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2.1 Quantum mechanics of particle-antiparticle oscilla-

tions

The quantum mechanical formalism of particle-antiparticle oscillations is here exposed. While

the focus will in time be placed on the BB̄ system, we start from a more general situation

where particle and antiparticle are distinguished by an internal quantum number, F , like

beauty, strangeness, charm, lepton number, baryon number, etc. The charged mesons, for

instance B+/B− and B+
c /B

−
c , are not considered, as electric charge violation is not contem-

plated; unlike those other symmetries, electric charge conservation is protected by gauge,

thus exact, symmetry. The π0 mesons constitute their own antiparticles and are thus also

excluded.

The formalism applies to the neutral B meson systems, BsB̄s and B0B̄0, studied in this

monograph, and holds similarly for theK0K̄0,D0D̄0, neutron/antineutron and neutrino/anti-

neutrino systems. Such a generic system will be here denoted by P 0P̄ 0, where P 0 and P̄ 0

are flavor eigenstates, distinguished merely by the internal quantum number F .

2.1.1 Effective Hamiltonian

An unstable particle can be described by a Hamiltonian, H = m − i
2Γ, through the non-

relativistic Schrödinger equation i∂tψ = Hψ. The solution

|ψ〉t = e−imte−
1
2Γt|ψ0〉 (2.1)

reproduces the exponential law of radioactive decay, as |〈ψ0|ψ〉t|2 = e−Γt, with lifetime τ ≡
1/Γ. The Hamiltonian is not real (i.e. hermitian), since it describes the decay of a particle

by its vanishing.

The P 0P̄ 0 pair can be described similarly as a decaying two-component quantum state.

The effective Hamiltonian of the system will be formed of a component H0 which preserves

the characteristic quantum number (∆F = 0) along with a component inducing ∆F '= 0

transitions; this can be written as

H = H0 +H∆F . (2.2)

Particle-antiparticle transitions are ∆F = 2 processes which are induced by H∆F .

An arbitrary state of the system is represented by a vector in the Hilbert space as

|ψ〉 = a |P 0〉+ b |P̄ 0〉 . (2.3)
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Its dynamics, in theWeisskopf-Wigner approximation [93], is determined by the time-dependent

Schrödinger equation

i
d

dt
ψ = Hψ . (2.4)

The Hamiltonian contains a dispersive part and an absorptive part, its matrix representation

being decomposed accordingly as H =M- i2Γ, with M and Γ complex hermitian matrices.

Working in the flavor basis, (2.4) may be expressed as

i
d

dt

(
a

b

)

=

(
m− i

2Γ M12 − i
2Γ12

M∗
12 − i

2Γ
∗
12 m− i

2Γ

)(
a

b

)

. (2.5)

The diagonal Hamiltonian matrix elements describe the mass and decay width of the flavor

eigenstates. CPT invariance, which is a basic feature of any local quantum field theory,

guarantees equality of mass and lifetime of particles and antiparticles, leading to M11 =

M22 = m and Γ11 = Γ22 = Γ. The off-diagonal elements are responsible for P 0P̄ 0 transitions,

where M12 represents virtual transitions and Γ12 represents real transitions through common

decay modes.

The non-zero off-diagonal elements of the Hamiltonian matrix imply that the flavor eigen-

states differ from the mass eigenstates. The latter will be referred to as heavy (H) and light

(L) mass eigenstates, which are defined as

|PL〉 = p |P 0〉+ q |P̄ 0〉 ,

|PH〉 = p |P 0〉 − q |P̄ 0〉 , (2.6)

with the complex coefficients p and q obeying the normalization condition |p|2 + |q|2 = 1.

It should be noted that the states in (2.6) do not in general form an orthogonal set, as

〈PH|PL〉 = |p|2 − |q|2 does not vanish if | qp | '= 1. In fact, this latter condition would mean

that P 0 → P̄ 0 and P̄ 0 → P 0 transitions would occur at different rates (as it will become

apparent below, see (2.18)), corresponding to CP violation in the mixing process. If CP is

conserved, which occurs if | qp | = 1 and arg
(

q
p

)
= 0, in which case q = p = 1√

2
up to some

arbitrary phase convention, the mass and CP eigenstates coincide,

|PL,H〉 =
|P 0〉 ± |P̄ 0〉√

2
with CP|PL,H〉 = ±|PL,H〉 , (2.7)

using a convention where CP |P 0〉 = |P̄ 0〉.
Solving the eigenvalue problem, det (H− λ) = 0, we obtain

λH,L = m− i

2
Γ±Q , with (2.8)

Q ≡

√(
M∗

12 −
i

2
Γ∗
12

)(
M12 −

i

2
Γ12

)
.
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The eigenvalues can be further expressed as

λH,L = mH,L − i

2
ΓH,L , with (2.9)

mH,L = Re (λH,L) , ΓH,L = − 2 Im (λH,L) . (2.10)

It is immediately seen thatm and Γ are the average mass 1
2 (mH +mL) and width 1

2 (ΓH + ΓL).

In order to obtain the explicit relationship between the matrix elements, M12 and Γ12, and

the observables

∆m ≡ mH −mL , (2.11)

∆Γ ≡ ΓL − ΓH , (2.12)

we can form the quantity (λH − λL)
2 = (2Q)2 to find, from (2.8) above,

(∆m)2 − 1

4
(∆Γ)2 = 4|M12|2 − |Γ12|2 , (2.13)

∆m∆Γ = −4Re (M12Γ
∗
12) ,

q

p
= −∆m+ i∆Γ/2

2M12 − iΓ12
= − 2M∗

12 − iΓ∗
12

∆m+ i∆Γ/2
=

√
M∗

12 − i
2Γ

∗
12

M12 − i
2Γ12

.

Mechanical analogon

The mechanical system formed of two coupled, identical pendula is also characterized by (2.5) [94].

In the absence of the coupling, they would be both described by an oscillation frequency m

and a damping constant Γ. The two pendula correspond to the particle P 0 and antiparticle

P̄ 0, in this case governed by H0 before the perturbation.

Once they are coupled by a spring characterized by elasticity proportional to M12 and

damping constant Γ12 the solutions will comprise two eigenstates: (i) corresponding to a

long-lived (i.e. low damping), light (i.e. low frequency) state, where the pendula oscillate in

phase; and (ii) corresponding to a short-lived (i.e. high damping), heavy (i.e. high frequency)

mode with a phase difference of 180◦. The differences in frequency and damping for the two

modes are given by ∆m = 2M12 and ∆Γ = 2Γ12.

As one pendulum is excited, it will transfer its energy to the other, and back, producing

a beat with frequency 2πf12 = ∆m. This beat corresponds analogously to the oscillation

between a particle P 0 and its antiparticle P̄ 0, where the mass difference ∆m is actually

observed as a frequency.

It should be noted, however, that in the mechanical system, unlike the case of the oscil-

lating particles, M12 and Γ12 are strictly non-negative real numbers, and that the absence of

non-trivial phases further prevents the system from simulating CP violation.
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2.1.2 Time evolution

The solution to the system of coupled differential equations (2.5) is decomposed in single

particle solutions (2.1) for the mass eigenstates. The latter evolve in time according to the

corresponding eigenvalues found in (2.8),

|PL,H〉t = e−i λL,H t |PL,H〉 = e−imL,H t− 1
2ΓL,H t |PL,H〉 . (2.14)

An arbitrary initial state of the system may be expressed as a linear combination of either

flavor or mass eigenstates,

|ψ〉 = a0 |P 0〉+ b0 |P̄ 0〉 = αL |PL〉+ αH |PH〉 , (2.15)

with αL,H =
1

2

(
a0
p

± b0
q

)
and

a0 = p (αL + αH) , b0 = q (αL − αH) .

Its time evolution follows from (2.14), being given by

|ψ〉t ≡ H |ψ〉 = αL |PL〉t + αH |PH〉t . (2.16)

In particular, a state which is initially a pure flavor eigenstate (either a0 = 0 or b0 = 0)

will evolve to a state of flavor admixture. Specifically, the time evolution of pure flavor

eigenstates, as may be derived from the expressions above, is given by

|P 0〉t =
1

2p
(|PL〉t + |PH〉t) = g+(t) |P 0〉+ q

p
g−(t) |P̄ 0〉 ,

|P̄ 0〉t =
1

2q
(|PL〉t − |PH〉t) =

p

q
g−(t) |P 0〉+ g+(t) |P̄ 0〉 , (2.17)

where

g±(t) =
1

2

[
e−(imL+

1
2ΓL)t ± e−(imH+ 1

2ΓH)t
]
.

The time dependent transition amplitudes squared for the initial states to evolve to a state

of the same or the opposite flavor are correspondingly given by

∣∣〈P 0|H|P̄ 0〉
∣∣2 =

∣∣∣∣
p

q

∣∣∣∣
2

|g−(t)|2 ,

∣∣〈P̄ 0|H|P 0〉
∣∣2 =

∣∣∣∣
q

p

∣∣∣∣
2

|g−(t)|2 , (2.18)

∣∣〈P 0|H|P 0〉
∣∣2 =

∣∣〈P̄ 0|H|P̄ 0〉
∣∣2 = |g+(t)|2 ,

with

|g±(t)|2 =
1

2
e−Γt

[
cosh

(
∆Γ

2
t

)
± cos (∆mt)

]
.
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2.1.3 Neutral BB̄ meson systems

Here we address specific characteristics of the two neutral B meson systems – B0B̄0 and BsB̄s,

which will be denoted B0
q B̄

0
q (q = d, s), and point out appropriate formalism approximations.

The symbol B will also be used for denoting the bottom quantum number.

The off-diagonal mass matrix elements are responsible for the B0
q B̄

0
q transitions. M12

represents virtual transitions which provide the dominant contribution to the mixing ampli-

tude. Γ12 represents the real transitions through common decay modes. The latter alone

implies that |Γ12| * Γ. These common decay modes are furthermore Cabibbo (i.e. CKM)

suppressed. If Γ12 were to fully vanish, the relations (2.17) would yield ∆m = 2|M12| and
∆Γ = 0.

The following inequalities hold empirically for both systems

|Γ12| * |M12|, ∆Γ* ∆m , (2.19)

such that an expansion in the respective ratios results in a good approximation. An approx-

imate solution to (2.17) is accordingly provided by the following expansions

∆m = 2|M12|
[

1 +O
(∣∣∣∣
Γ12

M12

∣∣∣∣
2
)]

, (2.20)

∆Γ = 2 |Γ12| cosφ12

[

1 +O
(∣∣∣∣
Γ12

M12

∣∣∣∣
2
)]

, (2.21)

q

p
= −e−iφM

[
1− 1

2

∣∣∣∣
Γ12

M12

∣∣∣∣ sinφ12

]
+O

(∣∣∣∣
Γ12

M12

∣∣∣∣
2
)

, (2.22)

with φM ≡ arg(M12) , φ12 ≡ arg

(
−M12

Γ12

)
.

For the B0 system, ∆md ≈ 0.75Γd, while for the Bs system existing experimental bounds

give ∆ms , Γs. The existing experimental bounds on the fractional width differences place

∆Γ/Γ below 0.18 and 0.29 (95% C.L.) [1], respectively, for the B0 and Bs systems, while

predicted theory bounds are correspondingly at less than 1% and less than 20% [10].

For both systems, | qp | = 1 holds to a very good approximation. In effect, the difference

1−
∣∣∣∣
q

p

∣∣∣∣
2

≈ Im

(
Γ12

M12

)
(2.23)

is estimated to be ∼ O(10−3) for the B0 and ∼<O(10−4) for the Bs systems [1]. For these

systems the ∆B = 2 and the Cabibbo favored ∆B = 1 effective operators are CP conserving.

The probability densities, denoted P, for observing the initial (t=0) flavor eigentstates to

decay at a later time t with the opposite or the same flavor, following (2.18) in the limit of
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| qp | = 1 and negligible ∆Γ/Γ, are given by

PB0
q→B̄0

q
(t) = PB̄0

q→B0
q
(t) =

Γ

2
e−Γ t [1− cos (∆mt)] , (2.24)

PB0
q→B0

q
(t) = PB̄0

q→B̄0
q
(t) =

Γ

2
e−Γ t [1 + cos (∆mt)] . (2.25)

The frequency of flavor transitions corresponds, as explicitly shown, to the mass difference

between the two mass eigenvalues of the system — ∆m constitutes therefore the target

observable of time dependent flavor oscillation measurements.


