanings of the actions are not versioned over time. A table is used to represent the summary of process planning meetings, but it is not associated with the data tables, and is maintained manually.
The lack of tightly integrated process data is a strong negative.
Genealogy Data. Genealogy data is not presently represented in the database.
Lack of genealogy data is considered a negative.
3.0 Technical assessments

We have considered the following technical aspects of the two competing solutions.

Schema style. The style of the database schema is relevant to performance and ease of query development. A schema that lacks indices will tend to make queries slow. A schema that lacks foreign key constraints does not help support the integrity of the data, and makes greater demands upon the users that enter the data to avoid inconsistencies; such a schema also tends to make queries which involving joining of tables more difficult to write. Dynamic and flexible schemata, including the very flexible entity-attribute-value (EAV) schema, provide for easy extension but tend to make the writing of queries harder, and tend to be more difficult to understand than static schemata. Static schemata are easier to understand, and easier to write queries against, but require greater changes when the details of the data to be stored are modified.

Technology components. The choice of technologies used to build the system are relevant because they determine what sorts of expertise are required to extend and maintain the system, as well as influencing how much impact an addition to the system has upon the (distributed) clients using the system. A system that makes use of thick clients (special-purpose application on the client's computer) makes it more likely that an enhancement of the system would require distribution of new client implementations. Thick clients also often imply platform dependence. Platform dependence on the data access end is fatal, because we expect a wide variety of platforms on which the client software must run. Platform dependence on the data entry end is less troubling, because of the relatively small number and dedicated nature of the machines which need to perform data entry. A system that uses only web clients makes the need for such distribution much less likely, and much easier to do when necessary.

Security features. Computer, network, and data security are of increasing importance. A successful solution must provide role-based access, both for data entry and data access. It must also be able to adapt to changing security requirements over the lifetime of the project.

Integration API. It may be necessary to integrate into the cavity data management system data obtained through other systems. An integration API (application programming interface) makes the task of such integration easier, and decreases the amount of knowledge of the details of the database schema that are necessary for such integration.

Learning curve/training. Solutions that employ a wide variety of technologies, or that employ technologies in which our community has little expertise, imply steeper learning curves and more need for training for those who must maintain and extend the system. Developers working with any of the systems would require knowledge of the use of relational databases and of SQL; these requirements should be assumed for each solution.

Database independence. Use of proprietary extensions of SQL, or of technology provided by a single database vendor, places significant constraints upon future flexibility. While Fermilab currently has a license agreement with Oracle, it is not clear whether this license will be extended past its current term. In addition, it may be important to be able to deploy the system to other sites. Requiring the use of a specific vendor's database product increases the difficulty involved in such deployment if the site in question does not already license that database.

System support. Support for the system can be broken down into two realms: support of the generic technologies and tools used in the production of the system, and support for the application-specific software system built from those tools. In general, support for tools which are widely used is easy to obtain, as is support for commercially-supplied tools. The latter, however, can be expensive in both developer time and in money.

Licensing required. The licensing model and licensing costs of the system must be included in the total cost of the solution and can dramatically impact the final monetary cost of deployment.

3.1 Pansophy

Schema style. Pansophy makes use of a dynamic schema which includes metadata. Consequently, Pansophy does not make full use of indices or foreign key constraints. We believe this will lead to difficulty for users when writing ad hoc queries, and will also make many queries quite slow, especially as the bulk of stored data increases.

Although it is desirable to support the evolution of processes, overall the Pansophy schema solution is a significant negative aspect of this solution, as it hinders scalability over the lifetime of the system.

Technology components. Pansophy is built primarily in Cold Fusion Markup Language (CFML), and makes use of web clients for data entry and access.

The use of web clients for data entry and retrieval is desirable. There are now sufficient choices of open-source markup language solutions that make a proprietary solution unwarranted.

Security Features. Pansophy employs a role-based security model, implemented through the ColdFusion server. Authentication is done by comparison with Jefferson Lab computer accounts. HTTPS communication is used for the transmission of usernames and passwords.

It is believed that this implementation is readily adaptable to the Fermilab environment.

Integration API. Pansophy does not provide an integration API. Furthermore, the non-traditional nature of the Pansophy schema makes integration of external data sources more difficult than would be the case with a traditional schema.

We view the lack of an integration API, combined with the non-traditional nature of the Pansophy schema, as a significant drawback.

Learning curve/training. Pansophy uses several technologies that have seen little use in our community, notably ColdFusion and CFML. Commercial support, and training, for ColdFusion is available from Adobe, the vendor of ColdFusion. Pansophy also makes use of Perl scripts and C programs that process Microsoft Word documents; developers using Pansophy would need to understand, and possibly extend, these tools. Local experience has shown that these tools are easily mastered.

The use of an uncommon technology (CFML) makes us view this as a minor drawback.

Database independence. Pansophy currently uses the Oracle database engine, but does not integrally depend upon it; the implementation has recently migrated from the Ingress engine to Oracle. A moderate amount of effort would be needed to move to an alternative database implementation.

We view this as a minor advantage.

System support. The tools from which Pansophy is built are supported by Adobe (ColdFusion) and Oracle (Oracle database). Both of these products have large user communities, and many sources of support, including paid support from the vendors. Jefferson Lab has committed to support the application-specific code, including the scripts and programs used to process the Microsoft Word documents that describe the travelers. Jefferson Lab has indicated they would welcome collaborative development.

The likelihood of collaborative development offsets our lack of familiarity with CFML. We view this as a minor advantage.

Licensing required. The Pansophy system requires licensing of ColdFusion from Adobe. The current implementation also requires licensing of the Oracle database, but since Pansophy does not depend intimately upon a specific database vendor's technology, this cost could be avoided, at the cost of some development effort.

We view this as a minor disadvantage.

3.2 DESY

Schema style. The DESY system uses a traditional static schema. This makes it easy to understand, and easy for those with modest SQL skills to write ad hoc queries against. It also preserves referential integrity. This also means that extension of the schema must involve database experts.

We view the integration of at least one database expert into the development and support team as a necessity, and therefore do not view this need is as a significant negative. The traditional schema provides neither strong advantage or disadvantage; we rate this neutrally.

Technology components. The DESY system is built using Oracle developer tools (Developer 2000). This is a tool suite that is nearing the end of its product lifetime. The direct dependence on the Oracle tool set means that the DESY system requires use of the Oracle database engine and the Oracle tools; the DESY solution could not be deployed to a location that does not have the required Oracle software. Data entry is performed by thick clients, and data access is performed by web clients.

We view the intimate reliance on proprietary technology to be a significant drawback of the DESY system. We view the use of thick clients as a minor drawback.

Security features. What about the DESY security model?

It is expected that this implementation is readily adaptable to the Fermilab environment.

Integration API. The DESY solution does not provide an integration API. The traditional nature of the DESY schema eases, to some degree, the difficulty of integration of external data sources.

The traditional nature of the DESY schema mitigates the lack of an integration API. We view this as neutral for the DESY system.

Learning curve/training. Developers using the DESY system require knowledge of the Oracle tool suite, including PL/SQL, used for its development. Oracle provides commercial support and training in these tools. Parts of the system also require that the developers have knowledge of Perl.

The use of traditional and widespread technologies offsets the complexity of the system. We view this as neutral.

Database independence. Because the DESY solution intimately depends on Oracle technologies, not just the Oracle database engine, the difficulty of porting the DESY solution to another database engine would be very significant.

We view this as a significant drawback.

System support. The tools from which the DESY solution are built are provided by Oracle, and so commercial support is available for them. The application-specific software will have much less support. The DESY team is small and busy, and is unlikely to have much time to support Fermilab's development efforts. Collaborative development may be possible.

We view this as a minor advantage.

Licensing required. The DESY solution requires licensing of a suite of Oracle products, not just the Oracle database engine.

We view this as a significant disadvantage.
4.0 Costs and manpower

The total cost of ownership of a system consists of one-time costs connected with acquisition, installation, customization, and initial training, and costs of maintenance and support throughout the lifetime of the project.
The initial cost factors include:
1) Software acquisition costs

· Licenses for the system

· Licenses for supporting technologies (DBMS, application server, proprietary development tools, commercial reporting tools)

2) Computer platform costs

3) Training

· Developer/maintainer training

· User training

· Time to learn the system

4) Development costs

· Installation

· Customization for ILC needs

· New reports, views, tables

· Integration with measurement systems and other programs

· Refactoring of reports, database, etc.

· Design and development of a new system

The renewable costs include:
1) Software maintenance costs

· The software system maintenance

· The supporting technologies maintenance

2) System maintenance and support efforts

a. System and database administration

b. Modifications and updates to reports, travelers, views, etc.

c. Integration of new data sources

d. Problem resolution, user help

e. Commercial extra-paid support (adding user-requested feature, consulting)

4.1 Initial and Renewable Costs

Estimations of the cost components for Pansophy, DESY’s system and the in-house project are shown below.
Initial costs per system

	
	Pansophy
	DESY System
	New

	Software Acquisition Costs
	- ColdFusion: 6k$

	- Oracle Developer 2000: 4k$/developer

	-

	Computer Platform Costs
	Dell Server: 4k$
	Dell sever: 4k$
	Dell server: 4k$

	Training Costs

	ColdFusion: 2 k$ / developer

Oracle DB: 2k$ / person
	Oracle Developer: 2k$/developer

Oracle DB: 2k$/ person
	-

	Development Costs
	Depends on # of missing travelers
	Depends on # of thick clients, reports, schema modifications
	2.5 FTE for 1 year

Yearly costs of ownership

	
	Pansophy
	DESY System
	New

	Software Maintenance Costs
	ColdFusion: 3k$

Oracle DB: 30k$
	Oracle Developer 2000: 1k$/developer

Oracle DB: 30k$
	-

	Support Costs

	2 * .7 FTE
	2 * 0.7 FTE

Consulting: 120$/h
	2 * 0.7 FTE

The initial costs of adopting Pansophy as a cavity data management solution for ILC consist of the ColdFusion and Oracle DBMS license fees and initial development costs, which will highly depend on the number of travelers and reports that need to be modified, added, or replaced. Although, the system as used at JLab has already many travelers, these travelers will have to be all analyzed and modified (redone) to follow the Fermilab production and testing processes and procedures.
Similarly, the initial costs for the DESY Cavity Data Management System will include licensing fees for the Oracle Developer 2000 and Oracle DBMS as well as the costs associated with modifying data loader programs, reports and the database schema to accommodate our production processes and procedures.
The above comments address only the extent of work necessary to use the systems at Fermilab in their current form. One may also consider the reengineering efforts necessary to extend the functionality of both systems to be able to encompass the same as the proposed in-house developed system. In this case, Pansophy may require redesigning of its traveler persistence mechanism to improve its scalability and maintainability, adding genealogy to the data model and improving its integration with measurement and DAQ systems. DESY’s system may require porting to a new platform to guarantee a long-term maintainability and significantly extending process-oriented data model with its associated input and output parts.

The extent of the initial modifications to Pansophy and DESY’s system is difficult to estimate at this stage of the project, since it requires a thorough understanding of the cavity processing at Fermilab, understanding of specific user preferences for the user interface design, and knowledge of integration details with DAQ and measurement systems that may not yet exist. Despite these limitations, one can conclude that depending on the planned scope, the initial costs for adapting JLab’s and DESY’s systems may be significant and even comparable with new development efforts. Such extensive reengineering efforts may also adversely affect the robustness of the solution. In addition, the platforms used by Pansophy (ColdFusion) and DESY’s system (Oracle Forms and Reports) may not offer the required long-term maintainability of the solution.

The initial costs of developing a system in-house will mainly consist only of development costs (salaries), since no proprietary software systems are planned to be acquired. Of course, these development efforts are initially more significant than in other solutions. They will be partially offset somewhat by the absence of the learning and re-engineering efforts necessary for the remaining systems.

The maintenance costs for all the solutions but the in-house developed system will include a licensing component as well as the costs associated with development of software, reports, and input forms. Since it may be easier to maintain an in-house developed system than systems developed elsewhere, the costs of maintaining Pansophy and DESY’s system may be higher than supporting a fully-known system. If Pansophy/DESY are ready for collaborative development (code in repositories, formal release mechanism, defect tracking mechanism, sufficient project documentation, resources for timely response to issues) this may lower the maintenance cost. However, if they are not ready for outside use of their software, our maintenance costs could be significantly higher.

In summary, all the considered solutions have different cost factors in both initial and long-term costs. The time to market, the time needed to deploy the fully functional system, will differ for each solution and has to be taken into account also. In addition, the ability to support the system in the long-term, including its technical prowess (quality, readability, extensibility, and maintainability of the implementation) and its dependency on proprietary technologies should be considered when making the final selection.

4.2 Effort Estimation for an In-house Project
4.2.1 Estimation Factors

Estimating development time accurately relies on knowing precisely what, who and how is going to be developed. As many factors influence the estimates, the development time estimate depends, among others, on scope (requirements, scope-creep), technology (methodology, development and deployment platforms, documentation, QA approach), resources (size and qualifications of the team), project organization (collocation of developers, access to tools) and support from project stakeholders (priority of the project, user participation).
Special focus should be on requirements, because they are difficult to formulate a priori and any mistake in their specification can be very costly to correct later. For example, Pansophy and the DESY Cavity Database are very different in their approach and functionality, but still serve the same purpose, so a lot depends on the user preferences and vision.

4.2.2 Assumptions

In order to produce the estimate of development time for our project, we will make the following assumptions:

Methodology

Since a lot seems to depend on the vision, and since the systems existing at DESY and JLab diametrically differ in their focus and approach, the methodology will try at the beginning to explore and verify basic functional requirements, then it will try to adapt to all other needs. The iterative spiral methodology with the evolving prototyping as its first iteration is proposed.

The project will reuse the domain knowledge contained in both Pansophy and the DESY Cavity Database system, in particular knowledge included in reports, travelers and data models.

 Scope

· Inception phase

· Project organization (setup of servers and repositories, naming conventions, and other project standards, etc.)

· Selection and learning of tools and technologies

· Technical analysis of the designs

· Use cases

· Architecture

· Storyboards presentation and architecture mini-review

· Prototype development phase

· Core functional features (database, web interface with several reports, several travelers, demonstrated ability to integrate with other systems)

· Core non-functional features (authentication, authorization, …)

· Integration testing

· Review

 Technology

No commercial/proprietary tools requiring training will be used. The system will be based on standards and modern but mainstream technology: web application in J2EE technology, web reports, a relation database, and web service.

Team

The team will consist of two full time developers, one DBA (possibly part-time), one or two domain experts available for mini-reviews and discussions, and a user-representative participant (stakeholder) available at all times. The project will be a top priority project to all participants.
4.2.3 Estimation

 Estimating efforts for Web-based systems poses special problems due to the fact that traditional metrics including lines of code (LOC) or function points (e.g., COCOMO II model uses LOC as its underlying size metrics) do not reflect correctly these efforts.

For our purposes, three different approaches have been used to produce the estimate of development efforts: an analogy to other systems method, an estimation tool, and a Wideband Delphi session (The Wideband Delphi estimation method is a consensus-based estimation technique for estimating effort.)

An analogy method, when compared with a 60 window, database-based web application, produced 3 months to 12 months as its result.

An estimation tool, assuming 20 windows, 10 dialogs, 5 reports, 4 external interfaces (configuration files, APIs), and 50 database tables and using industry productivity data, produced an optimum plan with 28 man-months and schedule of 11 months with a peak staff of 3.4 persons.

[image: image2.jpg]Planning Options

e

(suwouryes) w03

18

2 1 "
Schedule (months)

11

10

The Wideband Delphi method produced an estimate of 6.4 months with a standard deviation of 0.8 months, assuming a fixed staff of 2.5 persons.
4.2.4 Interpretation of Results

· The estimate is of development time, not actual calendar time (sickness, vacations, other assignments, meetings, etc.)

· One needs to factor for developer productivity (can vary from 1 to 10) and experience also connected with the tool selection, technology details and development practices.

· Estimates for the next iteration will be produced as soon as project advances to the next phase.

· With time, the estimates will be more and more accurate and the uncertainty of estimates will be decreasing.

· The estimate doesn’t constitute a total cost of ownership; it focuses on the development time only and ignores such factors as fully-loaded costs for skilled developers, and costs of application maintenance and support in the future.

· To produce a more complete estimate, one may want to perform risk and impact analysis.

Appendix A: Example Reports and Data Mining

The following are examples of the various reports and standard queries that could be expected to prove useful as part of a production and R&D effort aimed at developing improved cavity processing techniques and procedures, and for tracking cavity and cryomodule performance throughout the R&D and prototyping phases of the ILC. This is not meant to be an exhaustive or comprehensive list, but to serve as an example of the types of reports and data that should be easily available and be provided by any of the candidate Data Management systems under consideration. The full data analysis capability of such systems can only be effectively realized by combining fixed reports as described below with a fully user-defined querying capability that does not rely on knowledge or familiarity with SQL scripting.

1) Cavity Process History

When comparing performance of many cavities in an effort to determine the optimal processing prescription, it is vitally important to have a detailed understanding of the type, number, and details of the assorted processes and procedures that a cavity has been subjected to. The cavity process history report returns complete list of all travelers (processes) which a cavity has been subjected to, and includes, for example, the traveler name, serial number, originator (user) and date/time. Entries in the list could be hyperlinks to the individual travelers containing the details of the process steps and with all data fields completed. Conversely, there should be a mechanism to return the data and process details contained in these individual travelers, perhaps through some other search/report tool. Additional useful data in the report may include status of travelers (open or closed) and name of approver/final sign off person, if applicable.

Example output :

	ILC-001
	
	

	Traveler name
	Trav SN
	Date/Time
	Originator
	OpCl
	Approver

	Inspection
	1
	7/12/07 14:22:31
	QA Lab
	CL
	QA Spvsr

	Degreasing
	3
	7/13/07 10:21:05
	Tech A
	CL
	Chem E

	Bulk Chem
	2
	7/16/07 08:21:43
	Tech B
	CL
	Chem E

	Tuning
	5
	etc
	Etc
	Etc
	etc

	Electropolish
	4
	
	
	
	

	Degreasing
	6
	
	
	
	

	HPR
	3
	
	
	
	

	1st Assembly
	6
	
	
	
	

	HPR
	7
	
	
	
	

	2nd Assembly
	4
	
	
	
	

	Evac & Leak Check
	5
	
	
	
	

	Assy for Test
	6
	
	
	
	

	Vertical Test
	4
	
	
	
	

	Disassembly
	4
	
	
	
	

	Degreasing
	9
	
	
	
	

	…etc…
	
	
	
	
	

2) Cavity Process Details

This report or query function would return the details of a given process (contained, for example, in one of the travelers from the report in 1). This report provides the appropriate context for the data contained in the database. Comparisons of individual cavity data points or performance measures are only sensible when the relevant procedures, process steps, or assembly instructions are also available for comparison.

Example output :

[image: image1.emf]Input Reports Ad-hoc Data Accessquality dataprocess data genealogy data

Pansophy

User entry

primarily.

Dynamic.

Includes several canned

reports. Addition of new

reports can be a challenge

due to schema design.

Supported reports:

1,2,3,4,5,6,7

User domain query

support.

Yes Yes

Not directly

represented, but

rather through

"assembly"

travelers.

DESY

Batch entry,

and some

user entry.

Static.

Includes many canned

reports. New reports

relatively straightforward

due to conventional schema

design.

Supported reports:

1,3,5,6

SQL Yes

Some process

data

represented, but

not directly

associated with

quality data.

No

Supported Data Domains

3a) Cavity Performance History

The cavity performance history provides a useful snapshot of a cavity’s SRF performance, and is an important metric in the evaluation of cavity process development. The report returns a table including assorted performance data, such as low-field Q0, Q0 at Espec, Emax, Q0 at Emax, FE onset, test temp, Rres , -mode frequency, and Radmax. Each row of the table corresponds to one test – rows are ordered chronologically. Option for multiple cavity ID choices extends number of rows (first column is cavity ID). It is also required that the details regarding a measurement result (i.e., the process or procedure used to generate that result) be readily available via a subsequent search or query.

Example output :

	Cavity ID
	Date
	LF Q0
	Q0 @ Espec
	Emax
	Q0 @ Emax
	FE On
	Temp
	Rres
	F
	Radmax

	
	
	
	
	(MV/m)
	
	(MV/m)
	(K)
	(n)
	GHz
	R/hr

	ILC001
	8/12/07
	2.7e10
	1.1e10
	32.4
	1.0e10
	28.4
	2.00
	12.4
	1.3005
	12.45

	ILC001
	8/21/07
	2.2e10
	1.7e10
	38.2
	8.2e9
	34.2
	2.00
	8.3
	1.3002
	.0431

	ILC002
	8/24/07
	1.4e10
	
	27.4
	6.2e9
	14.7
	1.99
	
	1.2999
	5.3

	ILC001
	8/25/07
	2.5e10
	2.1e10
	35.6
	1.8e9
	
	2.01
	7.2
	1.3000
	

	ILC003
	9/3/07
	2.3e10
	6.5e09
	33.8
	5.3e9
	28.6
	2.00
	10.7
	1.2987
	8.3

	ILC002
	etc…
	
	
	
	
	
	
	
	
	

3b) Cavity Performance History – Best Performance

A variation of report 3a would be to return only the “latest” or “best” (defining algorithm dependant) performance/measurement of a particular cavity or set of cavities. These data represent the current best achievable cavity performance and variation in that performance.

Example output :

	Cavity ID
	Date
	LF Q0
	Q0 @ Espec
	Emax
	Q0 @ Emax
	FE On
	Temp
	Rres
	F
	Radmax

	
	
	
	
	(MV/m)
	
	(MV/m)
	(K)
	(n)
	GHz
	R/hr

	ILC001
	9/30/07
	2.7e10
	1.1e10
	32.4
	1.0e10
	28.4
	2.00
	12.4
	1.3005
	12.45

	ILC002
	8/21/07
	2.2e10
	1.7e10
	38.2
	8.2e9
	34.2
	2.00
	8.3
	1.3002
	.0431

	ILC003
	9/05/07
	1.9e10
	1.3e10
	34.6
	9.2e9
	29.1
	1.99
	
	1.2999
	3.3

	ILC004
	10/8/07
	2.5e10
	2.1e10
	35.6
	1.8e9
	
	2.01
	7.2
	1.3000
	

	ILC005
	10/3/07
	2.3e10
	
	24.8
	5.3e9
	18.6
	2.00
	10.7
	1.2987
	8.3

	ILC002
	etc…
	
	
	
	
	
	
	
	
	

4) Cavity Discrepancy Report

During cavity inspection, processing, and assembly activities, there may be instances where either a cavity property is found to be outside of the expected range, or a procedure or activity was modified and departed from the expected standard. In these cases, a Discrepancy Report is filed, in order to track and document these non-standard processes or results. The Cavity Discrepancy Report lists all of the discrepancy reports filed for a particular cavity, along with the originating travelers, responder, status, and rework traveler, if any. Again, it is required that one be able to immediately see the process and measurement/data details both in the individual discrepancy reports and in their associated travelers, either by hyperlinks to them, or through some other mechanism.

Example output :

	ILC-001
	
	

	Discrepancy #
	Origin. Trav
	Date
	Responder
	Status
	Rework Trav.

	DR-001
	Cav Insp-002
	12/13/07
	Foley
	C
	

	DR-039
	Tuning-009
	1/24/08
	Khabibouline
	C
	Tuning-012

	DR-064
	HPR#1-002
	1/31/08
	Rowe
	C
	HPR#1-003

	DR-073
	VTest-004
	2/14/08
	Arkan
	O
	

5) Component Genealogy

It is important both for quality control and performance and process assessment, to be able to track, in both the forward and backward directions, the so-called genealogy of a component or system. This report provides a serial number listing of all of the major parts and subcomponents in a major component or system, e.g., an ILC cryomodule. Some of the returned serial numbers could be hyperlinks to other reports (e.g., Cavity Performance History). A similar set of reports can be designed for other major sub-systems – dressed cavity, assembled FPC, etc.

Example output:

Cryomodule : ILC-CM-001

	
	Position

	Object
	1
	2
	3
	4
	5
	6
	7
	8
	9

	Cavity
	ILC001
	ILC002
	ILC003
	ILC004
	ILC008
	ILC010
	ILC021
	ILC009
	ILC007

	FPC Inner
	PCI-02
	PCI-04
	PCI-05
	PCI-03
	
	
	
	
	

	FPC Outer
	PCO-03
	PCO-01
	etc.
	
	
	
	
	
	

	Field probe
	FP-002
	FP-210
	etc.
	
	
	
	
	
	

	Slow tuner
	ST-021
	etc.
	
	
	
	
	
	
	

	PZT
	PZT-045
	
	
	
	
	
	
	
	

	HeVessel
	HEV-1a
	
	
	
	
	
	
	
	

	HOMA prb
	HPB-90
	
	
	
	
	
	
	
	

	HOMB prb
	HPB-32
	
	
	
	
	
	
	
	

6) Correlation Between Monitoring System Data and Traveler/Measurement Data

There will be various systems in place which will use 24/7 automated facility performance monitoring (i.e., clean room or rinse system particle counts, water resistivity, EP acid temperature etc.). It is likely that these data will not be directly entered into travelers, and so a report will need be available which correlates the monitoring data with the traveler and/or measurement data. An example of this is correlating the onset and degree of field emission with some observable and reproducible aspect or parameter of the cavity processing or assembly activities, which is a major processing goal. This particular example report returns the particle count data during a high pressure rinse activity for a particular cavity or group of cavities along with the date/time of the rinse. It is important because field emission continues to be a major, if not the major, source of performance limitations for SRF cavities.

Example output:

	Date
	Time
	Cavity ID
	FE Onset
	Part Ct Start
	Part Ct End
	Part Ct Max
	Part Ct Mean

	1/12/08
	08:23:43
	ILC-001
	31.7
	12.5
	14.1
	18.5
	13.3

	1/14/08
	08:15:07
	ILC-002
	14.3
	1325.6
	45.5
	1423.5
	748.3

	1/14/08
	13:44:23
	ILC-002
	25.6
	21.0
	4.6
	21.0
	14.7

	1/17/08
	10:02:32
	ILC-001
	33.5
	8.6
	2.4
	11.7
	5.3

7) Production Activity Tracking Report

Tracking of production activity allows production and QA managers to better understand the effectiveness of current process flow, helps to quantify production throughput, identifies resource limitations, and can highlight problematic processes by indicating the number of Discrepancy Reports filed for each process. This report lists the number of processes begun and finished for a particular time period, and the number of discrepancy reports filed by these processes. It can also list the status of processes (open/closed) at the end of the time period.

Example output:

Reporting Period : 3/1/08 – 3/15/08

	Traveler
	# Started
	# Open
	# Closed
	# DR’s filed
	# DR’s open
	# DR’s closed

	Electropolish
	2
	0
	2
	1
	1
	0

	Degreasing
	3
	2
	2
	0
	0
	0

	HPR
	6
	0
	6
	2
	1
	1

	1st Assembly
	3
	1
	2
	0
	0
	0

	Bakeout
	2
	0
	2
	1
	0
	1

	Bulk Chem
	3
	1
	2
	0
	0
	0

	Tuning
	4
	1
	3
	2
	0
	2

Page 1 of 1

_1242121236.xls
Sheet1

										Supported Data Domains

				Input		Reports		Ad-hoc Data Access		quality data		process data		genealogy data

		Pansophy		User entry primarily. Dynamic.		Includes several canned reports. Addition of new reports can be a challenge due to schema design.
Supported reports: 1,2,3,4,5,6,7		User domain query support.		Yes		Yes		Not directly represented, but rather through "assembly" travelers.

		DESY		Batch entry, and some user entry. Static.		Includes many canned reports. New reports relatively straightforward due to conventional schema design.
Supported reports: 1,3,5,6		SQL		Yes		Some process data represented, but not directly associated with quality data.		No

Sheet2

		

Sheet3

		

