2= Fermilab

Opreated by Fermi Research Alliance, LLC for the U.S. Department of Enrgy Office of Science.

Kerberos, Certificates,

and Proxies

Marc W. Mengel
2015-09-18

Computer Security Systems

e Basic Issues

e Principles

e Symmetric Encryption
o Kerberos

e Asymmetric Encryption
o GPG
o Certificates
o Proxies

2¢ Fermilab

Basic Issues:

o Authentication
o who are you?
e Authorization
o what can you do?

2¢ Fermilab

Principles:

e Security Token
o Result of Authentication
o Used for Authorization
o Not modifiable by you

2¢ Fermilab

Examples:

Physical

e Fermi ID
e Credit Card
e Drivers License

2¢ Fermilab

Examples:

e Electronic

o Unix User-id

o Kerberos TGT

o SSL Certificate
GRID Proxy
PGP/GPG key
SSH User Key

o O O

2¢ Fermilab

Symmetric/Shared Key Encryption

e One key-based function crypt()

o X = crypt(crypt(x))
e People who share a key can communicate secretly.
e |ots of algorithms:

o blowfish

o des

o 3des

o rotl3

2¢ Fermilab

Kerberos

e Authentication system

e symmetric keys

o Key server
o knows everyone's keys
o kept very secure

2¢ Fermilab

Kerberos: example

o Amy wants to talk to Bert:
o sends keyserver:
crypt_A(request: Bert)
o keyserver sends back
crypt_A(use: crypt S
Intro: crypt_B(this_is: Amy, use: crypt_S)
)

o Amy sends Bert

crypt_B(this is Amy, use crypt_S)
o Bert and Amy talk with crypt S

2¢ Fermilab

Kerberos: Important Detalls

e Block of Really Random Bits
makes key guessing hard

e Timestamps
prevent "replay" attacks

e ticket granting_ticket -- message from keyserver with
short-term key to use instead of your regular one

2¢ Fermilab

EXxercise:

e Setup:
o Groups of 4
2 people who want to send a message
1 keyserver
1 snooper
o Envelopes for Encryption
name on envelope means encrypted
In that key
e play kerberos -- send a key request contact other
person, etc.
e If you need to see 1000 envelopes in a given key to
figure out the key, how many messages can you
send?

2% Fermilab

Asymmetric/Public Key systems

e |Ntro
o Two key-based-functions priv, pub
X = priv(pub(x))
X = pub(priv(x))
o used in pgp, gpg, etc.
o also for certificates, proxies

2¢ Fermilab

Sending

Messages:

e combined with shared keys
e message sent to a,b,c is:

o a: pu
o b: pu
o C: pu

0_a(shared key)
0_b(shared_key)

0 _c(shared key)

o shared key(message)

2¢ Fermilab

Sighing Messages:

combined with hash/checksum

signature = priv(hash(message))

checking person sees If:

hash(message) == pub(signature)
== pub(priv(hash(message))
== hash(message)

2¢ Fermilab

Sighing Keys:

e Get someone to make a signature of your public key
to "prove" it is yours, and not someone else's.

o |Idea behind certificate systems -- trusted Certificate
Authorities sign public keys.

o Allows "web of trust" setups (i.e. CAcert)

2¢ Fermilab

http://www.cacert.org/

RSA: Fun with Prime Numbers

e key pair is based on p,qg,e,d

o prime(p)

o prime(q),

o gcd(e,d)==1

o (e *d) % ((p-1)*(9-1)) ==

n = p*g

pub(x): (X ** e) % (n)

priv(x): (x ** d) % (n)

can't encode numbers bigger than n -- slice into
blocks.

2¢ Fermilab

RSA: Cont.

e Public key is pair of integers (n,e).
e Private key is pair of integers (n,d).
e "breaking" RSA consists of factoring n, so you pick Really Big Primes for p & q to make it hard.

EXxercise:

eis(p=7,9=13,e=5,d=1037) a valid RSA key
tuple?

e Encode/decode 66, 77, via RSA with key pair

e (91,5) (91,1037)

2¢ Fermilab

e bc:

o (66/5)% 91

o (40 1037) % 91
e pub(66) -> 40
e priv(40) -> 66

Certificates

More Fun with Signatures

o Certificate Authority(CA): Place with a public key
e Secondary CA: CA whose key Is signed by
another CA

e Certificate:

public_key,

CAl

signature_ CAl(public_key)
CAl1_key

CAZ2
signature_CA2(CA1_key)

O O O O O O

2¢ Fermilab

ISO Certificates: x509

e File formats
e Naming conventions (x500)
e Mechanisms

o Certificate Requests

o Certificates

o Expiration

o Revocation Lists

2¢ Fermilab

Homework/Exercise

Look at the openssl cookbook

e Setup your own CA
Make a CSR, sign it
Install Cert in apache
Install CA key in browser
revoke certificate

2¢ Fermilab

https://www.feistyduck.com/library/openssl-cookbook/online/ch-openssl.html#openssl-private-ca

Proxies

Proxies are special certificate/key bundles, with:

e a short lifetime (i.e. max 24 hours)

e a private key/public key pair

e one or more Attribute Certificates from a VOMS
granting VO Roles/membership

e whole thing is digitally signed by *you*

e a copy of your personal cert, signed by CA

2¢ Fermilab

Proxies (cont)

Important bits about Proxies

e It contains a key, so it's a 'bearer bond'

e checking one requires the signature chain to the CA
so using with "curl" etc. iIs tricky, permutations
needed like

curl \

--cert proxy \

--cacert proxy \

--key proxy \

--capath /etc/grid-security/certificates \

o works differently depending on openssl vs. ns|
libraries...
e See Funny Curly THings

2% Fermilab

https://wiki.nikhef.nl/grid/Funny_Curly_things

Grid vs Proxy

How to grid tools use Proxies?

e grid tools are Web Services that accept proxy
certificates.

e Generall map proxies to local accounts (via
GUMS/Gridmap files)

e Here at Fermi we used to map:

fermilab:/fermilab/EXP/Role=Production -> EXPpro account
fermilab:/fermilab/EXP/Role=Analysis -> EXPana account

e \We now map Role=Analysis to local user account
e Future: ClLogon cert Distinguished Names -- put the
extra CN=UID:whoever bits in the DN, too?

Thus proxies are Only Useful if they have VO attributes.

2% Fermilab

Proxy Issues

e multi stage process:
o get identifying certificate
(which can involve kerberos auth first!)
o get Attribute Certs from VOMS(es)
o build proxy
e VOoms-proxy-init defaults/specify many arguments
e garbled proxy cert (0.1% failure rate?)
e finding proxy / env vars
o X509 USER PROXY
o X509 USER_CERT
o X509 USER_ KEY

2¢ Fermilab

