Designing calorimeter digitization
software for the test beam

Dhiman, Guilherme

- NORTHERN ILLINOIS
M UNIVERSITY

i
Cmcadd

DHCal Meeting at NIU
November 17, 2004

Basic requirements

Goal: develop a program to simulate the digitization
system, to be used for the test beam. Resulting
modules may be used as a basis for the digitization of
the full detector simulations.

All test beam code 1s based on C++.

Use LCIO for persistency, and Marlin as the
framework.

Object oriented design to simplify maintenance and
implementation of new functionality.

Digitizer role

Detector simulation (Geant4) produces ideal energy
depositions in detector cells

Real detector produces real hits, with ADC counts and time
stamps in readout channels

Basic role of digitizer 1s convert the energy depositions and
timings into electronics readout, so that simulation output can
be as close as possible to the detector output. Same reco /
analysis code can be used for both.

As close as possible means that all known data acquisition
effects should be taken into account, if possible
(1nefficiencies, noise, crosstalks, non-uniformities, etc.)

LLCIO event model

SimCalorimeterHit
_cellIDO : int

_energy : float .
_mcpvec : MCPartContVec __ n>

RawCalorimeterHit
_cellIDO : int
_amplitude : int
_timeStamp : int

1
LCRelation

Vl

M CParticleCont
Particle : MCParticle*
Energy : float

Time : float
PDG : int

CalorimeterHit
_cellIDO : int
_energy : float
_time : float
_position : float[3]
_type : int

_rawHit : LCObject*

CalDigi class diagrams

MARLIN — m
&N

Processor
A
CalHitMapProcessor CalDigiProcessor
v i
CalHitMapMgr CalDigiModifier
AN A
N\ | |
CalDigildentity

CalDigiNoise

CalDigiZeroSupp CalDigiCrossTalk

Status

A first version (proof of concept) is implemented

- “Identity” tool only, could modify hits in map passed as argument
— conversion uses constant energy-to-ADC and time-to-timestamp factors

- LCRelation: to be stored also, looking for example code

Output LCIO files contain RawCalorimeterHit collection, while
keeping simulation collections untouched.

Creation of new modifiers should be easy, by just copying one of
the existing modifier classes and implementing the desired
transformation

Crosstalk requires cell-neighborhood. Nproj code exists (Java and
C++), but projective geometry is available only in java.

Some open questions

Modifiers should act on SimCalHits, RawCalHits or any of these?

Requirements on ordering of modifiers execution (like crosstalks
before hot channels)

Any other variables the modifiers can depend on?

— Now available: cellID, energy deposition and timing

— Not available: space points (x,y,z) and cell neighborhood
Need a geometry-aware class to provide missing information

