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Mathematical Preliminaries

Fourier Transforms.

We shall move freely between the momentum and the position space repre-
sentations of quantum operators so you should be comfortable in taking Fourier
)

tranforms. For a function f(Z), its Fourier transform f(k) is given by
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Aside from expanding the quantum field in terms of creation and annihilation
operators, the Fourier pair that you will see most often is that of the §-function
and the constant function:

Complex Analysis.

You should be familiar with the basic properties of complex functions—
analytic functions, contour integration, residues, poles, branch cuts, etc. For
example, the residue theorem states

Theorem. Let I be a positively oriented simple closed contour within and on
which a function is analytic except for a finite number of singular points 2,
29, ..., zp interior to T'. If By, Bs, ..., B, denote the residues of f at those
respective points, then

\ f(2)dz =2mi(By + B2+ - -- + By). [see R. Churchill]
r

The residue of a complex function f(z) with an isolated singular point at zg
is the coefficient b; of the Laurent series expansion of f(z) about zg,

f(2) =) (z—20)" + LN —

z—20 (2—20)?

(0 < |z — 20| < R).

n=0

You should review a fairly elementary book on complex analysis if you are
not comfortable with these terms.

Representation Theory.

The symmetries that exist in nature provide a strong constraint on the
physical threories that we study. The set of symmetry transformations form
a group G; for example, G may correspond to the translations of space-time
or to Lorentz transformations (SO(3,1)). A representation is a mapping of an
element of a group g € G to an operator U(g) that acts on our Hilbert space of

states,
U:9—Ul(g),

such that it preserves the group multiplication law:

U(g1)U(g2) = U(g192)-

In a quantum theory, these operators must conserve probabilities, so that the
representation must be unitaryi:

Ul(g)U(g) =U(g)U(g) = 1.

The representation should map the identity element e of the group (eg = ge = g)
to the identity operator:
Ue) =1.

These are the basic properties shared by all the unitary representations that we
shall encounter in this course. For specific groups such as the Lorentz group,
G = S0O(3,1), we impose further restrictions on the action of U(g) on the states.

Constructing The Quantum Field First Week

A Single Free Spinless Particle of Mass u.
The states of the first quantum field theory that we shall study are eigen-
vectors of the momentum operator and are normalized as follows:

1 Since the probabilities and not the amplitudes must be preserved, anti-unitary
operators are allowed as well.



This set of states forms a complete basis satisfying the orthogonality relation,

For this theory to describe adequately a relativistic particle, it must incorporate
the symmetries of spacetime: rotational invariance and Lorentz invariance. This
means that these symmetry groups must be represented by a set of unitary (to
preserve probabilities) operators that act on our basis. For example, if R is a
rotation matrix, there should be an operator U(R) that rotates the states:

1. Unitarity: U(R)U(R) = 1.

2. Identity: U(1) =

3. Preserves the multiplication law: QQWHVQQNMV = U(R1R»).

4. Rotates vectors: /') = U(R)[¢) —  ('|PlY') = R{y|P|o).

5. Preserves the Hamiltonian: UT(R)HU(R) = H.
The above theory is not invariant under Lorentz boosts as might be expected
since _5 only contains the spatial coordinates. A theory which is invariant
under the full Lorentz group (SO(3,1)) normalizes the states and the measure
of momentum space as follows:

. = Pk
— w\m - H\N 1 - = = e
|k) = (2m)°/* (2wy) /*|k) with wp = ko = \/ k2 + p2, P @)

The orthogonality and completeness statements become

-

(kIK') = (2m)° (2w) 6 (E — ')

B3k

H we define the action of applying a Lorentz tranformation on a state to be
A)|k) = |Ak), then U(A) satisfies all the requisite properties:

Unitarity: U(A)Ut(A) = 1.

Identity: U(1) =

Preserves the multiplication law: U(A1)U(Az2) = U(A1A9).

4-Vectors transform correctly: UT(A)PU(A) = AP.

Thus far the construction of the theory has proceeded without any ap-
pearance of the multi-particle nature of quantum field theory. However, if we
introduce a position operator, X, we discover that the particle has a non-zero
probability of being outside of the forward light cone:

'P?"-"!"!—‘"

e kT

2m2r

o0
(X|e X = 0) = \ zdze M7 sinh(y/22 — p2 t) # 0.
"
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This single particle theory violates causality. Only by developing a multi-
particle theory can causality be restored.

A Theory Free Spinless Particles of Mass u.

The basis of states, called the Fock space, for a multiparticle theory con-
tains a vacuum state |0), single particle states |k), two particle states |y, ko)
(= |y, k1)), etc. These states satisfy:

010) =1 (kIR =P (E—F') (v, Esl By, By) = 0% (Fy — K1) (> — Ky)
+0% (k1 — Kb)6° (kz — k)

HIk}, By) = (wi, +wi, )KL, kb

PRy, By = (K1 + ko) |Kp, Bb)

HI0)=0  H|k) = wglk)

Ploy=0  Plk) = k|k)

and the completeness relation becomes
0)(0] + \%_Nﬂ \ﬂ_ + = \ dicy ds _NSLSVQSLS_ +-

In studying the multiparticle theory, it is convenient to introduce creation

and annilation operators. For example, let the operator @w (ag) create (annihi-

late) a meson with momentum k: e.g.
alloy=1k) and  ag|k) =0).

If these creation and annihilation operators satify the usual commutation rel-
tions,

-

—Q\\Mn@m*u_ = %wANMI \ﬂ\v —Q\\an@\o~u_ - —Q \a\u_ = O

H= \%\Emgw@m = \%ESTT

the above eigenvalue equations for the energy and the momentum as well as the
normalizations of the states are reproduced.

We have again begun with a non-relativistic theory which we would like
to modify to satisfy the principles of relativity. One of these principles is that
of local commutativity, that operators with spacelike separations must com-
mute. Thus observable operators must necessarily be fields which depend on
each space-time point. Thus let ¢*(z) [a = 1,..., N] represent a set of quantum
fields (observable operators). They should satisfy the following properties:

1. Local Commutativity: [¢%(z),¢*(y)] = 0 for (z — y)? < 0.
2. Hermitian Operators: ¢%(z) = ¢°1(z).
3. Translations: e~ "2¢%(z)e't"? = ¢%(z — a).
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4. Lorentz Transfomations: UT(A)¢®(z)U(A) = ¢2(A™12).
5. Linearity: ¢°(z) = [ d°k TJME ag + G2(x) @2.
This last condition is actually a simpifying assumption rather than a require-

ment for the theory. The form of the field consistent with these properties that
emerges is

ﬂA v| &w\ua. _H 1 \iaélT 4 ia.u;
V=] @n)prw) e 1F %l

This field satisfies the Klein-Gordon equation,
(0u0" + p*)p(z) = 0,
and obeys the following commutation relation,

[¢(2), 6(y)] = Ay (z —y) — A (y — z)

— Qw\uﬂy \s.é
240 = [ Gtz

The Quantum Field

The quantum field was first constructed from the creation and annihilation
operators but we could alternatively use the field itself to find @W and aj. If
¢(x) satisfies

1. Hermiticity: ¢(z) = ¢f(x)
2. Klein-Gordon Equation: (8,0* + pu*)¢(z) =0
3'. Canonical Quantization:

[6(t,Z), 6(t, )] = 0
ﬁQOQQV nm.'v\ &Q.“ S_ = |:mwAhw. — S

4. Tranforms Correctly under SO(3,1) and translations: Ut(A)¢(z)U(A) =
¢(A~'z) and U'(a)¢(2)U (a) = ¢(x — a)
5. Completeness: V, [4,¢(z)] =0=> A x I,

then ag is

- 3 - .
0 =Y5 T [ i (600 + Sé0.9) 2.

wﬁvw\m

Canonical Quantization

In the canonical quantization of quantum mechanics, the classical position
and conjugate momentum of classical mechanics are replaced by operators that
satisfy the commutation relations,

[pa(t),q" ()] = —idh  [q°(t),q" ()] = [pa(t), pe(t)] = 0.

Similarly, we can obtain quantum field theory through the analogous quantiza-
tion of classical field theory. The fundamental physics of the theory determine

the Lagrangian density:
S = \ d'z L.

and the Euler-Lagrange equations yield the equations of motion,

L(¢"(x), 00" (2), )

oL oL oL
= = 0,I1* — =0.
B(Bup°) o — "

a @t%n -
As a example, for a theory with a quadratic Lagrangian of the form
£=10,60"0— Li*d,

the equation of motion is the Klein-Gordon equation:

O

8,0 + p*¢ = 0.

The prescription for the canonical quantization of the theory is to replace the
fields ¢?(z) and I1%(z) = 0L/0(8y¢?) by quantum fields that obey the equal-
time commutation relations:

(112 (¢, 2), ¢° (¢, 7)] = ~i6,6° (% ~ §)
[6°(t,2), ¢" (¢, 9)] = Mo (t, 2), TT3(£, )] = 0.

Second Week

Symmetries and Conservation Laws

Quantum Field Theory
The Hamiltonian of a free scalar field is given by

H = \%mi = \%mw Tzoum + (Vg)? im&
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which becomes upon the insertion of the form of the quantum field ¢(z)

1 -
H = m\&wwsm Agmmw +mwmmv .

This Hamiltonian almost agrees with the form found from a rigorous devel-
opment of the Hamiltonian in the Fock space. The difference is an infinite
constant:

H= \%msm A@ng + wuwﬁovv .

The infinite constant is an artifact of the ordering ambiguity in quantizing a
classical theory; however, it does create difficulties when we wish to include
gravity for the gravitational field is effected by the presence of a vacuum energy
density through a term containing the cosmological constant, \:

R, — wmt.\m =81G(Ty — A\ ).

To avoid such difficulties, we introduce normal ordering which eliminates the
zero-point energy. The normal ordering prescription is as follows:

Normal Order: Given a set of free fields, the normal ordered product, denoted
as :d1(x1) - - dn(xy):, is the usual product with all of the creation operators to
the left and all of the annihilation operators to the right. If we define H to be
: H:, then we recover our original Fock space Hamiltonian.

Symmetries and Conservation Laws

A symmetry is a transformation that maps one allowed motion of a system
to another allowed motion. If the symmetry is continuous and acts on the
generalized coordinates of some Lagrangian L(g®,¢%,t) so that ¢®(t) — q(t, \),
then it is possible to study the effects of an infinitesimal tranformation:

0q°
Dq®* = —/— .
T =x L,

This definition allows us to more precisely state when a transformation is a
symmetry in terms of its effects on the Lagrangian.

Definition: A transformation is a symmetry if and only if DL = dF/dt for
some F'(q%,¢%,t) for aribitrary q*(¢).
Noether’s Theorem: For every symmetry there exists a conserved quantity
Q given by
dq
= Dg* — F — =0.
Q Mgu? q ”

Some familiar examples are

~

1. Translations: 7, — 7, + Aé, with D, = € and DL = 0 = the linear
momentum is conserved, P= > Mala-

2. Time Translation: 7,(t) — 7, (t + A) with D, = 7, and DL = L = the
Hamiltonian (energy) is conserved, H =} p,4¢® — L.

3. Rotations: 7, = R(M\é)7, with D7, = é x 7, and DL = 0 = the angular

-

momentum is conserved, J =Y 7y X Jo.

Symmtries in Classical Field Theory

One of the ways in which a classical field theory differs from a particle
theory is with the concept of local charge conservation: any net change in some
conserved charge must be accounted for by a net current flux into a region. Let
us generalize the concepts above to those for a field theory. Let us study the
continuous transformation ¢®(z) — ¢%(x,\) for a system described by the La-
grange density £(¢®,0,¢", x). The infinitesimal version of this transformation

is given by
0¢°

Do" =5y

A=0
Definition: A transformation is a symmetry if and only if DL = §,F* for
some F*(¢®, 0¢*, x) for aribitrary ¢*(z).
Noether’s Theorem: For every symmetry there exists a conserved current
given by

Jt =Y TtD" — F*

a

B, J" = 0.

Note that J* can be shifted by an arbitrary x* that satisfies d,x*: J* —
JE A+ xP.



Space-time Translations

If a Lagrangian does not explicitly depend upon the space-time position,
then the conserved currents corresponding to translations ¢%(x) — ¢(z + Ae)
lead to the energy momentum tensor:

HNJE\”MHM%.\&Q|.Q\S\N

which satisfies 0,7#” = 0. The components of this tensor correspond to familiar
quantities:

T =3 "M,¢"—L=H

T = the density of the ith component of the momentum
T7% = the jth component of the current of the ith

component of the momentum.

We can also study a Lagrangian £ invariant under Lorentz transformations,
a* = Aka”. Under a Lorentz transformation, the fields transform as ¢*(z) —
¢*(A~1(\)z). If £ only depends on z through the fields, then we can form the
following conserved tensor:

gt.\y — H.\Ht\/ _ H\/Ht.\

which is anti-symmetric in v and satisfies 9, M#*** = 0. The six conserved
charges in this theory are

JH = \%miotw = \%m AH:H? - &_\Ho:v .
For example, the third component of angular momentum is given by
J3— 1z = \%m AHHHS _ amﬂﬁv )

The three quantities J% = [ d3% (2T — 2*T°) represent the motion of the
center of energy. It is to Lorentz boosts as the angular momentum is to rota-
tions.

Internal Symmetries
In addition to symmetries that correspond to transformations of space-

time, other symmetries which act directly on the fields themselves rather than

9

their dependence on z are called internal symmtries. A first example is
provided by the theory

2
L= w@:&éx&u + w@:&mmtﬂm + wtm@{ + wtm@m% —g A@Jm + @JJ )
This theory is invariant under a rotation of the fields
@' — cos A @' + sin \ ¢
$#* = —sin XA @' + cos A ¢

The conserved charge is thus Q = [ d3#(¢'¢? — $p*¢?); in terms of the creation
and annihilation operators, () becomes

o sp[ 1t 2 2t 1
le\&me@m @m@&.

The interpretation of this charge becomes more clear if we introduce a complex
field % given by

— A% +§m _ %m —ik-x t ik-z
P = /2 I\Amiw\mﬂmsmv Tam +Qmm _

-

&Hls.ﬁm &w\a
._‘H =
v | &

Lp—tkz t ik-x
] Tﬂm +@mm _

/\M w\mAMEM
where L L
@Lﬂam.zam ?H:mlgm.
* V2 k V2

Then @ becomes the difference in the number of particles and antiparticles:
Q= \%\ﬂ (bhbz - cheg) = M= Ne.

The free field part of the Lagrangian in terms of this complex field is
£ = 8,910y — pyty.

10



Discrete Symmetries & Scattering Third Week

Discrete Symmetries

In addition to the continuous symmetries discussed last week, another
important class of symmetries are discrete symmetries which act as follows:
q*(t) = ¢*(t) and L — L. With the exception of time-reversal, all the dis-
crete symmetries are implemented by a unitary operator which preserves the
Hamiltonian:

Ulq"U=¢* U'HU =H.

Example 1. ¢(z) = —¢(x)

This transformation is a symmetry of any Lagrangian whose terms only
contain even powers of ¢, e.g.

= 5(0u9)* — 5176 — g¢".

For the free field theory case (g = 0), the unitary operator for this symmetry
is U = (=1)V, where N is the meson number. Even for interacting fields, this
symmetry means that no process can convert an even number of mesons to an
odd number.
Example 2. Charge Conjugation

The SO(2) = U(1) symmetric Lagrangian,

M 10u9")” — 312 (9°)7) —g | D_(6%)7 |,

a=1 a=1

actually has an O(2) symmetry as it is invariant under the transformation
¢t = ¢, > = —¢2. In the free field case, the unitary operator that produces
this transformation is Uc = (—1)™V2 where N, is the number of the ¢? mesons.
This operator acts as a conjugation on the ¢ = (¢! + &&MV\,\M complex field:

UbgUc =4t UlyUe = 4.

Parity Transformations

A parity transformation is an improper rotation which in three dimensions
can be accomplished by sending & — —Z. The the action of this transformation
could in general mix the fields as follows:

ﬁa@u &»v - W i:v%aﬁu |m|u»v

b=1

11

We shall discuss this symmetry through several examples.

Example 1. Scalars and Pseudoscalars
The free field Lagrangian, £ = £(0,¢)?
parity symmetries:

— 1p2¢?, acually has two types of

P: LS L
P:L— L.

P &Qu.‘mv - @Q“ |m|wv
P': &Qu.‘mv - |&Q“ |.\M.vv

Either of these mappings provides a satisfactory definition of parity as they
are related by Upr = AICZ Up. The action of the moidmw on the creation and
annihilation operators is Swgmsu =a_;and S,u:d, Up = @ . If we were to add

an odd term such as —h¢? to the Lagrangian, only P éo:E remain a symmetry.

Example 2. Mixed Scalars and Pseudoscalars
The first term of the Lagrangian,

4
IwMA t&n

is symmetric under both definitions of parity, P and P'. However, if an even
number of the fields transform as P and P’, then the interaction term is not
invariant—it will change sign since it necessarily contains three space deriva-
tives. The theory is invariant if an odd number of fields transform as P and
P
Example 3. Parity Violation

If the Lagrangian in example two has a term Mwﬂ%&avw added to it, then
no definition of parity gives a symmetry.

Example 4. A Case Where P? # 1

Our final example is designed to illustrate the fact that P2 need not give
back the original states. The Lagrangian

Aﬂnvmv _ .th.\qutnvwm.\%m%\/@wmqav»u

L=3> ((0u8") — 1’ (6*)°) 0u' 0"y — m*yTy
—h) (¢")° — ge" 7 0,0'0,¢*0x¢° 0, ¢ (1* + ¥1?)
a=1

has a parity symmetry of the form: ¢? — ¢2, ¢ — +itp and ¢t — Fy!. For
either choice of sign, Up # 1; for example QW%Q.W = —1.

Time Reversal

12



Time reversal does not correspond to a unitary transformation. Rather, it
is given by an anti-unitary operator (2, that is an operator on the Hilbert space
that satisfies for any a and b,

(Qa, Qb) = (b, a).

The reason that this produces a symmetry of the quantum theory is that a
symmtry only needs to leave probabilities invariant, and not the inner products
which are not measurable. Anti-unitary operators are also anti-linear:

Q(aa + b) = a*Qa + B*Qb,

where a, 8 are complex numbers. For a free field theory, the action of sim-
ulataneous parity and time reversal transformation (PT') is Qphé(2)Qpr =
¢(—z) = ¢(—t, —%). This transformation takes

QpyiQpr = —i.

-1 -1
Dﬁﬂ@mbwﬂ = @m Dﬁﬂ@wbﬁﬂ = Dm

Scattering Theory

The basic problem in scattering theory is to find the amplitude that a state
|¢) in the far past becomes the state (¢'| in the far future. The overlap of these
two states defines the scattering matrix S,

W'ISI9) = ')

which is an operator on the Hilbert space of states. One method of ensuring that
the states do not interact in the distant past and distant future is to explicitly
include a function f(t) that becomes zero in these limits and then write the
Hamiltonian as

H = Hy + f(t)H,

where Hy is the free Hamiltonian and H' contains the interactions. This for-
mulation of scattering theory suggests that we must develop a time-dependent
scattering theory.

The Schodinger Picture
In the Schrédinger picture, the operators are time-independent and the
states evolve in time according to

9)s = U O
§ (1) = Hips,as,)U(L,1).
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The Heisenberg Picture
In this description of the theory, the states do not evolve: |¢¥(t))g =
|¥(0)) g = |[1(0))s. However, the operators are time dependent:

Au(t) =U(0,)As(t)UT(0,) = UT(t,0)As(H)U (£, 0).

The Interaction Picture

Intermediate between these two pictures is the interaction picture for which
the time evolution of the states is determined by the interaction part (H'(¢)) of
the Hamiltonian: H(t) = Ho+ H'(t). The states are related to the Schrédinger
picture states by [¢(t))r = e*o(Ps:95)t|¢)(t))s and evolve as solutions to the
differential equation,

2 e = B o).

Here Hj(t) is the interaction part of the Hamiltonian with the operators in the
interaction picture:

.mNAﬂv m\A%NVQNVHV

\:AS = Qs.mo@mém:x»m@vmls.mo@mLmi.

1l

In field theory, Hr(t) contains the free fields,
6(t, T) = el g(t, Z)e~ 10",

We would like to define an interaction picture unitary operator that evolves the
fields in time, |¢(t)) = Ur(t,t')|¥(¢'))r. This operator satisfies the differential
equation,

d
ﬁS?S =H;(t)U(t,t') with Up(t,t'))=er = 1.
The reason that U;(t,t') is so important is that it corresponds to the scattering
operator introduced earlier, S = Uj(oo, —oc). Thus, once we have solved for
Ur(t,t'), we have solved scattering theory. The solution to the differential
equation for this operator is given by Dyson’s Formula:

Te™ St Hy (")

U(t,t') = t> 1

If the interactions are sufficiently weak, we can expand the exponential and

approximate Uy(t,t') by the first few terms. We shall show how scattering
theory can be applied to three models.

Model 1 L=10,0"¢ — wtm&m — gp(z)g(z).

14



Model 2 L= 18,00"¢ — S1*¢* — gp(Z).

Model 3 L= 50,00"¢ — Lp*¢* + 8,910y — m* Pty — gplyg.

Wick’s Theorem & Perturbation Theory Fourth Week

Wick’s Theorem
The contraction of two fields is the difference between their time-ordered
product and their normal-ordered product:

1
A(x)B(y) = T(A(z)B(y))—: A(z) B(y):

For the spinless meson of mass p this Wick contraction is equal to

N d*k ; 3
$@)9) = [ G e e

Wick’s theorem provides a means of expanding the time-ordered product
of fields in terms of a sum of field contractions and normal-ordered products:

_|_
T(¢1-- dn) =:¢1 n: +:P10203 + - dn: + terms with one contraction

1 . )
4+ P1P20304¢5 - - - Oyt + terms with two contractions

M/ M —
+...+A“§]ﬂm$w§:.Ezn if n is even
L P102030s - Pr2Pn_16n: if nisodd

Diagrammatic Perturbation Theory
The solution to the S-matrix is given by Dyson’s formula,

S = Ur(oc, —0) = HNJQIS._\,& Hi(t) _ ﬂmls...\, &»H\I;S.

In model 3, the interaction Hamiltonian density is gf(¢)y*¥e; so if g (which
is called the coupling constant) is sufficiently small, we might hope to obtain a

15

good approximation to the S-matrix by expanding the exponential and explic-
itly evaluating the first few terms. In all but a few theories which can be solved
exactly, this perturbative approach the only method available to estimate S.
Wick’s theorem has the advantage of expanding the time ordered product in
such a way to make clear the physical interpretation for each term, while at
the same time eliminating processes that create and then eliminate mesons not
present in the initial state. For example, one of the terms in Dyson’s formula
for model 3 is

1

H_. * *
Immw\%su%aw f@) f(t2) 1™ (21)d(@1) p(22)9 (32): Y™ (T2) 9 (1)
This term contributes to the following scattering processes:

N+¢— N+ ¢,
N+¢— N+ ¢,
N+ N = ¢+ ¢, and
¢+é— N+N.

Since the terms, first from expanding the exponential and then applying
Wick’s theorem to the time-ordered product of operators, quickly proliferate,
we introduce a diagrammatic representation. These diagrams refer to integrals
in position space and are called (in this course) Wick diagrams to differentiate
them from the Feynman diagrams we shall introduce later. In model 3, for each
factor * (z;)w(x;)p(x;) is associated a vertex,

while contractions correspond to connecting these vertices, e.g.

1

Y (zi)(z;) =

Model 1 Solved

16



In model 1, for which the interaction Hamilitonian describes the emission of
a meson from a source, H; = gp(x)@(x), there are only two types of connected

Wick diagrams:

®H|W| and GmHK.

This theory is sufficiently simple that we can solve the scattering matrix exactly.
To do so we use the theorem,

MU (all Wick Diagrams) = : o2 (connected Wick diagrams).

The operators corresponding to the two connected Wick diagrams are

0 = —ig \ d*y p(z1)p(x1)
g \ 3(20)6(z2)

0, = d'zid ey ¢(x1)p(22) pla1)p(e2) = a +if

Observe that the latter diagram is simply a complex number. Thus the scat-
tering operator becomes,

—. 001+302, 3(a+iB) . ,O1.
=: 011302, = gzlatif) . ¢ t,

U(o0, —ox)

which we can solve by a consistency argument. The probability of starting with
the vacuum |0) in the far past and having n mesons in the far future is given

by
ol el "
Nyuwwuﬂ\%wqgav

where, for notational convenience, we have introduced,

f(k) = |Awiw\wlmmm€mvim \%am?vm;.a.

Since Ur(oo, —o0) is a unitary operator, the sum of these probabilities must
give one, which implies

Qu|\%§>@$

Thus the probabilities produce a Poisson distribution:

_ ala”
P,=e o

17

The state created by this classical source is called a coherent state. The average
number of mesons, energy and momentum created by the source after it turns
on and then off are respectively,

-

) =lal (1) = [ER@Pe (B = [ SRIBPE

Notice that the stronger the source, more mesons will be created.

Model 2 Solved

Model 2 is more difficult to solve since the source does not automatically
vanish as ¢ — £00; we must impose this condition by including a function
f(t) in the interaction Hamiltonian: H; = gé(z)p(Z)f(t). While a seemingly
innocuous change, it actually introduces a phase to a state as the interaction
first turns on and then off again,

(0]U (00, —00)[0) = e #7744 ET),

The origin of this problem is that the ground states of the free Hamiltonian
and the full Hamiltonian are not equal. One way to correct for this mismatch
of energies to simply add a constant to the interaction Hamiltonian so that the
ground states of Hy and H agree:

=10 |o [ @70@00.8) - a
The prescription that determines a is that

(0]S]0) = 1.

The corrected version of model 2 has now three connected diagrams, two similar
to those of model 1 (O; = {__ and O, = §__2) and a new diagram that
corresponds to the counterterm that we added O3 = x. Thus the scattering

operator is

1 1
S =U(co,—00) =:e91120240s, — 202405, gO1,

The condition determining the counterterm, (0]S|0) = 1, means that O3 =
IwGM so that

&3k . - : -
S =:e%:=exp Is..e\ 3 A\AIEmvaIS ap + %AEMV\NQS @WV
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The tildes denote Fourier transforms. Recall that as the characteristic width
of a function inceases, its Fourier transform becomes more narrow. Thus as 7,
which describes the duration of the turning on and off function f(¢), increases,
its Fourier transform f (wj) becomes a sharply peaked function centered about
wg = 0. However, since physical mesons have w; > u, we must have O; = 0
and thus

S =1

This equation just expresses the physical fact that a static source cannot impart
any energy, in particular, to the mesons.

Feynman Diagrams Fifth Week

Ground State Energy in Model 2

Although Model 2 does not contain any scattering, it still provides infor-
mation about a system of two nucleons. Consider the example of a source with
two nearly point-like sources at positions #; and Zs:

EA.&J — :%uAhw'| &‘Hv + :%:Amlw|.n|u.mV.

In the T" — oo limit, the ground state energy of this system, Ey, is equal to
diagram (2); that is, the renormalization condition (0]S|0) = 1 for the vacuum
actually tell us the energy of the ground state of a meson-source distribution:
1
k2 + p2
1 B o "
=5 [ FETH@pDV G - ).

2 37
_ 9 &’k | _ =9

The potential has been converted to a function in position space

Bk etk @—7) g% e~rlF=7l
V(- — _2 s =2
E-9)=-9 \s% Rip  An T4

and is known as the Yukawa Potential. The physical ground state (|0)p) wave
function can be expressed in terms of the basis states of Fock space. The ground
state is found by applying our solution to model 1 with

) o€t
iy = 4 p(@)et t<0
p(t, ) ﬁo £>0
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As in model 1, we discover

(k1,...,kn|0)p

-

(E1, ..., kn|Ur(c0, —00)|0)
= e @B2 () f(kn)

where (for € — 0)

- -

¢|T§aé|§v|¢:
1) = G i Grageys @~ ] PRI

When the “nucleons” (represented by the static meson-source) shrink to point-
particles, & — oo logarithmically and the ground state no longer lies in the
Fock space. Another sort of divergence occurs when the mass of the meson
vanishes. Then (N) = a@ — oo; however, the energy and momentum in the
meson field are both finite so that most of the mesons must have infinitesimally
little energy.

Mass Renormalization
When a particle moves through some medium, it responds to external forces
as though its mass is given by an effective mass which may be quite different
from its mass in a vacuum. This effective mass is the sum of its mass in vacuo
plus the effects of the medium on the particle as it moves through it. Some
examples, beginning with one from the mid-nineteenth century, include
1. Hydrodynamics: the effective mass of a ball moving through a fluid equals
its mass in vacuo plus one half of the mass of the fluid it displaces.
2. Lorentz’s model for the electron: the mass of the electron is the sum is its
rest mass plus the mass of its electric field.
3. Model 3:
The mass renormalization of model 3 is important for our discussion of scat-
tering theory since should the masses change upon turning on the interactions,
particles set up in the distant past to scatter at ¢ ~ 0 may no longer do so.
Therefore, so that the masses agree in both the free and interacting theories,
we take pu and m to be the physical mass (which is the same at all times). To
accomplish this feature, we write the Lagrangian for model 3 in the following

form:
L =10,00"¢p — 112 ¢ + 9u1p* 0y — mP Y™y
+ f(t) [-gv* o + a+ Fb¢” + cyp*y] .

The vacuum energy density counterterm a, the meson mass counterterm b and
the nucleon mass counterterm c are determined by the conditions that

(0]S]0) = 1 = determines a
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and that single meson or single nucleon states do not scatter:

(k|S|k'"y = 6°(k — k') = determines b
(pI1S|p') = 8*(F— §') = determines c.

The coefficients of the ¢? and the 1*1) terms in the Lagrangian are sometimes
called the bare masses of the meson and the nucleon:

The advantage of writing the counterterms with the interaction term is that
then all of the quantities that we shall calculate in perturbation theory will
already be expressed in terms of the physical masses.

Feynman Diagrams

Feynman diagrams offer a clever set of rules for writing down all the graphs
in perturbation theory that contribute to a particular scattering process. Before
introducing the Feynman rules for model 3, we shall study an example: consider
the scattering of two nucleons. The scattering amplitude is determined by

T (e [ d*a %e?&%‘m%i

(P}, P51(S — 1)|p1, p2) = (P, P — 1|p1, p2)-

The states are normalized to transform correctly under Lorentz transformations:
p) =T (P)[0)  bi(p) = (2m)*/* (2wp)'/2DL.

The first term in S — 1 that contributes to nucleon-nucleon scattering is an
order g? term:

IW\.%&H%MS“e*@L@@L&Q&EX&L@@&&AHMV”. (1)

The reason that such a term contributes is that we must have two nucleon anni-
hilation (creation) operators to absorb the initial (final) state |p1,p2) (|p}, ).
Evaluating the operator (1) between these states gives

»
HI,QM\%HH%QS\ Q:a mws.cm|E+Sm@.§.€m|E+€
(2m)*

+ ms.au.gm\ﬁu+5 ms.sm.@p —p2+k) 4

k? — u? +ie’
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Performing the integrations yields

2 2
—9g -9 . 454 / /
o =P — 12 +ie | (o1 —ph) — 2 +L im0 et p2 = —ra)- (2

We now introduce the Feynman rules for model 3 and show that we obtain
the same answer for nucleon-nucleon scattering.

Feynman Rules:

_ &k

L (2m)* k2 — p? +ie
_ d'p i

D (2m)t p? — p? +ie

= —ig (2m)' 6'(p' —p— k)

Feynman Rules for the Counterterms:

x = ia (27)* 6(0)
——— = ib (2m)* 64 (k — k')
k' k
A|\ - = ic AMS.V% %%Gu |Nu\v
p p

The prescription for applying these rules is to write down all of the diagrams
to a given order that contribute to a process (determined by the external lines)
and apply these rules to convert the graph into a function, Ay;, of the external
momenta. The contribution to the scattering matrix is then given by

AE\T e _AM - C_ﬁf .. v = &.\f:. Awﬁv%%»Aﬁxyoom_ - ﬁﬁnog_v.

For example, the two graphs that contribute to N + N — N + N at second
order in g are

h k and h k
ph P2 j2 )
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and applying the above rules immediately gives the same expression as in equa-
tion (2).

Let us try to interpret this result in the language of non-relativistic
quantum mechanics. In the center of mass frame, the momenta are p; 2 =

(Vp* +m?,+pé) and p} 5 = (1/p? + m?,£pé') and let us define cosf = é- &'

Then the Feynman amplitude is

L[ 1 1
T R

where

A? =2p*(1 —cosf) A% =2p*(1 + cos¥).

The first term represents a Yukawa potential while the second represents an
exchange Yukawa potential.

Crossing Symmetry and Phase Space Sixth Week

Survey of Scattering in Model 3
We complete our survey of all the scattering processes in Model 3 to order
Since N + N — N + N was introduced last week, we begin with nucleon-
antinucleon scatter for which there are two contributing graphs:

N + N — N + N: Nucleon-Antinucleon Scattering

/

Pl p1 Dh p1

-

p1 + D2
Dh D2 2 D2

T: -n and

The Feynman rules for Model 3 produce an invariant amplitude,
+ i
(p1 +p2)? — 12

i = (=ig)” T@ Luwvm — 12

in which the first term is just a Yukawa potential in the non-relativistic limit.
The second term also arises in non-relativistic quantum mechanics. To see what
it is, observe that (p; +pa2)? = E2, where Eio is the total center of mass energy.
In the non-reltivistic limit then,

1 1 1
(p1 +p2)? — p? T 2m —p By — p
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If we regard the virtual meson as a state with energy u, then near threshold,
such a term arises at second order in the Born approximation to the scattering
matrix:

(FVIn)(n|V]i)
A Vv Y+
o< (Vi) +Mum§|m Tie T
Consequently, we refer to the contribution from the second diagram as an energy

eigenstate pole.
N + ¢ - N + ¢: Nucleon-Meson Scattering

R

ptq

Here the invariant amplitude is

1 i
iA=(—ig)’ + _ :
(~ig) p+a?-p* -¢)-p
an energy eigenstate pole and an exchange Yukawa potential, respectively. Note,
however, that the range of the potential is not 1/m but rather 1/+/p(2m — u)
in the non-relativistic limit.
N + N — ¢ + ¢: Nucleon-Antinucleon Annihilation

q p q p
T —q and Tw —-q
q i q i

The invariant amplitude for this process,

i i
iA = (—ig)? —— + . .
(~i9) FT%lS:: GTSFS:LU
and these terms corespond respectively to a Yukawa potential and an exchange
Yukawa potential.

Crossing Symmetry

Let us denote a generic two-paricle scattering process by the amplitude
A(p1,p2,p3,p4) where all of the momenta are directed inward. Which phyical
process this represents depends upon the 0" component of the momentum: if
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p? > 0 then particle i is an initial particle, otherwise if p < 0, then it is a final
state. For example, in the scattering 1 + 2 — 3 + 4 we have
p),p3>0 and  p§p}<O0.

Formally, we can always let A(p1,p2,ps,pa) describe the scattering processes
1+2—-3+4,14+3 = 2+4 and 1+4 — 2 + 3 since the regions in momentum
space corresponding to each scattering process are disjoint.

The set of sixteen variables (p1,p2,Pp3,ps) is overcomplete since we know
that the scattering of two particles should require only two wvariables to

describe—the center of mass energy and the scattering angle for example. A
useful set of variables is provided by the Mandelstam variables,

s = (p1+p2)* = b3 + pa)°
t=(p1 +p3)® = (p2 +pa)°
u = (p1 +Evm = (p2 +§vwv

which represent the center of mass energy in each of the three channels:

1+42—-53+14 s-channel
1+43—>52+1 t-channel
1445243 u-channel.

Of course, these variables are not all independent; they satisfy the constraint
s+t+u=mi+mi+mi+mj.

We can introduce a two-dimensional plot for these variables by defining

mHm..mm.*.wm m?
a
= A 1 2
ﬂlﬁ.mﬁ.TmM m;,
a
u="r

N HM 2
mﬁ+w m,
a

where é4, é; and é, are unit vectors separated by 120°. In the case where all
the masses of the external particles are equal, then the Mandelstam-Kibble plot
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looks like

physical region for
s-processes
u=20

threshold: s = 4m?

s=0
physical region for

physical region for

t-processes u-processes

t=20

We now see that the three regions are not independent but must be connected
by analytically continuing from one region to another. Although we can analyt-
ically continue to different regions, the physical meaning of the process changes:

u-region: t-region:
— . —
Yukawa potential

s-region:
energy eigenstate pole exchange Yukawa
The T'C' P Theorem.
The T'CP Theorem for our amplitude A(p1,pa, ps3, pa) simply states that

A(p1,p2,p3,p4) = A(=p1, —p2, —P3, —p4)-

More generally, any theory with a Lagrange density that is Lorentz invariant is
CPT invariant, although it may violate C, P and T separately.

Relativistic Phase Space

When a theory is to be compared to an experiment, in addition to the
invariant amplitude, A, the rate at which a process occurs depends upon the
available phase space. We here summarize the important formulae for physical
decay and scattering processes.

1. Decays.
Let dI' denote the differential decay probability per unit time, then
1 &k
dU = —|A]? (27)*0(ps — pi —

particles
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The decay probability per unit time is then mI'/E.

2. Cross Sections.
Let do denote the differential transition probability per unit time per unit
flux for two initial particle scattering; then

wl
@2m)*s* (s —p) ] %

final
particles

do = |A?

P@H .N_m _CH — em _

The total cross section is the integral over the available phase space:

1 %Mx 454 2
7= 4B\ By |0y — ] IS_ M \ E (27)32E¢ (2m)"0%(ps — pi) | A

final final
states particles

3. A two body final state in the center of mass frame.
The phase space factor for the final states,

37
D= AM\\Q»%»AEN I@s.v E % AC

final
particles

becomes for a two particle final state

1 pidy

D =
H@Qﬂm .m_nOe

in the center of mass frame. Here 1 and 2 refer to the final particles. For
example, the scattering of two particles into two particles has the differential

cross section
do 1 Py

dQ ~ 64n2EZ, p;
in the center of mass frame.

The decay of a meson at rest into a NN pair in Model 3 proceeds with a
decay width

A%,

.Qw

167 p?

u? —4m?2.

I =
4. The Optical Theorem.
The optical theorem in quantum field theory is just a consequence of St.S =
1. This theorem states that

1
MHB.\F& = M — Nuq:_.\rq:_m

T !

intermediate states
with noy, particles
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where D,, is the final state phase factor, introduced in equation (1). Physically,
the optical theorem states that the decrease of a scattering beam in the forward
direction corresponds to the probability that a particle scattered out of the
beam.

5. Three body final state in the center of mass frame.
Finally, if we have three particles in the final state, the phase space factor
is given by
1 pidpr padps
25675 E; ’ Es
where 1 and 2 refer to two of the final state particles (the momentum of the

third cancels these two in the center of mass frame) and ¢q2 is the azimuthal
angle about .

.Nu = &b &@HMV

Scattering Theory Reconsidered

We would now like to define scattering theory without recourse to the adia-
batic function f(t). The fundamental object that shall study in this reformula-
tion of scattering theory is G (ky, ..., k) which represents all allowed graphs
in a theory with n external lines. Graphically, we represent G(*) (k1,...,k4) by

\A& k 1

Ql.ﬁﬁv QﬂHu \amu \aw“ \a%v

\ﬂw \ﬂm

Since this object is of fundamental importance for our reformulation of scatter-
ing theory, we shall provide three interpretations for G (k1y. . kn).

First Interpretation.

The first place that such a graph could naturally be encountered is as
an internal component of a larger Feynman diagram. One pleasant feature of
this function Q@ (k1,...,ky) is that if we explicitly remove the external lines
by multiplying G(™ by an inverse propagator for each external leg, we should
recover the scattering amplitude for a process with a total of n initial plus final
particles. The example for two-particle scattering is

4
= [T[=ix:
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(ky, k5|(S — 1) |key, k2) — )]G (ky, ko, —ky, —k3).



Since the k, correspond to physical particles, these momenta should be on the
mass shell: k2 = m?2. This seemingly trivial result we shall encounter later and
is called the Reduction Formula.

Second Interpretation: Green’s Functions

The function G(™ (ky, ..., k,) also has a role similar to that of the Green’s
functions introduced in electrodynamics. In the following, we shall write these
functions in both momentum and position space with the following Fourier
transform convention:

&N:a ik-x F
£@) = [ oy ®)
fk) = \%a e~ R f(x).
Let us introduce a real source into our theory,

L= L+ p()d(x);

this new interaction is accompanied by the following Feynman rule:

- ip(—k)

k

In the presence of an arbitrary source, the vacuum to vacuum amplitude is
no longer uninteresting since the source could produce any number of mesons
which interact and are later absorbed again by the source. We can thus formally
expand the vacuum to vacuum scattering amplitude terms of the number of
times the source produces a particle:

(01510} | |H+Wﬁ\ d'k: d'kn (—k1) - p(—kn)G™ (k k)
p — n! Awﬁ.v» Awﬁ.v%\u 1 p n 1;---5Rn
HIMﬂ\%ﬁ...?ii...%%s;?.éa
n=1

Notice that by taking the n'' functional derivative of the vacuum to vacuum
amplitude with respect to the source which is then set equal to zero, we extract
the G™ (zy,...,2,). For this reason, we call

Z(p) = (018)0)],
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a generating functional for all the Green’s functions. The generating functional
for the connected Green’s functions is

W(p) =InZ(p).

Real Scattering Theory
We are now ready to set f(t) = 1 and attempt to construct a scatter-
ing theory using the Green’s functions and connecting this formulation to our
previous version of scattering theory. Before doing so, we define the physical
vacuum state, |0) p, which has zero energy and momentum and represents the
only normalizable energy eigenstate in the theory. We add a source to the the-
ory and define the Green’s functions in terms of the generating functional as
before:
Z(p) = p{OU (00, —00)|0)p| .
Then for the Green’s functions, G(), derived from this generating functional,
1. G is given by a sum of Feynman graphs.
2. Up to a renormalization of the fields, the reduction formula is true.
In proving the first statement, we discover a third interpretation for G() in
terms of a time-ordered product of Heisenberg fields:

G (z1,...,20) = p(O|T[¢r (1) - - Pr (z0)]|0) -

In proving that the reduction formula still holds without the adiabatic
function, we shall introduce a renormalized field operator,

¢'(2) = Z; ' [p(x) — (0]¢(2)|0)]

where
V23 = (k[$(0)]0).

This renormalized field has the following properties:

A.o_&gav_ov =0 |
(k|¢'(z)[0) = = (0] (z)|k) = e .

Just as we saw that the Green’s functions can be defined in terms of a vacuum
expectation value of time-order Heisenberg fields, we can define renormalized
Green’s functions by

G = \ d'zy - dlag e e IOIT [ (21) - ¢ (2)]]0)-
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It is this Green’s function which satisfies the Lehmann-Symanzik-Zimmermann
(LSZ) reduction formula:

r

A \H““Nﬂ“:_hm - Hv_\nfn\aﬁv = :A|SVQAW |twv

a=1 b

E:

(=) (ki — 1)

Grm (g o =k k. k).

To prove the LSZ reduction formula, we introduce wave packets given by

&k
9= | Gy WD

fw) = | F

g e~ F (k| f);

we recover plane wave solutions by taking |f) — |k) (f(z) — e %), These
wave packets should satisfy the Klein-Gordon equation, (8,0 — u?)f(z) = 0,
and in terms of them the LSZ reduction formula looks like

A.\.wu.\.»_ﬁm - MV_\.T.\.NV
- \ oy diadiosdias £(21) f@a) f* (25) F* (24) (D)
0,0, — 1)+ (0,0°],, — KOITIH (21)6 (22)¢ (25) ¢ (20)][0).

Let us introduce the following notation, for an operator A we define A7 by
Af(t) = s.\%m (Adof — fOoA).
This operator A/ naturally appears in the little lemma,

@.\%i@xm&: _ i) A(z) = Ta ~ lim T%S.

t—oo t——o0

When applied to the renormalized field, we have an object that creates or
annihilates a single meson state:

(0l¢' (1)|0)
(klo' (t)]0)
(01¢' (1))

31

0
(kL)
0

For a multi-particle final state |n) (P*|n) = pk|n)),

“E nTﬁM i —wg
(nl¢'! (1)|0) = (nl¢' (0)]0) £ i),
k

With the assistance of the Riemann-Lebesgue theorem, we then have for a final

state (¢,
lim (4]¢' (t)|0) = (¥|f).

t—+oo

We can then prove the LSZ reduction formula above using

Hm  lim (9]¢ (81)¢' 2 (£2)[0) = (] f1 f2)°0

t1—00 ta—00
Hm  lm ()¢ (81)6'72(£2)[0) = W|f1f2)™.

t1——o0 ta——00

For theorems of the production of soft photons, it is useful to use a “stop
half-way” version of the LSZ formula:

(K1, k3| (S = 1)y, k2)
”\.&%HH&»HN Q\;\Hémmls.auéugvm

(0,0"],,, +1)(800" |, + 1) (K| T (21)' (22)] 2).

Renormalization of Model 3 Seventh Week

Renormalization of Model 3

The general formulation of scattering theory in terms of the Green’s func-
tions can be applied to our Model 3. We could work directly with the ‘bare’
Lagrangian

L =10,00"¢ — p*¢* + 0,4 0" — m*Y* Y — gp*9g,

but such an approach would not be very efficient since once we had evaluated
some scattering process in terms of these bare parameters, we would still need
to re-express them in terms of the physical parameters before we could compare
the result to experiments. Moreover, we still need to renormalize ¢ and ' since

32



these are the fields that appear in the Reduction Formula. Therefore, a better
form for the Lagrangian is

=1 50,80 ¢’ — 5p7¢” + MY — mPY Y — g Y ¢ +Len,

where L..¢. represents the set of counterterms:
L =:A¢'+1B8,¢'0"¢' — LC¢"* + DO, 0"’ — Eyp"™y' — F1p"*4)'¢' + constant:

In expressing the Lagrangian thus, we have nine parameters instead of the
original three of the theory, so we should augment the theory with six renor-
malization conditions:

1. (0]¢'|0) = 4. The mass of the meson is p
2. (k|¢'(0)]0 v =1 5. The mass of the nucleon is m .
3. {0y (0)|p) =1 6. g is fixed by some convention

Of these conditions, only the first is in terms of the Green’s functions.
It implies that tadpoles do not contribute whether the line connected to the
tadpole is internal or external. Otherwise we must overcome three difficulties
if we are to use this Lagrangian as a basis of scattering theory:
1. The counterterms contain derivative interactions.
2. Conditions 2-5 are not explicitly conditions on Green’s functions.
3. We must find the best way to define g.

Derivative Interactions.

The difficulty in treating derivative interactions is threefold: II# # 9*¢,
H # —L', and T[0,¢- -] # 0,T[¢--]. Each of these sicknesses however is the
others’ cure. Later in the course, we shall develop another approach to quantum
field theory which will allow us to use derivative interactions. For now simply
note that for some interactions, we obtain the right scattering matrix if we treat
‘H' = —L" and take all derivatives outside the time-ordering symbol.

We can show that for derivative interactions such as those in our Model 3
example, those coming from a rescaling of a field, give the correct rescaling of
the Green’s functions when the naive Feynman rule is used, i.e.

@) =2; o) = G"'=2z;"a.

This result is true even in a more general theory,

N
WP+ 904",

r=3

L=10,00"¢ -
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and the proof uses the conservation of ends:

n+2I = MUZ\?

Expressing the Renormalization Conditions.

The renormalization conditions for the masses of the particles need to be
interpreted in terms of the Green’s functions, which are the only objects we
know how to compute in perturbation theory. To begin let us insert into the
Wightman Function{ a complete set of intermediate states:

(0]¢'(z)¢' (y)10) = M\Ao_ﬁav_:x:_ﬁs_s.

From the first renormalization condition, |n) = |0) does not contribute; only
the single meson and multi-particle states contribute:

(06 (@) 8 W)0) = A (& — y; 1)
&wl
+3 \ — (27)%6" (p — pa) | (016 (0) ) PeiPn e,

all
else

If we introduce a function o(p?) defined by

a(p*)8(po) = Y (2m)%6% (p — pn) (/¢ (0)n)[*,

all
else

then we obtain the Lehmann-Kaillen spectral representation for the Wightman
function:

(016 (@)¢' W)|0) = Ay (x — y; %) + \ da? o(a*) Ay (z — 3 a2).

The function o(a?) is always non-negative and is equal to zero up to some
threshold above the one-meson state (a? < (u + 9)?). If we define the “renor-
malized propagator” by

Gk, k') = (2n)*6* (k + k') D' (k?),
then

.U\ M i
Qav wlt +Sm \%q wl@m.Im

1 The Green’s function contains a time-ordering operator.
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The renormalization condition 4 (and analogously 5) can now be stated pre-
cisely,

1. D'(k?) has a pole at k? = >

2. with residue 3.

In practice, there is even a more useful method for expressing these mass
renormalization conditions involving 1PI (one particle irreducible) Green’s func-
tions. A 1PI Green’s function is the sum over all 1PI graphs which do not
include the propagators for the external legs. A graph is 1PT if

1. it contains at least one vertex,
2. is connected and
3. cannot be disconnected by cutting a single line.
As an example, consider the set of all 1PI graphs with two external legs:

—— = (2m)*0" (k + k') [—iIl'(k?)]
k

where II'(k2) is called the self-energy. Then the propagator becomes, upon
summing a geometric series of graphs,

i

1(1.2\ __
D(k) = K2 — g2 — IV (K2) + de’

so that the renormalization conditions become in terms of the self-energy

1(1.2
g, LK) =0.

1. I =0 and
(1) n dk2 K22

Thus, if we express the counterterms order by order in perturbation theory,

B=) Bng" C=)_ Cug"

then these two conditions on IT'(k?) determine the two unknowns, B,, and C,,
that appear at order g” in sum of 1PI graphs with two external lines.
The nucleon counterterms,

ho.n. =... 4 b%t%?@tﬁ\ _ mg\*ﬁ\ +--

can be similarly determined using the nucleon self-energy, ¥'(p?) which is de-
fined by

= 2m)*i(p +p) [-iZ' (p?)]
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The conditions on the propagator—that it should have a pole at the physical
mass m with residue i—translate into
dx'(p*)
L. ¥m?) =0 and 2. —5~ =0.

p2=m?2

An Example: II'(k?) to Order g2 in Model 3.

As a first application of our general scattering theory, let us calculate the
meson self-energy to order g in Model 3. To this order only two graphs con-
tribute, a graph with one-loop and a counterterm graph:

&)

—Il'(k?) = +

which becomes, upon applying the renormalization conditions,

z\QﬂmV = HH\NQQMV — .WM.QNWM + QM.QN
dIr’
=10 (k) — (K — )| =T (°).
u2

EVQ%V is the function obtained for the loop graph from the Feynman rules:

dq i i
2m)t @2 —m? +ie (g + k)2 —m? +ie

il (02) = (—ig)” [ -

This integral presents us with three problems:

1. Tt is not spherically symmetric.

2. It is not Euclidean.

3. It is not convergent.
The lack of convergence is actually not a problem since I’ (k*) — II'; (u?) is not
divergent.

Evaluating Loop Integrals Eight Week

The Self-Energy of the Meson in Model 3
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The meson self-energy, I’ (k?), to lowest order is given by

It

(k) = 10 (k%) = 1 (%) = (K = %)

u2

where EVQ%V represents the contribution from the one-loop diagram
)

-~

k

-

k

With the momentum of the internal lines assigned as shown, the contribution
of this one-loop graph is

dq i i

2m)t ¢ —m? +ie (g + k)2 —m? + i€’

ity () = (—ia)” [ -

We shall use this integral as an example of the general techniques used in
evaluating the contributions of graphs involving loops to the Green’s functions.

1. Feynman Parameters.

The first useful trick is to combine the two propagators into a single frac-
tion. Feynman noticed that by introducing a new integration variable, the
integrand could be put in the desired form:

1 1 1
ab = \o Py (1)

In the case of the meson self-energy, we have

I, (k?) = ig? \H &a\ d'q 1 .
! 0 (2m)% [¢® + 2zq - k + k22 — m? + ie)?

2. Shifting the Momentum.

The integrand is not yet spherically symmetric since it contains a term
linear in q. However, this term can easily be eliminated by shifting the loop
momentum by ¢* — ¢'* = ¢* + zk" so that DwQ%v becomes

:\%TI\_%\ d'q L
f - o (2m)* [¢2 + k2x(1 — ) — m? +ie]?’
We shall drop the prime in the following calculations.
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3. The Wick Rotation.

The integrand is now hyperbolically symmetric as the time component has
the opposite signature as the spatial components. If there are no obstructions in
the complex plane, we could rotate the time component of the loop momentum
from along the real axis to along the imaginary axis: gqg = *iq4. Let us write
the loop integral in the general form

~|\ d'q
) (@ -F+a+tien

The choice of the sign for the ie shows that regardless of the sign of ¢ — a, the
only rotation that avoids the poles at gg = £1/¢2 — a — i€ is

qo — 1q4.

This deformation of the contour of integration is called a Wick Rotation. After
performing this rotation, we have a genuinely spherically symmetric integrand
in terms of the Euclidean momentum gg:

I H\ d'qp
(—¢% + a+ie)n

4. Spherically Symmetric Integrals in Arbitrary Dimensions.
The momentum integral that appears in the expression for the self-energy
of the meson is of the general form

_ d*qp
MA&VﬁV|,\,AQW+Dvﬁ

where we have written the momentum in d dimensions. Most frequently, we
shall take d — 4 but often, if the integral diverges, it is useful to evaluate the
integral with d nearly, but not quite, equal to 4. This allows us to separate
the pieces that diverge in the d — 4 limit from those that remain finite. The
divergent terms are then canceled by the divergent pieces coming from the
counterterms so that the final expression for IT'(k?) is finite. The result for
I(d,r) is then
HJQa - mv d

— pd/2”\N 27 S-r
Id,r)=m o) az"".

Here, T'(2) is the gamma function which for z = n, an integer, is
I(n+1)=n! T(z+1) = 2T(z).

38



The I'-function has poles at z = 0, —1, —2, ... and its behavior near these poles

is
(=" [1 €

M+€A3+C+I

I(—n+e) = 5

2
- (5 +#@+D-vm+n)+0@)
where 9)(z) = dInT'(z)/dz. If r—2 < 0 then I(d,r) contains a pole in the d — 4
limit. Thus the pole in the I'-function extracts an order d/2 — r piece of the

$-7 term that remains finite in the d — 4 limit:

leﬁ — ml?\&\m:za =1 Aﬁ _ mv Ina + -

5. II'(k?) to order g2, Concluded.
Using the above result for I(d,r) for the meson self-energy, we discover
that I’ Q%v does contain a pole at d = 4 but that this pole is precisely canceled

by the @o_o in IT' At ) which originates in the counterterms. The final finite
expression for I’ Q%v is then

I (k?) = g’ \_ dz ln k2z(1 — z) —m? + ie 3 (k? — p?)z(1 — )
1672 wrr(l—z)—m2+ie px(l—1z)—m? +ie

Note that in accord with the Lehmann-Kéllen spectral theorem, the self-energy
has a branch cut beginning at k> = 4m?. Actually, the cut should begin at
min (442, 4m?) but a two meson intermediate state does not appear in II'(k?)
until O(g%) in perturbation theory.

More Loops.

The Feynman parameter trick can be used to combine an arbitrary number
of propagators. Consider a graph which contains I internal lines and L loops.
The generalization of equation (1) is

1

L 1
Ma”:-:_\o doy - dor §(1= T o) o5

thus a generic multi-loop integral, upon introducing the Feynman parameters,
assumes the form

1
1
I Q|:_\o %:...%;ATMHL\%S...%S%m
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where
@mMU}} w+MUm ki + C.
i,7=1 i=1

By appropriately shifting the momenta and rotating them until the analogue
of A;; in the new coordinates is the unit matrix, the multi-loop integral can be
written in the following form,

1
Xk -Cnt

1
I QL:\ dey - dep (1 =3 ap) —= \%5 -d'kr,
0

Eoﬁ AJ2

where

! 1 = —
C'=C-+ > BjA
i,j=1

Once in this form, after Wick rotating kY — ik}, the multi-loop integral is a 4L
dimensional spherically symmetric integral of the kind we encountered before.

The definition of g.

Only one of the six renormalization conditions for model 3 has not yet been
expressed in terms of the Green’s functions—the definition of the coupling con-
stant g. To this end, we introduce another 1PI Green’s function, T'(p?, p'?, ¢?),
defined as follows:

= —i(2m)*6*(q+p+ )T (p?,p?, ¢%).

We then choose three fiducial values, p?, p? and ¢?, and define the renormalized
coupling constant g by

g=T(*p"? ¢).

This condition fixes the F' counterterms order by order in perturbation theory.
For abstract proofs it is often convenient to choose p* = p”> = ¢*> = 0 but the
most physical choice and the more useful in practice is to have all the particles
on the mass hyperboloid: p? = p? = m? and ¢* = 2.

Renormalization versus Infinities.
Interactions in a general quantum field theory fall into three classes:
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1. If the coupling constant has positive mass dimension, it is a super-
renormalizable interaction. An example is the —gy*y¢ interaction of
model 3 in which g has the dimensions of mass.

2. Interactions with dimensionless coupling constants are renormalizable. An
example is the interaction —§; A¢*.

3. An interaction with negative mass dimension is said to be non-renormalizable i

The interaction g¢° is non-renormalizable. If we were to include it in a theory,
then we would find that the graph

N
AN

is logarithmically divergent so that our theory would require a counterterm of
the form h¢®. This interaction in turn would require a counterterm of the form
j@7 to cancel the infinities that it would create. To cure all the divergences of
a theory with a non-renormalizable interaction requires an infinite number of
counterterms and a theory with an infinite number of adjustable parameters
has no predictive power.

Non-renormalizable interactions are allowed in an effective field theory.
Such a theory is the low energy limit of a more fundamental theory and the non-
renormalizable interactions that appear in the effective theory depend upon the
finite number parameters of the higher energy theory. The reason such effective
field theories are useful is that while they may contain an infinite number of
interactions, these interactions only depend upon a small set of parameters and
so the theory has predictive power. Moreover, interactions involving many fields
are often suppressed by more powers of the massive particles of the high energy
theory so that in practice, very few of the interactions of the effective theory
are needed to study a given scattering or decay process.

Representations of SO(3,1) Ninth Week

Fields with Spin.

Until now, we have developed quantum field theory exclusively for spinless
particles. However, the most fundamental particles observed in nature have spin
w or spin one so we must also develop a relativistic description of such particles.
The existence of particles with spin is a manifestation of the underlying Lorentz
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symmetry of spacetime. If we make a Lorentz transformation, A € SO(3,1),
on a quantum field ¢®(z), the components of this field will in general mix:

Ut (A)¢* (2)U(A) = Dj(A)¢" (A" z)
U'(A)¢*(0)U(A) = D (A)¢"(0);

here we restrict to linear transformations. If ¢%(x) were a tensor field, we would
know the form of Dj(A) but we would like to keep the notation general since
there may exist fields that transform satisfactorily under a Lorentz transforma-
tions but are not tensor fields. Let us write the action of a Lorentz boost in a
more succinct form:

Ut (A)é(2)U(A) = D(A)¢(A™"2).

Applying two successive transformations and using that U(A)U(A2) =
U(A1A,), the matrices D(A) satisty,

D(A1)D(A2) = D(A1A9).

We also impose D(1) = 1. A linear transformation from the elements of a group
to a set of matrices that act on a d-dimensional vector space which satisfies these
two properties is said to form a (d-dimensional) representation of the group.
Therefore, stated more precisely, in order to find all the allowed fields with spin
we must find all the representations of SO(3, 1).

Among the possible representations are some trivial ones. For example,
we could always form a new representation D'(A) from another one D(A) by
making a similarity transformation, D'(A) = SD(A)S~!. We then say that D'
is equivalent to D:

D~ D"

Another way to construct a representation from two representations, D(') and
D®)  is by forming the direct sum defined as follows:
DM(A) 0
1 2) —

If the dimensions of the summands are respectively d; and ds, then the direct
sum representation is d; + dz dimensional. A representation that cannot be
written as the direct sum of smaller representations is said to be irreducible.
Therefore, our task is simpler—to find complete set of inequivalent, irreducible
representations of SO(3,1).

Representations of SO(3).
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As a first exercise in finding the irreducible representations of a group,
we study the group of rotations, SO(3). Not only does this group represent an
important subgroup of the Lorentz group, but more importantly, since SO(3,1)
can be broken into two copies of SO(3), we shall have immediately found the
complete set of representations of the Lorentz group as well.

Let us denote a (counterclockwise) rotation about the direction € by an
angle 6 as

R(e6) 0<0<m.
Note that since R(€w) = R(—€w), SO(3) is a ball of radius = with antipodes
identified. We can define a vector of matrices, ,N by performing an infinitesimal

transformation:
b ) . .
T (R(€9)) o —i€-J

If we perform two successive rotations about the same axis,

D (R(€0")) D (R(€0)) = D (R(&(¢' +0))) ,
and differentiate with respect to 8’ we find the following differential equation,

—ié- JD(R(€9)) = %QEE%VV“

whose solution is

-

D(R(9)) = e~i/€0.

Note that if D ~ D', then J ~ J'. Also if D Hmucv @Lb@ is a direct sum
representation, the J’s similarly decompose, J = J ) @ J2),

We can further restrict the properties of J by examining successive rota-
tions:

D(R")'D(R(€6))D(R') = D(R(R'"'€¥)).

Differentiating with respect to 8 gives

For small 6, identifying the O(6) terms of both sides we have
ie-J,J=exJ

which is more conventionally written as
[Ji, J;] = i€sjn T

We have found the commutation relations of the angular momentum.
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The matrices J are the generators of the Lie algebra of SO(3). To find the
elements of the representation of the (Lie) group SO(3), we can just exponen-
tiate these matrices, D(R(€6)) = e~%/? except that in doing so D may be
multiple valued. If the group is simply connected, that is every closed loop can
be smoothly deformed to a point without obstruction, then exponentiation of
the algebra gives the group. If we remember that SO(3) is a ball with antipodes
identified, then we see that a rotation by 27 represents a path which returns
to the identity a closed loop. However, such a path cannot be deformed to a
point and so SO(3) is not simply connected. If we continue and rotate by 47 we
do obtain a path which can be shrunk to a point and so at worst we may have
double valued representations.! We shall mention this property below when we
enumerate the representations of SO(3).

We know the complete list of inequivalent irreducible representations of
the rotations from our study of quantum mechanics. These representations are
labeled by their spin, s:

J®) s =0,

where

FNva_Sv”S_SV S”|MV|M+H“...VM|HVM

b@n m\&é.mm.

We recall some of the properties of D(%):

It is single-valued for s = 0,1,2, .. ; double-valued for s = },3,....

dim D) =25 41,

In the standard representation the J( (s)’s are Hermitian so that the D(*)’s

are unitary.

4. There is a similarity transformation that links a representation with its
complex conjugate: D) ~ D()* and JE&) ~ — Jlo)x,

5. Vector Addition: If we have representations of dimension d; and dy, we
can from the direct product representation as follows:

(o, B'|A® Bla, B) = (o/| Ala)(8'| B|B)

LN =

which is of dimension dids. The direct product representation is not, in
general, irreducible; for SO(3) it decomposes into the following irreducible
representations:

b@:ﬁwv ® b@&ﬁwv ~ b?i&ﬁav ) b?iﬁcﬁwv @ - .b?&iﬁwv

s1+s2

~ mw MU G@SV

s=|s1—82|

! What we have basically described is the fact that m1(SO(3)) = Zo.
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which is the usual rule for the addition of angular momenta in quantum
mechanics.

Representations of SO(3,1).

In addition to the rotations, the Lorentz group contains boosts which we
shall denote as A(€¢) which is a boost in the direction € with rapidity ¢ (0 <
¢ < 00). Just as in the case of SO(3), applying two rotations about the same
directions, or two boosts in the same direction, allows us to derive the following
differential equations:

d

i— D(R(& =¢ L — D(A(@ =M
i DRED)|  =e igPUAEe)|,_ =
whose solutions are
D(R()) = e~ ¢ D(A(E9)) = e—ieM¢,

The commutation relations for the generators L; and M; are

[Li, Lj] = i€ijn Lk
T&T.N\.L = s.ms.u.ai\a

[Li, Mj] = iezjp My,
T&? Ngl = I&miaha )

This pattern suggests that if we define JE by

J* = ML +iM]

we shall find the following commutation relations:
5 I = ey 1 Jf1=0.

Our representation of the Lie algebra of SO(3,1) thus breaks into two represen-
tations of SO(3). Therefore, from our study of SO(3) above, we immediately
know the representations of SO(3,1):

bﬁm+“mlvA>v S+ ”Ouwyu—uwgwu.

JEmy,m_) = ma fmy,m_).
We can write the generators of the representation in the direct produce notation:

Jt=J60 g1
J = ~®,~Am\um
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in this notation a rotation or a boost becomes

.Uﬁwﬁml%vv — mls._.ﬂ++.m.|_.m.m

Observe that while the former is a unitary matrix, the latter is not.
We now list some of the properties of D(5+-5-)(A):

dim DG+5-) = (25, 4+ 1)(2s_ + 1).

Rotations are Unitary: D(sy,s_)"" (R) = D(s4,s_)"(R).
Boosts are Hermitian: D(s,s_)(A) = D(s4,s_)'(A).

D(+5-) ig single (double) valued if s4 + s_ is even (odd).

J) ~ —JU)* and DE+5)*(A) ~ D=5+ (A),

Under a parity transformation, D(+5-)(A) — D=5+ (A).

The direct product of two representations decomposes as follows:

N =

S Gt w

mww+mw_y s +s°

m+Himm_r\mmr_ s_=|s

7.1f sL = s then under exchange, D+ = D5:250) js gym-

metric, D@%+=1:251) ig antisymmetric, D2*%:25"~1 is antisymmetric,
D@sh-1.21-1) i summetric, ete.

8. If we restrict to the SO(3) rotation subgroup of SO(3,1) a representation
D(+:5-)(R) has the following decomposition into irreducible representa-

tions of SO(3):

s4++s—

DG+ )(R) ~ @ M DU)(R).

s=|sy—s_|

In terms of this notation, the four dimensional vector representation of
S0(3,1) corresponds to the representation (3,%). When we restrict to the
rotations, the vector decomposes into a one and a three dimensional represen-

=

tation of SO(3)—the time and the position vector, (¢, %)

Spinors and the Dirac Equation Tenth Week

Spinors.
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Let us call the two spinors that tranform as the D©:3) and D(z:0 repre-
sentations of the Lorentz group uy and u_ respectively:

Aiug(z) — bs,wu:+A>LHv
Aiu (z) > U@,S:\QVLHS.

Under rotations or boosts, u transform explicitly as

R(€0) : us(z) » e"9%/ 2y (R ')

A(@9) : ug(z) —» e/ 2y (A ).

We would like to construct a Lagrangian from these fields which is Lorentz
invariant; as a first step, we note that the following combination of u; and :H.
transforms as a vector,

V#E = ?H@T@Hmct.

Similarly,
Vi =@wlu , —ulGu ).

also transforms as m vector. <§§ these vectors we can now write down the
Lagrangian, £(u,u} 4, Ouug, Opu +v involving solely the uy spinor that satisfies
the following conditions:
1. £ is bilinear in its arguments
L is Lorentz invariant
S = [ d*z L should be real
L contains no more than two derivatives
. L is invariant under u; — e~ u,.
<<m shall relax this last condition later in the course. The only Lagrangian

consistent with all of these conditions is

o 00 1

L= “E.:H,_.Amo +&-V)u
For the u_ spinor, the Lorentz invariant Lagrangian is analogously:
L= +iul (8- & V)u_

The equation of motion following from the Lagrangian for the u, field is the
Weyl equation: .

(0o + 7 - V)uy = 0;
notice that the solutions to this equation must also satisfy the Klein-Gordon
equation:

AQW — QMV\E.T =0
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and therefore a general solution to the Weyl equation can be written as a linear
combination of plane wave solutions. As an example, for a particle moving
along the z-axis (k* = (1,0,0,1)) with a positive frequency,

uy(z) = uge 7

is of the form

while for u_ we would have

= ().

These particles move at the speed of light and so do not have a rest frame.
The spin of these particles cannot be defined; nevertheless it is still possible to
define the angular momentum about the direction of motion. The eigenvalue A
of this operator,

is called the helicity of the particle. If we assume that when we canonically
quantize the theory we have (Olus(2)|k) = uge™"*, then we conclude that
u4 has helicity A = W The antiparticles associated with w4 have helicity Iw.
Actually this property is more general: if a theory is to be consistent with 7'C'P
then a particle must have the opposite helicity as its antiparticle.

The Dirac Equation.

With the uy field alone, we were unable to construct a Lagrangian for
a massive spin w particle that met our five requirements. Although we could
contruct a massive Lagrangian for a Weyl spinor were we to remove the fifth
condition, let us build a Lagrangian with both u; and u_ instead. The condi-
tions that we impose on L(uy,u_,0,u4,0yu_, conjugates) are as follows:

1. £ is bilinear in its arguments

L is Lorentz invariant
S = [d'z L should be real
L is invariant under uy — e~ P uy.
L is invariant under the following parity transformation:

ouls N

P:uy(t,Z) » au_(t,—7T)

u_(t, &) = buy(t,—17)
6. £ contains no more than one derivative.
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The only Lorentz invariant terms with no derivatives are :H.:| and its con-

._.

jugate u! uy. The terms with one derivative we constructed so that we can
immediately write down the form of the Lagrangian:

L==+ T.:fmo +& - Vug +iul (8o -7 V)u_ — S:TT - SQH:L .
Note that we have chosen the phase so that m > 0 is real. We have further
imposed parity invariance which holds as long as a(= b) is a complex number
of modulus one. Using our U(1) symmetry, we can choose a = b = 1 to give a
unique definition of parity:

P :uy(t, @) - ur(t,—I).

The equation of motion, the Dirac equation, for the pair u; and u_ is

V)uy =mu_

Q

N.Qo +

(8o — & V)u_ = mu,

Q

and Weyl spinors thus both satisfy the massive Klein-Gordon equation:
(3 - V)uy = —mu.
Due to the complexity of the Dirac equation some notation has been de-

veloped to simplify the study of relativistic spinors. To begin, the two Weyl
spinors can be combined into a single 4-component Dirac bispinor:

o=(u):

If we also define the accompanying 4 x 4 Dirac matrices, & and f3:

@H%HAM Iomv \mﬂm*HAw wvu

then the massive spinor Lagrangian and the Dirac equation become respectively
c=+{ip! @+ Vg —my'py

and .
i(Go +a- V)p = mpip.
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One disadvantage of this representation, called the Weyl representation is that
the mass term is not diagonal, so the representation which is more commonly
used, and therefore is called the Standard representation, is

_ 1 fuy+u
e|,\m?+|:v
cea=(27) ser=(i %)

In the Standard representation, the mass term is diagonal since it is multiplied
by 3.

with

Solutions to the Dirac Equation.

Positive Frequency Solutions: We now look for solutions of the form ¢ =
uze P where p° = (/p? + m? since the components of the spinors also sat-
isfy the Klein-Gordon equation. In the rest frame (7 = 0) the Dirac equation
becomes ug = Bug which has two solutions:

:@ =vV2m

0

:w: =vV2m

0

OO O
OO = O

1

These solutions correspond respectively to particles with spin w and spin —35

in the z-direction. If we boost these solutions in the z-direction, p'= |p]Z, then

we have
vE+m 0
1 _ 0 2 _ vVE+m
Up = E—m Up = 0
0 —VE-m

Negative Frequency Solutions: When a solution of the form ¢ = vze™® is tried
in the Dirac equation, the rest frame solutions are

e@ =V2m

0

em: =vV2m

0

O = OO
= O O O

These solutions correspond respectively to anti-particles with spin Iw and spin

1 in the z-direction.
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For massive particles, for arbitrary p, the normalization conditions for these
positive and negative solutions of the Dirac equation are respectively,

(Mtp, () _ ~(r), (s) _ rs
uy Puy’ =4y uy =2mé
emﬂ:\me%v = @Nm.le%v =-2md"’.

However, for massless particles, these normalization conditions become singular
so it is more convenient to write them as

(Mt (s) (M= (s)y _ rs
(up ug uy Auy’) = 2pt S

(Mt (s) (Mt = (s)y _ rs
(vy vy vy Tauy”) = 2pt 070

The Dirac Algebra.

Although we have simplified the appearance of the Dirac equation with the
introduction of the Dirac matrices we can yet simplify it further. Let us choose
a representation in which the Dirac matrices are hermitian. The mass term
1By can be written in a more compact form in terms of the Dirac adjoint,

b =9'8,
first introduced by Pauli. The Dirac adjoint for a matrix A is
A=pATE =A041°.

If we write the vector costructed from the spinors in terms of the Dirac adjoint,
we have

V= (Wl plap) = (PBY, PBaY) = Py

which suggests that we define the matrices ¥ = 8 and §° = & which trans-
forms as a vector,

D(A)v*D(A) = Ajy”
These y-matrices satisfy a simple algebra,
"} = 29",

which is a particular example of a Clifford algebra. The y-matrices are not
self-adjoint, y#T =, but instead are Dirac self-adjoint:

=

o1

Finally, we introduce a last bit of notation, introduced by Feynman,
¢ = at = aty,.
The anti-commutation relation above for the y-matrices means that
dp+hd=2a-b  dd=a’.

With this new notation, the Dirac equation can finally be written in the follow-
ing succinct form:

L =£(id — m)y
and our positive and negative solutions to the Dirac equation obey
Y =uge P (P—m)uy =0
Y = vze?? (p+m)vz=0.

Feynman Diagrams for Fermions Eleventh Week

The Feynman Rules for a Theory with Fermions.
Let us generalize Model 3 by replacing the complex scalar fields with spin
1 nucleons,

L =10,00"¢ — Lp*¢* + ip(ig — m)y — gyTyg,

where I' could be 1, 75 or some more general Dirac matrix. As before, the
Feynman amplitude is defined by

(fI(S = i) = iA(2m)"d" (s — i)
and is computed using the following Feynman rules:
(1) Factors.

_ \ d*k i
& (2m)* k2 — p? + ie

_ \ d*p i
P (2m)* p—m +ie

Il

—iT (2m)' ' (0" —p — k)
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For every nucleon in a Y
y out [’

. i
For every antinucleon ﬁ " W ,
out

o
—— &
e
——

(2) Combining Factors.

a. Along a fermion line we start with the term corresponding to the head of
the arrow on the left and multiply the additional terms we find as we follow
the line back through the diagram.

b. For a closed loop, we may start anywhere on the loop and include the Dirac
matrices we find as we follow the line backwards (head to tail) around the
loop. We take the trace of all the Dirac matrices for each loop.

c. Include a factor of (—1) for each closed loop.

d. Use a convention consistently for the definition of initial and final states to
determine the relative sign for graphs that contribute to the same process.
For example, in 2¢ — NN we can define the final state as either |f) o
bicl [0) or as bicl |0) but once we have made a choice, we must use it
consistently throughout the calculation of a Feynman amplitude.

N + N — N + N: Nucleon-Nucleon Scattering.

Let us apply the above rules to find the invariant amplitudes for several
typical scattering processes. To be more specific, the theory we shall study
will be that of a pseudoscalar meson, £' = —giiys1¢, and the first process we
examine is nucleon-nucleon scattering. To lowest order in g, the following two
graphs contribute:

P P Ph P
T: -pi and Tﬁ — ph
Ph P2 P} D2

The amplitude for this process is then
. . o _ i
1A= Alsbvm *Qnﬂsq\mgmﬂ Upy, VY5 Ups, |AMQH — @\ Vm — tm
1
_ _ i
— Qnﬂ 1YsUpy Q@stﬁmH |Q§ — Emvm — tm W

where the sign is fixed by choosing the initial and final states to be

|i) o bL. B, [0)

P1 P2

|f) oc b, Y, 10).
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and is consistent with Fermi-Dirac statistics.

N + ¢ - N + ¢: Nucleon-Meson Scattering,.
The two graphs which contribute to order g? for nucleon-meson scattering

are
q q q b,u
/ \ and Tu -q
!’ b,u a q
p Pig p
which produce the invariant amplitude
: o[ iPtdtm) AP —g+m)
= (- — = — = .
iA=(-ig)*a Tﬁcil% Tz s s

When we wish to calculate a differential cross section from an invariant ampli-
tude, it is useful to simplify the amplitude as much as is possible before squaring
it. In this amplitude, we can not only eliminate the 75 factors but some of the
momenta as well since the spinors satisfy (p — m)u = 0 and a(p' — m) = 0 so
that the amplitude becomes

Spin Sums and Averages.

In a real experiment, often the actual spins of the products of an interaction
are not measured and further, the initial particles are typically not prepared in
a specific spin state. Therefore, in calculating the differential cross section we
should sum over the final spins and average over the initial spins. In our last
example process, we found that A = F(s,u) @'gu; summing and averaging over
the spins gives

AP = 51F(s,0)? ) Tr[a" du® agu”]

rs=1

2
|F(s,u)|? MU Tr [¢gu’® @°gu'"a'"]

r,8=1

|F (s, w)]” Te [4(p + m)d(#' +m)].

N | =

N[ —= N =

We have used the completeness relations in the final step.
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The Spectral Representation of the Fermion Propagator.

The derivation of the spectral representation for the fermion propagator
proceeds almost exactly as that for the meson propagator presented earlier in
the course. The Fermion propagator corresponds to the following sum of graphs:

The spectral representation for the propagator is
i i(p+a) i(p—a)
S'(p) = da® 2 \Q
Aﬁv %|S+sm+\, @Q.ATAD v@m|gw+sm a o— vwww|@m+sm

where o4 (a?) > 0.

The Renormalization Conditions.
The bare Lagrangian for the theory with a pseudoscalar meson,

= 3(8,9)” — $ued”° + Y(id — mo)y — goivs Yo,

is not expressed in terms of the masses and the coupling constant that an
experimentalist would measure. Thus it is useful, as in model 3, to write the
Lagrangian, and the perturbative expansion of the S-matrix, in terms of the
physical masses and coupling constant (m, u and g):

L =100, — 170" + ' (i —m)Y' — giplins)'¢' + Lo,
where the counterterms are
Let. = 3A(0,9')° — 3B¢” +¢'(iCJ — D)’ — Elivsy)' ¢

The renormalized fields are related to those of the bare Lagrangian by

¢(x) =25 Po@) (@) = 2y Py(a).

As before in model 3, we require a set of renormalization conditions to fix
the counterterms and to define the rescaled fields. The conditions on the meson
propagator are the same as in model three so we concentrate on the fermion
propagator. For a parity invariant theory, we impose the following condition
on the fermion field:

-

(019(0)[0, 55 =

N
~
Il

O O o

Thus the renormalization constant Zy (¢’ = NML\MAE isa= Nm\m where by a
phase choice on |0, s, = 1), Z» > 0.

The A and B counterterms are fixed as before by conditions on the meson
self-energy so we shall write only the conditions for C' and D. We define the
fermion self-energy by the sum of one-particle irreducible graphs of the following
form:

= —i¥'(p)
-~ -~
P p
By summing the geometric series of insertions of the self-energy on a fermion
line, we find that the propagator is

i

SO =y

Near p = m, the propagator is
i

pR—— + analytic near p =m
m + ie

S'(p) =
which requires that the self-energy satisfy

¥(m)=0 dz(p) =0;

these two conditions fix the C' and D counterterms order by order in perturba-
tion theory.

The Fermion Self-Energy.
As an example, to O(g?), the fermion self-energy is

S'(p) =Zs(®) + Cop — D

= S,() - Spm) — (p—m) =L

dp |y

upon imposing the renormalization conditions on the self-energy. The integral
Xf(p) is the one-loop Feynman graph

p(1—2z)—m
Mu |N.Q .\ &H\ Mﬁ.»—quTﬁHAH|HV|SM.&.|ENAH|HV+&&M

Note that both the C5 and the D5 counterterms are required to cancel the
divergences. In model 3, only the mass conterterm was need to cancel the
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divergence in the self-energy. Here the situation has become more precarious.
For the meson self-energy in this pseudoscalar theory with fermions, both the
A and B terms are also necessary to cancel the divergences in the self-energy
graph at O(g?).

The Coupling Constant Renormalization.
The final renormalization condition is that which fixes the coupling con-
stant counterterm E. We define the Green’s function

p

= |&H<€wuﬁ\mum~wv.

!

p

upon which we shall impose the conditions that will define the coupling constant
g. The first possible condition is to take p = p' = ¢ = 0:

I'(0,0,0) = ivysg.
A second condition is to project onto the mass shell to define g:
¢ +m)T'(m?, m?, p*) (P +m) = ig(p' +m)ys(p +m).
The advantage of the latter is that if we consider nucleon-meson scattering,
apT'(0',p +a)S' (0 + QT (p + ¢, P)uy,

by inserting
p+m _ _P+m
= T T gy
and using the second definition for g, we obtain the correct residue of the pole
for a physical scattering process.
At one-loop, the logarithmic divergence of the leading Feynman graph is

exactly canceled by the E counterterm.

C, P, T, and the CPT Theorem Thwelfth Week

Parity.
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The simplest discrete symmetry to extend to a field theory with fermions
is parity. We built this symmetry into our fields when we derived the Dirac
equation:

P @QV&Q — Q@QV |nm.‘v
ULb(t, B)Up = Bu(t, —2). (1)
From this action on the field, we would like to determine the action of the
unitary operator, Up, on the creation and annihilation operators; to do so, we

first note that ") - - -
Puy’ =uly  Pug’ =—vl;

which alters the direction of the momentum but leaves the spin unchanged.
Thus the right side of equation (1) is

2
» &°p (r) () —ipw _ (P, (1) ipa
&?éTW\g [plupemire = et
where we have changed variables, p — —p. Comparing this to
V i

provides the transformation properties of the creation and annihilation opera-
tors under parity:

2
— &wm T T —ip- T T i
Ubi(t, —&)Up = MU\ @R aEy) UL Up u e 72 1+ Ubel TUp o]
r=1

(r) (r)
@w: @mn

BT b7

UbQ Ty pUr=9{ 1
nﬁmz ﬂm

T T

cy —c'5

The product of the parity of a fermion particle and its antiparticle is always
—1, a fact which leads to observables consequences. In the annihilation process
N + N — 27 (at rest), the J = 1 channel is allowed but the J = 0 channel is
forbidden by parity conservation.

Charge Comnjugation.

Recall that for a complex scalar field, ¢(z), the action of charge conjugation
was ¢(x) — ¢*(x). If ¢(x) was a solution of the Klein-Gordon equation then
S0 too was its charge conjugate, ¢*(z). However, a similar claim can not be
automatically made for the Dirac field ¢ (x),

(i —m)p(z) =0 7  (i§ —m)y*(z) =0
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unless we can find a representation in which the y-matrices are all purely imag-
inary:

A

Such a representation is called a Majorana representation and an example
of such a representation is provided by the choice,

0 _ O Q.@ 1 _ - O Oy
QIAQ@ 0 T ="\, 0
2, 1 0 3 _ . 0 g,
7 LAO Lv T= "o, 0)-

In another representation, related to the above representation by a matrix S, the
charge conjugate field is given by 1)¢ = C¢*, where C = SS* ~!. In the Majorana
representation, both M; and L; are purely imaginary so D(A) = D*(A). Stated
differently, charge conjugation commutes with Lorentz transformations.

In order to see how the Dirac bispinors transform, we can choose the basis
of the e?im so that

Then equating the two sides of the equation Q%%G@QO = *(z),
Ul(z)Uc = MU\. 'y T\ @SQQ :3 T4y nm:QQ GS i &
¢ (27)372(2E;) C

d’p (1 () iz | ) (1) i
M\ (2m)32(2E;) Tm vpen T e upe Q

we find the transformation properties of the creation and annihilation operators:

By (")

~ Qmm‘
vw )t )t
, _
Uoy s (Ye=9 4o
wa (i
5 by

Let us next examine the behavior of a nucleon-antinucleon state under
charge conjugation. For comparison, in a scalar field theory, if

) = \ &P f(71, 52)bY b, [0),

99

then Ug |[¢) = *|¢) for f(P1,P2) = £f(P2,51). However, for fermions, since
the creation operators anticommute, under charge conjugation of

M [ Ends fuii

r,s=1

v H+ Ami_ov

the sign is the opposite:

Uc _ﬁv = u_u_ﬂbv for .\_ﬁmﬁ V n*u.\..wﬁﬁ V

This symmetry also leads to observable phenomena. The decay of para-
positronium (S = 0) into two photons is allowed but the decay of ortho-
positronium (S = 1) into two photons is forbidden by charge conjugation.

Fermion Bilinears and Charge Conjugation.
A general fermion bilinear may be written as AM B, where M is a matrix
and A, B are Dirac fields. Under charge conjugation,

Q% AMB: Ug =: BM* A:

and since

1*=1 i =ivs YRE = oyt Fys™ = yHys oV = —ghv,

we conclude that the fermion bilinears are odd or even under charge conjugation
as follows:

Even: 9o, Yiysth, py*ys1p
0dd: ¢y, ot

Note that a CP transformation satisfies
UpUc = UcUpU(R(€27))

since, for fermions, particles and antiparticles always have the opposite parity.

Time Reversal.
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As with scalar particles, it is simpler to work with a simultaneous P trans-
formation rather than with 7" alone. We shall also still work in the Majorana
representation. Note that

PT : 9p(x) - My(—x)

will be a solution to the equations of motion (i@ — m)M(—z) = 0, provided
{M,~*} = 0. This condition determines M up to a phase to be M = ivys. Let
us construct the anti-unitary operator QQpr such that

Qprp(2)Qpr = i759(-2).
Regardless of the phase we have chosen, 0%, = U(R(€2n)). Since under PT,

PT:p—>p §— —§

we expect that the action of PT' on the annihilation operators is

0-1 vwc Qo — @%v X some phase
P &wv e @m.: x some other phase

In a Majorana basis, we have that

@Mﬁf — |Q“J\m§m~.ﬁv *
GM,@\ — |&Qm€nm‘3 *

so we can define the PT transformed annihilation operators by

2 2
(r), (r) _ (r)r, (r)1
Dby uy) =) b g
r=1 r=1
- (r), (r) - (r)r, (r)
I T T)! )1
qu Y uMnm Yp
r=1 r=1
Then for
Y b’
p p

The CPT Theorem.
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The statement of the invariance of the S-matrix under C' PT for a Klein-
Gordon theory was equivalent to
.\—Aﬁ:ﬁm“ e “ﬁ:v = .\:|ﬁ: —Pp2,..., |@§v

We shall now extend the CPT theorem to processes with one initial and one
final Dirac particle with an arbitrary number of initial or final mesons. The
invariant amplitude for such a process looks like

u — .\A” \CK.@T@M“...“@SVQ

Under C'PT the Dirac spinors transform as
PT . ,C ) _, CPT _,, .
u = iput = —iysu a = ' (—ivs)
so that under C' PT the amplitude becomes
A|HVA|$MQ‘Q@§A|@T —p2;.--; |@:V\<m§m
the extra initial minus sign is a result of reordering the fermions for the CPT
reversed process. Thus, showing C'PT invariance is equivalent to demonstrating
that
' M(p1,p2;- - Pp)u = W'y M(=p1, —p2; - .., —Pn)Y5u-
We shall prove this fact by appealing to Lorentz invariance and analyticity.
The amplitude is Lorentz invariant, so we can write
@ M(p1,p2, .- pn)u =@ D(A)M(Apy,Aps, ..., Apy)D(A)u.
The Lorentz transformation that we shall perform is
A = R(e, m)A(e, in)

which involves an imaginary boost. We can make an imaginary boost provided
everything is analytic. First note that D(A) and D(A) = D(A)~! are both
analytic since for a boost

D(A(@9)) = e¥7 /2

which is an analytic function of ¢. If we write the integral M as

N(pi,..-;ki,...)

M = Ay - d?

Qu: “ﬁ:v .\& \S &\ﬂh .UQ:V...WNQHV...V“

the denominator D(pi,...;k1,...) is Lorentz invariant while the numerator
N(py,...;k1,-..)is just a polynomial of the momenta which is analytic. There-
fore everything is analytic so we are permitted to perform an imaginary boost
A =R(e,m)A(ein):

D(A) =5 = D(A)™!
Thus we see that the CPT theorem holds.

Ap = —p.
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