
A git workflow for DMWM

Andrew Melo

8/6/12 1

Git in a nutshell

Several better written articles exist. Spend
some time to understand
http://git-scm.com/book/en/Git-Internals-Git-Objects

If you want to get deeper idea of what’s
happening.

8/6/12 2

Git Workflow - Developers

•  The main branch is called master, which
is roughly trunk in SVN

•  Each self-contained bit of work (usually
answering a ticket) belongs on a feature
branch started by a developer writing the
code
– Name the branch something descriptive

•  Developers write code in feature
branches

•  Maintainers push them into master
8/6/12 3

Tutorial Setup
$ mkdir git-tutorial
$ git init local-repo
Initialized empty Git repository in ./local-repo/.git/
$ git init --bare remote-repo
Initialized empty Git repository in ./remote-repo/.git/
$ cd local-repo/
$ git remote add origin ../remote-repo/
$ echo "Initial Commit" > README
$ git add README
$ git commit -am "Initial Commit”
$ git log --pretty=oneline
56f19de1bede08cf2c0b75afbf801745f45d6d45 Initial Commit
$ git push origin master
Counting objects: 3, done.
Writing objects: 100% (3/3), 229 bytes, done.
Total 3 (delta 0), reused 0 (delta 0)
Unpacking objects: 100% (3/3), done.
To ../remote-repo/
 * [new branch] master -> master

8/6/12 4

Tutorial: Make a Feature Branch

$ git checkout master # Choose where you want to fork off of
$ git checkout -b "feature/tutorial-branch1” # Make a new branch and check it out
Switched to a new branch 'feature/tutorial-branch1’
HACK HACK HACK
$ echo "READMEs are for chumps" > README
$ git commit -am "Tutorial Commit"
[feature/tutorial-branch1 1613f75] Tutorial Commit
 1 file changed, 1 insertion(+), 1 deletion(-)
Done hacking, now let’s send the branch to GH where it can be pulled
$ git push origin feature/tutorial-branch1
Counting objects: 5, done.
Writing objects: 100% (3/3), 268 bytes, done.
Total 3 (delta 0), reused 0 (delta 0)
Unpacking objects: 100% (3/3), done.
To ../remote-repo/
 * [new branch] feature/tutorial-branch1 -> feature/tutorial-branch1

8/7/12 5

Tutorial: Syncing with upstream

What happens if the remote branch advances?
$ git checkout master
$ echo "Conflict" > README
$ git commit -am "Conflicting commit”
Let’s see what happens if we try to merge master into the feature branch
NOTE: “git pull” is the same as “git fetch ; git merge”
$ git merge --no-commit --no-ff master # basically means --dry-run
Auto-merging README
CONFLICT (content): Merge conflict in README
Automatic merge failed; fix conflicts and then commit the result.
Crap, things broke. Git will put the conflicts side-by-side in the files mentioned above
$ cat README
<<<<<<< HEAD # Everything from here to ===== is from the feature branch
READMEs are for chumps
======= # Everything from here to >>>>> master is from the master branch
Conflict
>>>>>>> master
$ echo ‘READMEs are for chumps (merged)’ > README
$ git commit -am ‘Merging changes from master’

8/7/12 6

Tutorial: A better way to sync w/upstream

8/7/12 7

Doing “git merge” leaves us with a “merging
changes from master” commit for every time we
try to sync with master. This is really noisy for
maintainers and anyone else trying to read the
history:

The “Merge remote-tracking” commit is truly bad, it has completely unrelated diffs
from Seangchan (his code was changes for monitoring, mine was for StageOut, none of
the modified files were the same). If you’ve ever seen a pull request with 100s of
additions/deletions and tons of modified files, you’ve hit the same problem.

Tutorial: git rebase

Because of the issues in the previous slide, it’s a
better idea to do “git pull --rebase” to pull
down commits from upstream. This rewrites the
commits so instead of the upstream commits
going AFTER your commits, they show up
BEFORE them, chronologically. See
http://linux.die.net/man/1/git-rebase for the
gory details.

NOTE: NEVER (*) REBASE BRANCHES THAT
ANYONE ELSE HAS PULLED LOCALLY
 * okay, there are exceptions to that rule 8

Tutorial: Pulling with rebase

First, let’s make some fake commits on master:
$ git checkout master
Switched to branch 'master’
$ echo `date` > README ; git commit -am "Upstream commits..."
[master 10ee7bb] Upstream commits...
 1 file changed, 1 insertion(+), 1 deletion(-)
$ echo `date` > README ; git commit -am "Upstream commits..."
[master e4980d1] Upstream commits...
 1 file changed, 1 insertion(+), 1 deletion(-)
$ echo `date` > README ; git commit -am "Upstream commits..."
[master 3b58f0b] Upstream commits...
 1 file changed, 1 insertion(+), 1 deletion(-)
$ echo `date` > README ; git commit -am "Upstream commits..."
[master c8abc0d] Upstream commits...
 1 file changed, 1 insertion(+), 1 deletion(-)

8/7/12 9

Do the same on the feature branch…

Tutorial: Pulling with rebase

10

We’re left with this tree.
Note master and our feature
branch have diverged, and
we’d like to update the
feature branch with the
commits from master
Andrew-Melos-MacBook-Pro:local-repo meloam$ git rebase master
First, rewinding head to replay your work on top of it...
Applying: Tutorial Commit
Using index info to reconstruct a base tree...
Falling back to patching base and 3-way merge...
Auto-merging README
CONFLICT (content): Merge conflict in README
Failed to merge in the changes.
Patch failed at 0001 Tutorial Commit

When you have resolved this problem run "git rebase --continue".
If you would prefer to skip this patch, instead run "git rebase --skip".
To check out the original branch and stop rebasing run "git rebase --abort".

Fixing a conflicted rebase is
like fixing a conflicted merge.
Does anyone want an
explanation for that?

Tutorial: Pulling with rebase

The end result is that instead of getting a
spurious merge commit with all the changes
from the master showing up in your branch
and polluting history/adding a huge diff,
you get:

8/7/12 11

The moral of the story is: When trying to merely sync a branch with commits made to
another branch, and your local branch is unshared, use a --rebase instead of a merge

Tutorial: Squashing Commits

To keep the history clean, you can go one
step further and “squash” multiple commits
into one:
$ git rebase -i HEAD~3 # says, let’s rewrite the last 3 commits
your editor will show up with this:
pick 736f962 Tutorial Commit
pick 123e2e4 Feature commits...
pick 17ad036 Feature commits...

Change it to say
pick 736f962 Tutorial Commit
squash 123e2e4 Feature commits...
squash 17ad036 Feature commits...

and you end up with:

8/7/12 12

This is nice because it further keeps the history clean. If you find yourself with a lot of
“checkpoint” commits, it’s helpful to tidy things up before you show others

Tutorial: Free-for-all

•  If anyone has specific questions about
other topics, feel free to ask them. I
think I covered the important ones for
day-to-day developing.

•  Finally, Github’s UI is designed to work
well with a certain commit message
format: 1 subject line (50 char max), 1
blank line, N body lines (72 char max,
excluding things like error messages).
Please use that.

8/7/12 13

For Maintainers

•  Use the merge button on GitHub.
•  If you don’t use the merge button, be

sure that you’re not polluting the history
with junk, while being double sure you’re
not rewriting history

8/7/12 14

