CDF/PUB/XXXX/PUBLIC/XXXX
Draft 0.0
May 16, 2008

Use of SAM-SRM Inte]gfatce for Movement of MC
ata

Manoj Kumar Jha
INFN-Bologna, Italy

Gabriele Compostella, Antonio Cumo, Donatella Lucchesi, Simone Pagan
INFN-Padova, Italy

Doug Benjamin
Duke University, Durham, USA

Robert Illingworth
Fermilab, Batavia, IL, USA

Abstract

The CDF experiment has generated more than 2 fb~! of raw data. As much
as same amount of Monte Carlo(MC) data are needed for detector understanding
and physics analysis. It is not feasible to produce these MC data on-site due to
limitation on computing resources. The CDF remote sites or Grid Tierl and
Tier2 may be utilized for producing MC data. From our past experience, we
learnt that one of the most important limitation in the heavy usage of off site
resources is that the Worker Nodes(WN) were sitting idle just because another
WN was transferring data to destination site at Fermilab. This situation leads to
inefficient uses of computing resources and sometimes to the loss of the output.
Hence, a framework is needed for transportation of MC data from remotes sites
to Fermilab.

mailto:manoj@fnal.gov
mailto:gabriele.compostella@gmail.com, mailto:antonio.cuomo@gmail.com, mailto:donatella.lucchesi@pd.infn.it, mailto:simone.pagan@pd.infn.it
mailto:dbenjamin@fnal.gov
mailto:illingwo@fnal.gov

Contents

1

2

Introduction

Prototype Model

Testing of Prototype Model

Data Movement from WN to SRM

Data Movement from SRM to SRM: Single File Transfer

5.1 Composition of Files
5.2 Performance Parameters
5.2.1 Transfer Time
5.2.2 Transfer Rate
5.2.3 Latent time
5.2.4 Cumulative Flow of Data

Implementation of the Prototype Model

6.1 Authentication 0
6.2 User Interface for Job Submission
6.2.1 CAF Graphical User Interface(CafGui)
6.2.2 CAF Command-line User Interface(CafSubmit) . . .
6.3 Monitoring and Control of CAF Jobs
6.4 Job Output
6.4.1 Accessing the CAF Scratch Space on SRM
6.4.2 Identifying User’s Scratch Space on SRM
6.4.3 Accessing User's Data
6.4.4 Accessing the other Scratch Areas
6.4.5 Checking User’s Quota
6.4.6 Graphical User Interface

Future Plan

CONTENTS

1 Introduction

The CDF [I] experiment has generated more than 2 fb~! of raw data. As much as
same amount of Monte Carlo(MC) data are needed for detector understanding and
physics analysis. It is not feasible to produce these MC data on-site due to limitation
on computing resources. The CDF remote sites or Grid Tierl and Tier2 may be
utilized for producing MC data. From our past experience, we learnt that one of
the most important limitation in the heavy usage of off site resources is that the
Worker Nodes(WN) were sitting idle just because another WN was transferring data
to destination site at Fermilab. This situation leads to inefficient uses of computing
resources and sometimes to the loss of the output. Hence, a framework is needed for
transportation of MC data from remotes sites to Fermilab.

2 Prototype Model

Figure 1 shows a prototype model for movement of MC data from worker nodes to the
destination Storage Resource Manager(SRM) [2]. The destination SRM in our case
will be at Fermilab. Following are the components of the prototype model

e A SAM [3] station (not shown in the figure) and temporary space of around few
Tera Bytes(TB) on SRM which are closer to each grid access sites. The grid
access sites are LCGCAF, NAMCAF and PACCAF. More information on CAF
portal can be found in [/]

e A SAM station and space on SRM near to the destination site. The destination
site is at Fermilab.

This prototype model relies on integration of SAM with SRM. We used SAM be-
cause it is the default data handling framework of the CDF. The reasons for using
SRM are to avoid unnecessary complications which may arise from different Storage
Elements (SE) at different portal sites. The latest version of SRM in field is 2.0.
The present version of SAM is compatible with SRM version 1.0 and it needs some
development in order to be compatible with the SRM version 2.0.

The user jobs will run on the Worker Nodes(WN) and output data from these jobs
will be transferred to SRM of portal site. A process at portal site will check the arrival
of new file and its metadata in the SRM. The metadata is a file of the order of few bytes
which contains all the information related to the MC output data. Using information
from metadata, the same process will register these files into the SAM station of the
grid sites. The process at destination site communicates with the SAM station of the
portal site for its arrival of new file. The new file and its metadata will get transferred
to the destination SRM through SAM station to station copy. Once the new files and
its metadata arrives at destination SRM, its counterpart from the SRM at portal site
will be erased. In this way, the used space in the SRM of portal site will be created
again. The validation team will validate these new files and correct files will be moved

4 5 DATA MOVEMENT FROM SRM TO SRM: SINGLE FILE TRANSFER

Worker nodes at the remote site

Figure 1: A prototype model for transfer of MC data from worker nodes to destination
SRM.

to tape for storage. In the end, SAM database entries for arrival of new files in tape
will be modified.

3 Testing of Prototype Model

Following steps are involved in evaluating the performance of the above proposed model.

1. Evaluation of performance parameters for data movement from WN to SRM near
to portal site as mentioned in section 4.

2. Evaluation of performance parameters for data movement from SRM closer at
portal site to destination SRM at Fermilab has been considered in section 5.

4 Data Movement from WN to SRM

5 Data Movement from SRM to SRM: Single File
Transfer

A prototype model has been setup for movement of data between Storage Element(SE)
at Fermilab and UCSD. Both the SE are being managed by dCache [5] based SRM.
Figure 2 shows the implementation of the test model. The following SEs have been
used for setting up the framework.

1. dCache managed SRM at Fermilab: “srm://cmssrm.fnal.gov:8443 /srm/managerv2?
SFN=/resilient/ NONCMS_GUEST 30DAYLIFETIME/cdfguest /McData,/”

2. dCache managed SRM at UCSD: “srm://t2data2.t2.ucsd.edu:8443/srm/managerv2?
SFN=/pnfs/sdsc.edu/data2/cdf/McData/”

UCSD SRM V2
srm:/ /t2data2.t2.ucsc.edu:8443

FNALSRM V2
srm://cmssrm.fnal.gov:8443

srmcp using WAN

ﬁ cdfsam15.fnal.gov

Figure 2: A test framework for movement of data between the SRMs.

A process is running on the cdfsam15.fnal.gov which create dummy files of random
sizes and transfer the files to SRM at FNAL using srmcp [6]. This process gener-
ates 10 dummy files of random sizes. A cron job is being run at regular interval of

time (15 minutes) for continuous creation of files. A different process is running on
“cdfsam15.fnal.gov” for transfer of file from SRM at FNAL to SRM at UCSD. The
following steps are involved between transfer of file between the two SRMs.

1. List the files available in the SRM folder at FNAL.
2. Pick a file from the list (say A).
3. Get a TURL(Transfer URL) corresponding to A . It is basically a gsiftp string.

4. Note the start time for copying of file A in the log file.

5. Copy the file A using srmcp between the SRM at FNAL and UCSD. We used all
the default options of srmep. At UCSD, the data is buffered through 3 heavy-duty
grid ftp servers on WAN. Each grid ftp servers allows 50 streams per client.

6 5 DATA MOVEMENT FROM SRM TO SRM: SINGLE FILE TRANSFER

6. When the file A is successfully transferred

e Print the file name, size, start and end time for copying of file A in the log
file.

e Delete the file A from SRM at FNAL when it is successfully transferred in
SRM at UCSD.

7. Go to the step 1 and repeat rest of the steps until all the files in the list is being
transferred to SRM at UCSD.

A cron job is running which runs the copy process from FNAL to UCSD SRM at
regular interval of time. In this document, we are summarizing the results for which the
files transfer continuously takes place for a week between the two mentioned storage
clements(SEs).

5.1 Composition of Files

We have used dummy files of random sizes. The random number generator has been
biased intentionally for generating file sizes of larger values. The dummy files have
been generated in size from few Mega bytes (MB) to 4 Giga bytes (GB). Figure 3
shows the generated dummy files in bins of 100 MB. For the comparison purpose, the
dummy files have been divided on the basis of its sizes into different categories. Table 1
list the different categories of the dummy files based on its sizes. Figure 4 shows the
composition of files used for testing the framework.

No. of Files

1500 2000 2500 3000 3500 4000 4500
File Size (in MB)

Figure 3: Distribution of file size.

5.2 Performance Parameters 7

Type File Size (fsize)
fsize < 10 MB
10 MB < fsize < 100 MB
100 MB < fsize < 1 GB
1 GB < fsize < 2 GB
2 GB < fsize < 3 GB

fsize > 3 GB

lloliwlfelise] g

Table 1: Different categories of files based on its size.

(Sum: 2177)
D

F

mD (788) [IC (685) [IF (317) ME (316) B (60)
WA (11)

Figure 4: Composition of files which are used for transfer between two SRMs. The
numbers in the pie chart indicate the number of files being generated in the particular
category.

5.2 Performance Parameters

In the following sections, we are showing some parameters that will help us in evaluating
the performance of the framework.

5.2.1 Transfer Time

Figure 5 shows the time needed for copying of files between the SRMs. SRM initializa-
tion time for dCache is of the order of around 10 seconds which can be seen from the
transfer time needed for file types A and B in Figure 5. It is also clear from the figure

8 5 DATA MOVEMENT FROM SRM TO SRM: SINGLE FILE TRANSFER

that transfer time increases proportionally with the file size. In file type C of Figure 5,
there is a band of structure in transfer time and it may be due to fluctuations in the
network performance. These fluctuations are not visible in other file types D and F of
Figure 5 due to larger scales.

size <10 MB N 10 MB < size < 100 MB

100MB < size <1 GB

Transfer time(in sec)
e
-
T

=
Iy
T

; ; ; H TR o e s it S R T S

10! L 1 1 — S —
2 4 6 8 10 “710 20 30 40 50 60 70 80 90 100 900 200 300 400 500 600 700 800 9001000
File Size in MB File Size in MB File Size in MB

350 l‘GB<‘5|ze‘<ZG!B 180 2‘GB<‘5.|ze‘<BG‘B i

500 S‘IZE >‘ 3 GP

300 | e L] 160
5140

[
o N
S o
T

o
=]
T T

2oe NN
S
=)

®

=)

Transfer time(in sec)

o
=)

" Transfer time(in s&

S
3

; Ll i
1000 1200 1400 1600 1800 2000 6000 2200 2400 2600 2800 3000 % 0 3200 3400 3600 3800 4000 4200
File Size in MB File Size in MB File Size in MB

Figure 5: Time taken by different categories of files for copying between SRMs.

5.2.2 Transfer Rate

Figure 5.2.2 shows the transfer rates for different types of file between SRMs. It is
evident from the figure that transfer rate increases with file size up to certain extent.
In Figure 5.2.2, there also exist a band in transfer rate and it may be due to day to
day fluctuations in network performance. The output of user analysis job will fall in
the file type B while that of MC jobs lie in C and D. In these cases, the file transfer
rate continuously increases with file size.

A qualitative comparison between transfer time and its rate can be seen from the
Figures 7. The numbers in the left and right hand side of the pie-chart represent
the average transfer time and rate for each category of the file types respectively. A
quantitative comparison can be made between transfer time and rate for different file
types. For example, the transfer time for file type A is larger in comparison to its
transfer rate while for file types D and E, it is opposite.

5.2.3 Latent time

In Figure 5.2.3, we tried to show the amount of time being not used(latent) in transfer
of the files in the framework. In transferring file from SRM at Fermilab to UCSD, the

5.2 Performance Parameters 9

size < 10 MB 10 MB < size < 100 MB 100MB < size < 1 GB
0.7 T T T d——T T T T T T T —T T T T T T T
X 7 _
4 36 9
a a a
Fos 5 3
= =5 =
S04 £ c
3 T4 3
2 P P g 2
p =3 o
@ @ a9
% 0.2 G k7
2 €2 2
4 e e
=01l ¥ o =
pol__ L L L L
: 2 4 3 510 %030 30 40 50 60 70 80 90 T00 100700300 400 500 605 700800 H00T000
File Size in MB File Size in MB File Size in MB
1 GB <size <2 GB 2 GB <'size < 3GB size > 3 GB
60 . . . ; 60 = . —
P71) AR SO S #]~ P
] sl o]
2 # 2 2
@ @ @
= = 1=
£ £ £
g g g
2 2 2
o o o
o | o o
]]]
G G B 20
2 2 2o
° ° °
= 100+ = = 10l
; ; ; ; 0 ; ; ; H [S B B
1560 1200 1400 1600 1800 2000 D00 7200 7400 2600 2800 3000 DGO 3200 3400 3600 3800 4000 4200

File Size in MB File Size in MB File Size in MB

Figure 6: Transfer rate for different categories of files.

(Sum: 235) (Sum: 153)
F

Ny

C

D
mF (80! E (59) 1D (42) mC (25) 1B (15) mF (47) E (43) 1D (37) mC(22) 1B (4)
WA (14) L LY(]

(a) Transfer time. (b) Transfer rate.

Figure 7: A qualitative comparison between transfer time and rate.

major latency include deletion of files from SRM at Fermilab (after successful copy of
the previous file in the list at UCSD) and getting transfer URL(TURL) for the next
file. Figure 5.2.3 estimates the average latency involved in each consecutive transfer
for different file types.

5.2.4 Cumulative Flow of Data

Figures 5.2.4 and 11 shows the amount of data which can be transported between
SRMs per hour and day respectively. Around 25GB/hr and 600 GB/day amount of
data can be transported using wide area network(WAN) between SRMs at FNAL and
UCSD.

10 5 DATA MOVEMENT FROM SRM TO SRM: SINGLE FILE TRANSFER

size < 10 MB
T T T

10 MB < size < 100 MB 100MB < size < 1 GB
1400 —— V00— T TR0 — T T
12000 wv oo i f 1200 : :
5 ; ; : : 1 o L L S S O S e
8 1000} ---.--- PSS O S R 1000 g
c c
T BOO| o5 800 T : :
g i i i i k: 510000,,1,:, e
F T =10 10 N o :
I H :
g : '8 : :
| 400 § 400 &1 5000] i
200 200 e
0 n L L L FO T A A PR e]
2 4 6 10 %07505735740 50 80 76 60 60100 405300300 200 500 600700 800 001000
1 GElIe Size in M% GB 2 GElIe Size in M% GB File SizeIBngIéB
< < < < >
1800 ‘ size ! 5000 ‘ size ! 35000 ‘ S!IZE : ‘ ‘
1600f ;e 1 5000k b i (30000
— 14007 -4 P : H
8 . : : Ll 8[25000f i
2 1200[- = 000 [o
T 1000w : : : i FpRoo0Of i
E T E3000] bl E
R U e 3150001
H H
600} - 2000 - i
£ " Z110000f -+ ove b
= oop T 1000/ - Lobd
200+ ogerbeens e b 5000*':—5—:—:——;——
N : H H : : M . : o b s Db e b L M s
1000 1200 1400 1600 1800 2000 2b00 2200 2400 2600 2800 3000 300 3200 3400 3600 3800 4000 4200
File Size in MB File Size in MB File Size in MB

Figure 8: Latent time involved in each consecutive transfer between SRMs.

(Sum: 1092)

WA (248) | IF (244) [ZIE (200) mC (184) D (164)
MB (52)

Figure 9: Latent time involved in each consecutive transfer between SRMs.

11

138 Hours from 2008-04-03 01:35 to_2008-04-08 19:33 UTC
120 T T T T

T — e AR S— A— —

Data transfer(in GB)

2008-04-04 2008-04-05 2008-04-06 2008-04-07 2008-04-08
Hour

Figure 10: Amount of data which can be transported per hour between SRMs.

5 Days from 2008-04-03 01:35 to 2008-04-08 19:39 UTC
T

700 . . :

Data transfer(in GB)

) w £ v [=)}
o =] o =) =)
o =) o =) =)

—
o
o

2008-04-04 2008-04-05 2008-04-06 2008-04-07 2008-04-08 2008-04-0¢
Date

Figure 11: Amount of data which can be transported per day between SRMs.

6 Implementation of the Prototype Model

In this section, we describe the implementation of SAM-SRM interface in the CDF
Central Analysis Framework(CAF). User interactions with the CAF are built based
on client-server pairs that use Kerberos to authenticate the user. More information
CAF can obtained from [!]. Figure 12 depicts the integration of prototype model in
the CAF. The basic client-server pairs are listed below.

12 6 IMPLEMENTATION OF THE PROTOTYPE MODEL

Worker Nodes

SRM at Portal

FHEEEEEE

Remote Desktop

Figure 12: Schematics depicting the various CAF software components, and where they
run. Solid/dashed/dotted lines depict connections for submission/output/monitoring.
The arrow points way from the object that initiates the communication or data transfer.
The available protocols for output data transfer are also indicated.

e “CafGui or CafSubmit” « “submitter” for job submission from user desktop to
CAF. Submitter runs on CAF headnode. This is mentioned in Section 6.2.

o “cafkill /cafjobs/cafdir/cathostdir/caftail” < “monitor” for user interactions with
their job on the CAF (e.g. kill job, peek at log files, directory listing) described
in Section 6.3. Monitors run on CAF headnode.

e ICAF tools for retrieval of the gzipped tar archive from the destination SRM.
This is discussed in detail in Section 6.4.1.

A user submits a job using the ”CafGui or CafSubmit”. Once the job is submit-
ted, the Condor [7] batch manager(bmgr) takes over. When appropriate resources are
available, bmgr launches the CafExe on worker node using the Condor launcher. The
CafExe receives all the information it needs to know for starting up the user application
via command line arguments that are specified when the submitter submits the job to
Condor. The CafExe produces a gzipped tar archive of the user working directory on
the worker node and copy the output tar archive and its metadata to the user folder
on SRM at portal sites. The metadata contain the output location of the file specified
by the user at the time of job submission. Proxy certificate of the user on worker node
will be used for copying output files from worker node to SRM at portal site using the

13

command:

srmcp -2 -retry_num = <retryNumber> -retry_timeout = <retryTimeout>
-copyjobfile = <file> -report = <tmp>
where,
retryNumber: Number of retries before client gives up.
retry Timeout: Number of milliseconds to sleep after a failure before the client tries to
retry.
file: Path to the text file containing the list of sources and destination. Each line has
a format: <source-url> <destination-url>
tmp: Path to the report file which contain the results of the execution of srmcp. The
each line in the file have the following format:
<src url> <dst url> <return code> [<error>]
The following return codes are supported:
0 - success
1 - general error
2 - file exists, can not overwrite
3 - user permission error
A cron job will check the arrival of new file in each user’s folder on SRM at portal site.
There are two ways in which files in SRM at portal site can be copied to destination
SRM at Fermilab or the user’s specified location. These are:

e SAM station to station copy:

SAM station to station copy method can be used for transferring files between the
two SRMs. A SAM station attached to SRM will be needed at portal, destination
site or at the user’s preferred location. A process at portal site uses metadata for
registering new MC files in SAM database. The same process initiates the copy
process between the two SRMs using SAM station to station copy method. After
successful transfer of file, the SAM station to station copy method deletes the file
from the SRM at the portal site. Around 10 to 12 copy process can be initiated at
a time for a better transfer rate between the SRMs. The merit of SAM station to
station copy method rely on the fact that file management happens on demand.
Job monitoring for user’s can also be implemented in clear and transparent way
using the SAM interface.

e Process using srmcp:
Following command in a process can be used for transferring files between the
two SRMs.
srmcp -2 -retrynum = <retryNumber> -retry_timeout = <<retryTimeout>
—-copyjobfile = <file> -report = <tmp>
The options are same as explained above. In order to achieve a better transfer
rate between the SRMs, the value of options are: retryNumber = 10
retryTimeout = 60000
file: Contain a list of 12 files.
A separate process will verify the files in SRM at portal and destination site. At-

14 6 IMPLEMENTATION OF THE PROTOTYPE MODEL

tributes like size and checksum of file can be used for file verification. If the file
found to be correct at destination SRM, then its counterpart from the SRM at
portal site will be erased. Otherwise, the process will again copy the file into the
destination SRM. Job monitoring can be implemented on the basis of existence
of file in SRMs.

6.1 Authentication

The security context on the CAF is based on krb5. This is implemented such that
each user has a unique krb5 principle at each site. The keytab for this principal is
accessible only by the CAF infrastructure, and never by the user. The infrastructure
thus obtains a krb5 ticket at runtime on the compute node, before starting the user
application. The compute node will used this ticket for transferring the file in SRM at
PORTAL site. Since the user cannot get the ticket outside from the CAF framework,
a mechanism is need for authentication with the storage element. Following are the
two ways in which it can be achieved:

e CAF headnode authenticates the user:
A request either from user or service will first talk to CAF headnode for authen-
tication. After authentication, the CAF headnode will instruct the grid entities
to initate the request on behalf of user or service. For example, following steps
should be needed for a user who wants to copy a file from SRM at Fermilab to
his local desktop. These are:

1. Using the Fermilab kerberos principal of the user, the copy process contacts

the CAF headnode.

2. CAF headnode generates the user proxy certificate from the keytab file on
headnode.

3. CAF headnode contacts the SRM and initiate the request for copy from
SRM to user’s desktop. In order to do that, a gridftp server should be
running on user’s desktop.

e Add the Fermilab kerberos principal of each user in the CDF VOMS:
Another simple way is to just add the user’s Fermilab kerberos principal in the
CDF VOMS. It will be an extra line in the grid map file of CDF VOMS for each
user. In this case, following steps will be needed for copying file from SRM to
user’s desktop.

1. Using the Fermilab kerberos principal of the user, the copy process creates
the ticket using the command kxz509.

2. Using this ticket, copy process authenticates the user with the SRM and
initiates the copy request from SRM to user’s desktop. One don’t needs the
gridftp server at the user’s end in this case.

6.2 User Interface for Job Submission 15

The second step seems to be simple in first instance. Since one would haven’t to
worry about the problem related to the gridftp servers at the user’s end.

6.2 User Interface for Job Submission

A user can submit his job by means of a Graphical User Interface(GUI) which is
run from the user’s desktop. An alternate command line interface presented in Sec-
tion 6.2.2.

6.2.1 CAF Graphical User Interface(CafGui)

The CAF GUI is distributed within the CafUtil package via the development release
of the CDF Software. The CAF GUI is started (in tcsh shell) by typing:

> source cdfsoft/cdf2.cshrc

> setup cdfsoft2 development

> CafGui &

The CAF GUI contain various fields to be completed by the user. The meaning of
these fields are described below:

o Analysis Farm: The analysis farm on which the user want to submit his job. All
the farms that appear by default in the GUI are available to all users, but they
vary in strength. A descriptions of the various farms is available at

http://cdfcaf.fnal.gov/

e Data Access: This defines the dataset to be accessed and the method used to
access it. The data access method is "GenMC” which represents the Monte
Carlo generation.

e Process Type: The process type to which the job will be submitted.

e [nitial Command/Segment Range: The command to be executed on the CAF is
specified in the initial command field. This is the command user want to run.
Usually it’s a shell script in the local directory. Note that it must be executable.
The two boxes to the right specify the segment iterator range(inclusive), used for
job parallelization as mentioned in [].

e Original Directory: This is the directory that will be tarred up to send along
with the command. This allows user to send configuration files, and scripts.

e Qutput File Location: This is the location where it will send the output tarball.
Its format will be similar to scp format that includes the Unix ID, a string which
corresponds to the URL of destination SRM, and the path of the folder relative
to the user’s home area on destination SRM. For example, the output location for
a user jhondoe who wants to copy his output tarball in the folder “~/MCGen”
of the SRM at Fermilab will be:

16

6 IMPLEMENTATION OF THE PROTOTYPE MODEL

jhondoe@FNAL _SRM: ~/McGen/out$.tgz

The CAF framework will store the information of destination SRM URL and
its corresponding string in a python dictionary object. The string represents the
'key’ and the SRM URL its value. The string “FNAL_SRM” can also be obtained
from the command “icaf_node”.

Email Address: When the job finishes, it will send an email to the address spec-
ified here.

6.2.2 CAF Command-line User Interface(CafSubmit)

CafSubmit is the command line version of CafGui. It is easier if user wish to submit
several different jobs in a row. In order to run CafSubmit, user have to do things
slightly differently from CafGui. The CafGui tars up the directory specified by the
user and sends it to the headnode automatically. For CafSubmit, user have to create
a tarball first. Inside it, the tarball must contain the script user want to run, and
any local files that the script requires. This tarball will be identified with the -tarFile
option. Following options are recognised by CafSubmit:

tarFile: This is the location of the tarred up executable command and associated

files.

outLocation: This is where the output of the job will be sent. It will be similar
to the Output File Location as mentioned in Section 6.2.1.

procType: This is the process type for user job and it will run as (test, short,
medium, or long being the usual options).

start: This is the number that will denote the first section.
end: This is the number that denotes the last section.
email: Address where email will be sent upon job completion.

dhaccess: This defines the dataset to be accessed and the method used to access
it. The data access method is "GenMC” which represents the Monte Carlo
generation.

farm: CAF on which the user wish to send his/her job. It should be specified in
the user’s .cafrc file.

group: Group queue on which user wish to submit. The user should be member
of the concerned group.

command: User’s executable command. Usually a shell script.

6.3 Monitoring and Control of CAF Jobs 17

6.3

Monitoring and Control of CAF Jobs

The user can monitor the progress of his/her job using the tool CafMon. It can be
accessed using the development release of the cdfsoft2 distribution. The normal usage

1S:

CafMon [--farm <farm>] <command> <command-specific-params>

where,

farm:CAF on which the user submitted the job.

command: a function that user want CafMon to perform. A list of those functions
is provided below.

command-specific-params: option for different commands.

Following functions will be supported for monitoring and control of user’s jobs.

jobs: This gives user a list of the jobs and sections that are currently running. If
the transfer of [JID] [section] output file is going on or in queue, then it should
print the list of jobs and sections till the job [JID] [section] output transfer process
ends from SRM at portal site to destination SRM at Fermilab.

top [JID] [section]: Tt is equivalent to running the top command on the workern-
ode running the section by the user. If the transfer of [JID] [section] output file
is going on or in queue, then the CPU utilization from transfer process should be

added in it.

ps [JID] [section]: 1t is equivalent to running the ps command on the workernode
running the section by the user. If the transfer of [JID] [section] output file is
going on or in queue, then a snapshot of the current process should be added in
it.

dir [JID] [section]: Shows the working directory contents of the user’s specified

section. If the transfer of [JID] [section] output file is going on or in queue, then
it should list the directory contents of the [JID] [section] on the SRM_PORTAL.

tail [JID] [section]<JID> [file]: Executes the tail command on <file>. If the
transfer of [JID] [section] output file is going on or in queue,, then it should prints
the message “[JID] [section]<JID> [file]: File is on SRM_PORTAL”.

head [JID] [section] [file]: Executes the head command on <file>. If the transfer
of [JID] [section] output file is going on or in queue, then it should prints the
message “[JID] [section]<JID> [file]: File is on SRM_PORTAL”.

cat [JID] [section] [file]: Writes the contents of <file> to the standard output.
If the transfer of [JID] [section] output file is going on or in queue, then it should
prints the message “[JID] [section]<JID> [file]: File is on SRM_PORTAL".

18 6 IMPLEMENTATION OF THE PROTOTYPE MODEL

node [JID] [section]: Returns the node the section is running on, as well as the
VM it is assigned to. If the transfer of [JID] [section] output file is going on, then it
should return the full path of the [JID] [section] output file on the SRM_PORTAL
and of destination SRM. If the [JID] [section] output corresponding to JID is
waiting for transfer to destination SRM, then it should return the full path of
the [JID] [section] output file on the SRM_PORTAL.

e log [JID] [section/: Writes job.log to standard output. If the transfer of [JID] [sec-
tion| output file is going on, then it should prints the message “[JID] [section]<JID>
file]: File is on SRM_PORTAL”.

e chprio [JID] [section]: If the transfer of [JID] [section]| output file is in queue,
then it should affects the priority for transferring files from SRM_PORTAL to
destination SRM.

e chgroup [JID] [section]: If the transfer of [JID] [section] output file is going on or
in queue, then it depends on the configuration of the SRM_PORTAL. If it allows
changing the group of [JID] [section] output file on SRM_PORTAL, then change
it. Otherwise, print the message ”[JID] [section] file is on SRM_PORTAL and
chgroup operation not supported.”

o kill [JID] [section/: Self explanatory. Kills that section. If just JID is entered,
kills the entire job. If the transfer of [JID] [section] output file is going on or
in queue, then it should kills the transfer process and remove all the files corre-
sponding to [JID] [section] from the SRM_PORTAL.

e hold [JID] [section]: Causes job to go into hold mode. Stays there until released.
If the transfer of [JID] [section] output file is going on or in queue, then hold the
operation.

o release [JID] [section]: Releases held job.

o debug [JID] [section]: If the transfer of [JID] [section] output file is going on or
in queue, then print its file size and full path in SRM_PORTAL. If the transfer
of [JID] [section] output file is going on, then also print the full path of [JID]
[section] output file in the destination SRM.

e slots: Checks for free and used slots on a given CAF.

6.4 Job Output

This section discusses the handling of user job output. For each job segment, the CAF
system software will tar up and gzip user’s working directory after the shell script exists
and transfer it to the designated output location in destination SRM at Fermilab. Each
CAF user will be assigned scratch space on SRM at Fermilab and in future at local
SRM to the CAF. Users nominally will be constrained to some quota on SRM.

6.4 Job Output 19

6.4.1 Accessing the CAF Scratch Space on SRM

The easiest way to interact with the scratch space on SRM will be by means of the ICAF
tools. The user already have experience of using the ICAF tools. Hence, existing I[CAF
tools will be modified in such a way the transition to SRM will be smooth to user. The
modified ICAF tools will print the existing as well as the relevant information needed
after adopting the proposed model in the CAF. The modified ICAF tools will be a
set of command line tools that hide most of the complexity of the grid authentication,
proper protocol and environment for interacting with the SRM.

6.4.2 Identifying User’s Scratch Space on SRM

The first information every user needs will be the list of Scratch space on SRM he/she
will be allowed to access. To obtain this information, the existing command
>icaf_info
should be modified in such a manner it prints out the Scratch space and output direc-
tories of the user on destination SRM at Fermilab. The command
>icaf_node
will return the name of unique string which corresponds to the destination SRM URL.
For simplicity, it should also return the full path of the SRM URL. If some group has
their own area on SRM, the unique string may be get by the command
>icaf_groups
which returns the list of codenames of the group areas.

6.4.3 Accessing User’s Data

Most of the time users just want to access their data and in the most simple way too.
The following ICAF tools should be modified such that it should produce the desire
output.

e To have the listing of files in the job output area on SRM, user will use:
>icaf_ls
or use
>icaf_1s -f short
for presenting the list of files in condensed format. Like with ordinary Is, the
selection should be restricted to a subset of files, like in the following example:
>icaf 1s ‘“*.tgz"

e The most used action is getting data from the Scratch space on SRM. The com-
mand to use is:
> icaf_get <filenames>
The command icaf_get will fist check whether the file resides on the icaf disk-
server or on the scratch space in SRM at Fermilab. Accordingly, it will copy the
specified file(s) to the local directory. One can also use wildcards, just remember
to quote the expression. If the user want to copy the files from his/her scratch

20

6 IMPLEMENTATION OF THE PROTOTYPE MODEL

space on SRM to local folder, use the following syntax:

> icaf_get <filenames> <dir>
If user instead want to get a file and save it with another name locally, use the
following syntax:

> icaf_get <remote_filename> <local_filename>
The command icaf_get should prints out a character for every fixed size of data
transferred; this is usefull on slow connections, but can be annoying when user
transfer large files. To disable it, the user should -h option; pass 0 to completely
disable it or a large number to get the progress char only every x Kbytes. The
command icaf get should also support all the options of the protocol srmcp.

> icaf_get -h <Kbytes> <filenames>

The command:

> icaf_rm <filenames>
can be used to delete one or more files on SRM. Alternatively, if icaf_get will be
invoked with the -d flag:

> icaf_get -d <filenames>
the file(s) will be removed from the Scratch space on SRM (and only if) the file
has been copied.

Command for renaming file on SRM is:
> icaf mv <filename> <newname>
where,
filename and newname are the path of the old and new file on SRM.

Empty folder on SRM will be deleted using;:
> icaf_rmdir <foldername>
If the folder is not empty, the proper warning will be issued.

For creating a folder on SRM, following command will be used:
> icaf_mkdir <foldername>

Although the scratch area should be used just for storing CAF outputs, some-
times it will be usefull also to copy some files from user’s local machine or from
SRM to the Scratch area on SRM. The command to use will be:

> icaf_put <filenames>
It will copy the specified file(s) from the local directory to the Scratch area on
SRM. There will be several parameters to configure it:

> icaf_put [-d] [-h <nr kbytes>] filename+ [remotename|remotedir]

The above command will also be used for copying files between two SRMs. The
user would have to specify the URL of source and destination SRMs. The SRM
URLSs consist of unique string and path relative to user home area or the URL
of SRMs. This command should support all the options of srmep which user can
provide it from the command line.

21

e The space reservation command on SRM will be for administrative purpose only
and it may be obtained using the following syntax:
> icaf _reservespace -desired size <sizeinGB> -guaranteed_size
<sizeinGB> -retention_policy <type> -access_latency <type> -lifetime
<duration> -space_desc <folderName> SRM_URL

6.4.4 Accessing the other Scratch Areas

The commands as presented above in Section 6.4.3 seems to be able to access only the
data in the job output area. All of theabove command should be configured to access
also the other areas using the -g option.

> icaf_... [-g <group>]
where group is either scratch or the codename of one of the group areas.

6.4.5 Checking User’s Quota

Following command will be supported for checking quota on Scratch space on SRM:
>icaf_quota

If needed,
>icaf_quota <group>

can be used to check the quotas on any of the group scratch servers.

6.4.6 Graphical User Interface

A GUI similar to icaf_gftp for managing files on SRM will be greatly appreciated by
the users.

7 Future Plan

There are also some other spin off from this study. One can use this model for trans-
porting real data from productions site to the WN at remote site for further processing
of real data.

References

[1] CDF Homepage, http://www-cdf.fnal.gov

[2] SRM Working Group Homepage, http://sdm.lbl.gov/srm-wg/
[3] SAM Homepage, http://d0Ooral.fnal.gov/sam/

[4] CAF Homepage, http://cdfcaf.fnal.gov

[5] dCache Homepage, http://www.dcache.org/

22 REFERENCES

[6] srmcp Homepage, https://srm.fnal.gov/twiki/bin/view/SrmProject/SrmcpClient

[7] Condor Homepage, http://www.cs.wisc.edu/condor/

	1 Introduction
	2 Prototype Model
	3 Testing of Prototype Model
	4 Data Movement from WN to SRM
	5 Data Movement from SRM to SRM: Single File Transfer
	5.1 Composition of Files
	5.2 Performance Parameters
	5.2.1 Transfer Time
	5.2.2 Transfer Rate
	5.2.3 Latent time
	5.2.4 Cumulative Flow of Data

	6 Implementation of the Prototype Model
	6.1 Authentication
	6.2 User Interface for Job Submission
	6.2.1 CAF Graphical User Interface(CafGui)
	6.2.2 CAF Command-line User Interface(CafSubmit)

	6.3 Monitoring and Control of CAF Jobs
	6.4 Job Output
	6.4.1 Accessing the CAF Scratch Space on SRM
	6.4.2 Identifying User's Scratch Space on SRM
	6.4.3 Accessing User's Data
	6.4.4 Accessing the other Scratch Areas
	6.4.5 Checking User's Quota
	6.4.6 Graphical User Interface

	7 Future Plan

