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Abstract

We employ the local-density approximation to derive the spectral function P(k, E) of
finite nuclei. For various densities of nuclear matter we calculate P(k, E), and split it into
the single-particle and correlated parts. For finite nuclei P(k, E) is calculated by combining
the nuclear-matter correlated part, evaluated in local-density approximation, with the
finite-nucleus single-particle part obtained from mean-field calculations or (e, €'p) experi-
ments. These spectral functions are used to calculate cross sections for inclusive electron—
nucleus scattering at large momentum transfer. The recoil-nucleon final-state interaction is
treated in the local-density approximation as well.

Keywords: Nuclear structure; Spectral function of finite nuclei; Cross sections for inclusive
electron scattering

1. Introduction

The knowledge of the spectral function P(k, E), the quantity that gives the
probability to find in a nucleus a nucleon of momentum k and removal energy E,
is needed for the theoretical description of a number of nuclear processes. For the
calculation of many observables it is important to have nuclear wave functions and
spectral functions that are realistic for both the single-particle aspects and the
short-range properties resulting from NN correlations.

The need for a realistic P(k, E) is obvious in particular for processes involving
large momentum transfers g. Examples for such processes are electron—nucleus
scattering, be it in the regime of low energy transfer @ of interest to quasi-elastic
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scattering, or be it in the region of large w of interest for the understanding of
deep inelastic scattering (EMC effect). In the kinematical region corresponding to
low w and large momentum transfer g, where the impulse approximation is
applicable, electron—nucleus scattering essentially reduces to the incoherent sum
of elementary scattering processes on a collection of A off-shell nucleons dis-
tributed according to the spectral function P(k, E), which contains all the
information on the structure of the nuclear target. The behaviour of P(k, E) at
large values of k and E is of particular relevance for these applications, since at
high g the electrons probe the short-range interparticle correlations, which are
known to give rise to the high-momentum components in the nuclear wave
functions.

Microscopic calculations of P(k, E) based on realistic nuclear hamiltonians
have been carried out for light nuclei with 4 < 4. The deuteron spectral function
can be readily expressed in terms of the wave function in momentum space,
whereas for the three-body systems P(k, E) has been obtained both using the
solution of the Faddeev equation [1,2] and within a variational approach [3]. The
spectral function of the four-body nucleus *He has been studied in Ref. [4] within
the so-called ATMS approach, and in Refs. [5,6] using an approximate method
based on the use of the microscopic momentum distribution of nucleons, deuterons,
*H and *He in “He. Applications to inclusive (e, €') scattering are discussed in
Refs. [7,8,6].

Realistic many-body calculations have recently been extended [9] to obtain the
momentum distribution n(k), but not yet P(k, E), for A = 16, whereas for larger
A one has to rely increasingly on more approximate treatments of nuclear struc-
ture. For heavy nuclei, reliable calculations of ground-state properties are available
only within the mean-field framework and extensions thereof, approximations
which are known to be inadequate to describe the high-momentum components of
the nuclear wave functions.

Besides light nuclei, the only other system for which accurate microscopic
calculations of the spectral function, starting from the NN interaction, are feasible
is infinite nuclear matter. The calculation of the nuclear matter P(k, E) within the
orthogonal correlated-basis-function (CBF) perturbation theory, using a nuclear
hamiltonian including two- and three-body interactions, is described in the work of
Benhar et al. [10], and an application to inclusive electron scattering is reported in
Ref. [11]. Theoretical studies of the nuclear-matter spectral function have been
also carried out using different versions of the G-matrix perturbation theory and
semirealistic nuclear hamiltonians [12-14]. The P(k, E) resulting from these
calculations exhibit the same qualitative behaviour of the spectral function as
discussed in Ref. [10], but no applications to inclusive electron scattering are
available.

The main drawback of nuclear-matter calculations is the limited set of data one
can compare to. Only for a very few observables and kinematics are there
sufficient data available to extrapolate from finite nuclei to nuclear matter (see the
results of Day et al. [15,16]). For inclusive electron scattering the main limitations
occur for very large g, where data are scarce, so that an extrapolation to nuclear
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matter cannot be performed; a study of this region would be particularly interest-
ing due to the sensitivity of the cross sections to short-range properties. It also has
not yet been possible to extrapolate to nuclear matter the data separated into their
longitudinal and transverse pieces; the extrapolation would lead to a further
blowup of the uncertainties, which are already large. A study of the longitudinal
response would be of interest in particular for a better understanding of the
reaction mechanism and the elucidation of the difficulties encountered with the
longitudinal sum rule.

In the present paper we derive an approximate P(k, E) for the heavier nuclei.
This will be done by combining the mean-field P(k, E), which is expected to be
realistic at small k£ and E, with the correlation part extracted from the nuclear-
matter calculation and recalculated for nuclei employing the local-density approxi-
mation (LDA).

For the case of the nuclear momentum distribution, the LDA has been used
previously [17,18]. Stringari et al. started from the momentum distribution of
nuclear matter calculated in lowest-order cluster approximation. For the applica-
tion of the local-density approximation, they split the momentum distribution in a
correlated and an uncorrelated piece, the latter being simply the momentum
distribution of the noninteracting Fermi gas. The correlated part resulting from
this procedure was <0 for k£ <kg, and positive above ky, and had vanishing
normalization. The uncorrelated part and the density distribution needed for the
application of the local-density approximation were calculated using the density-
dependent Hartree—Fock (DDHF) approximation with a Skyrme interaction.

Co et al. [18] studied quantitatively the above LDA treatment with a fully
consistent Fermi hypernetted-chain (FHNC) calculation carried out for a home-
work NN interaction of the central type and Jastrow-correlated wave functions, for
both nuclear matter and doubly-closed-shell nuclei.

The local-density approximation has also been applied by Pieper et al. [19] in a
study of drops of liquid “He. The results of Ref. [19] indicate that the pair-distribu-
tion function, describing the effect of short-range correlations on the two-body
density, can successfully be approximated as a function of the local one-body
density and the interparticle separation.

In the present work we develop an approach to split the nuclear-matter spectral
function P(k, E), calculated for different nuclear-matter densities, into a corre-
lated and a single-particle part. This is achieved by identifying in the calculation of
P(k, E) the contributions coming from configurations having pairs of strongly
correlated nucleons, which are mostly sensitive to the short-range part of the NN
interaction. These contributions are expected to be unaffected by finite-size
effects, originating from long-range interactions, and can be evaluated in infinite
nuclear matter. The resulting correlated spectral function P, (k, E) is positive
both below and above k. As the finite-nucleus single-particle part we employ the
spectral functions measured via (e, ¢’ p) reactions. This provides a realistic distribu-
tion as a function of momentum and removal energy.

With this approach we need to apply the LDA to the short-range properties of
the nucleus only. For these aspects, the LDA is expected to work reliably.
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The approach taken in this paper intends to tackle at the same time a second
problem which is related to the understanding of inclusive electron scattering at
large g, the tool we use to check P(k, E) at large k and E. The inclusive cross
sections, although less sensitive than exclusive data, are significantly affected by
the final-state interaction of the recoil nucleon. This FSI needs to be accounted for
in order to extract from (e, €') quantitative information. For the study of short-range
properties of nuclei, this final-state interaction must be understood in kinematics
where the recoil-nucleon momentum is large, i.e. where a relativistic description is
needed. The work of Benhar et al. [11] has provided a way to treat the final-state
interaction in the large-g regime for nuclear matter. Employing the local-density
approximation, we extend this approach to the description of inclusive scattering
from finite nuclei.

2. Spectral function of nuclear matter

The one-body Green functions of nuclear matter at saturation density p,, = 0.16
fm~3 have recently been calculated for the non-relativistic nuclear hamiltonian
with the Urbana v,, + TNI interaction, using the orthogonal-correlated-basis-func-
tion (OCBF) theory [10]. The spectral function is proportional to the imaginary
part of the Green function which describes the propagation of hole states and can
be written in the form

P(k,E)=Y I{0]a}IN*~')|*8(E - E{ ' + Eg), (1)
N

where a}, creates a nucleon with momentum k, |0) represents the nuclear-matter
ground state, with energy eigenvalue Eg', and | N*~!) are intermediate excited
states of the (A4 — 1)-particle systems with energy eigenvalues Ez 1.

One-hole (1h) | N = k) and two-hole-one-particle (2hlp) | N = h;h; p;) interme-
diate states have been included in the calculation. This has been achieved using
OCBF perturbation theory within the set of correlated states (CSs)

g|®,)
CREAAT

|n)cs = (2)
where |®,) is the generic eigenstate of the Fermi gas hamiltonian, & is a
many-body correlation operator of the form & =ST1,_;F(i, j), and where the
two-body correlation operator F(i, j) has the same structure as the NN interaction
[10].

The CSs | n)¢s are first othogonalized (OCS), by using the procedure described
in Ref. [20], which preserves, in the thermodynamical limit, the diagonal matrix
elements between CSs. Then, standard Rayleigh—Schrodinger perturbation theory
is used to express the eigenstates |n) in terms of the OCSs | m)ocs. Any eigenstate
|hy...h,p,...p,> has a large overlap with the n-hole-m-particle OCSs
lh...h,p,...P,>0cs, and so OCBF perturbation theory is rapidly converging.
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Fig. 1. Momentum distribution of nuclear matter at saturation density (full line). The dashed line
represents the contribution associated with P, (k, E) for k < kg.

The spectral function is most conveniently separated into two parts, according
to its energy dependence: one part, which we will call single-particle spectral
function Ps_p_(k, E), corresponds to the contribution from 1h intermediate states
and turns out to be sharply peaked at E = —e(k), e(k) being the excitation energy
of the one-hole state | k). The width of the peak provides a measure of the lifetime
of the hole state and goes to zero as it approaches the Fermi surface. The integral
of P, (k, E) over the energy gives the strength Z(k) of the hole state, which is
quenched with respect to unity [21], due to NN correlations.

The other part, denoted as correlated spectral function P, (k, E), corresponds
to contributions from n-hole—(n — 1)-particle states. It would be strictly zero in the
absence of NN correlations and its leading contribution comes from 2hlp states.
This part has a completely different energy dependence as compared to Ps.p.(k, E),
showing a widespread background extending up to large values of both k£ and E,
with a maximum at E ~ k?/2m. P, (k, E) coincides with P(k, E) for k > k. The
integral of P, (k, E) over the energy gives the so-called continuous part of the
momentum distribution n (k) [21], and the sum of n (k) with Z(k) provides the
full momentum distribution, whose discontinuity at the Fermi surface is therefore
given by Z(kg). The full nuclear-matter momentum distribution n(k), and its
continuous part n(k), evaluated at the empirical saturation density, are shown in
Fig. 1.

At the zeroth order of the OCBF perturbation theory, only diagrams with no
internal interaction points (corresponding to non-diagonal matrix elements of the
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Fig. 2. Diagrams (a)—(h) as referred to in the text.

hamiltonian between OCSs and denoted as black dots in Fig. 2) are summed up.
At this level, which we denote as variational, the separation of P(k, E) into
P, (k, E) and P, (k, E) is straightforward. Diagram 2a represents the contribu-
tion from the 1h intermediate OCS, and contributes to P, ,(k, E). Diagrams with
n>1 hole lines and n — 1 particle lines and no interaction points (diagram 2b
shows the contribution from the 2h1p OCS) contribute to P, (k, E).
Higher-order perturbative contributions 8 P(k, E) arise from corrections to the
variational ground and intermediate states. These corrections are represented by
OCBF diagrams with one or more interaction points. In these cases the separation
into 6F,, and &P, may be more involved. However, it still can be readily
performed for the corrections due to the admixtures of 2h2p states into |0): terms
having | k)ocs as intermediate states belong to 8P, ,, while those having all the
remaining intermediate states contribute to 8P, . Diagrams 2e and 2f are of the
first type, whereas diagrams 2g and 2h are of the second one and vanish at k <kp.
Each of the remaining diagrams contributes to both 8F,, and &P,,. Let us
analyze diagrams 2¢ and 2d. They derive from perturbative corrections to either
the intermediate OCS state | k)ocs or to | Ak, p,)ocs. The explicit expression of

diagram 2d is

PO
L (k, E)
5P?(k, E) = —Im _e(zk)_E_m , (3)

where [10] the polarization self-energy L5°(k, E), at k <k and E > —e(kp), is
given by
PO (0la}lk)ocs ocs$k | H | h;hyp;)ocs
k, E _1 OCs k ocCs i Az + . 4
Lk ) = Ly el — (k) —E —im *

It is clear from the above equations that two terms with different energy behaviour
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are present: a 8(e(k) + E) energy-dependent part, related to | k) and contributing
to 8P, ,, and a second term, coming from Im[L5°(k, E)], and spread out in energy,
which is in turn related to | A,k p;> and contributes to 6P, . This last piece is the
analytical continuation, at k < kg, of diagram 2h. A similar relationship holds for
diagram 2c¢ and its counterpart 2g. This is indeed a general behaviour, leading to
the property that 8P, (k, E) is a continuous function at k = k.

P..(k, E) provides only a small fraction of P(k, E) at k <kg, so we have not
carried out the complete calculation of 8P, (k, E). We have used, instead, the
following procedure to estimate it: the contribution 8P, from diagram 2d and
from all those diagrams obtained by renormalizing its hole line (and which can be
shown to be dominant at large energies), has been evaluated from

1 PO
SRk, £) =~ In| Y (k. £)
2

Re(a(k)[—E—e(k)] — dey(k)

+ Re

PO
—Re[Z(k, E)
1

PO
);(k, —e(k))]
PO -1
—i Im[Z(k, E) } , ()

where a(k) and 8e,(k) can be found in Ref. [10], and £T°(k, E), at k <k and

E > —e(kg), is given by
PO locsCk | H | BihypYocs |
T (k, £y = p Lo kU I Jocs | ©
1 (p;) —e(h;) —e(h;) —E—in

The leading contribution to the remaining part is provided by diagram 2c, and it
is approximated by scaling its counterterm 8P%®, from diagram 2g, evaluated at

cor
k = k. The final expression for 6P, at k <kg, is

8Peor(k, E) = 8PG)(k, E) + B dPTP(k =k, E), (7)

where B, has been fixed to fulfil the continuity condition of 8P, (k, E) at k = kg
and the overall normalization. The integral over the energy of 8P, vyields
—86Z™T(k) of Ref. [21].

The correlated and single-particle contributions to the nuclear-matter spectral
function at the empirical equilibrium density and k = 0.75k are shown in Fig. 3
together with the full P(k, E) as a function of the removal energy E.

The density dependence of the nuclear-matter wave function and of the
pair-distribution function has been studied by Wiringa et al. [22]. In the present
work, we have computed the spectral function and the related sum rules at five
different nuclear-matter densities, namely p = 1.25, 1.0, 0.75, 0.5 and 0.25 pyu.
using the Urbana v,, + TNI model of the NN interaction [23,24]. The correspond-
ing momentum distributions are shown in Fig. 4. The results of these calculations
confirm the naive expectation that the height of the quasiparticle peak increases
when the density diminishes, whereas its width becomes smaller. The extension
and importance of the background are much larger at higher densities. The
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Fig. 3. Spectral function of nuclear matter at saturation density (full line) for k /k = 0.75. The dashed

and the dash-dotted lines correspond to P, ,(k, E) and P, (k, E), respectively.

100

10~1

n(k)

10—2

10-3

10—4

TI“IIIIIIlI!IIIlI

T lllll'l
1 llllllll

1 lllllllI

T T flll!ll
11 Illlll[

T 1 ll'llll

||1|I||||||||JI||||'

0 1 2 3 4
k (tm™)

Fig. 4. Momentum distribution of nuclear matter at various densities. For each density the lower curve
at k < k gives the contributions associated with the corresponding P, (k, E).



O. Benhar et al. / Nuclear Physics A579 (1994) 493-517 501

P(k.E)

Fig. 5. Correlated part of P(k, E) (times k?) plotted as function of k and E, for % of the empirical
nuclear-matter density.

calculated strengths of the quasi-hole pole at the Fermi surface, Z(eg), are
Z(ep) = 0.68, 0.68, 0.69, 0.61 and 0.60 at p =1.25, 1.0, 0.75, 0.5 and 0.25 PrM>
respectively. For a purely repulsive interaction, one would expect Z to approach
unity for low densities; the attraction given by the empirical NN interaction is
causing the correlation function to over-shoot 1, which simulates bound states of
pairs of nucleons and explains why Z does not approach 1 for low density. The
empirical information on the spectroscopic factor of the 3s,,, state in 208 pp,
coming from (e, ¢) and (e, € p) experiments, provides a value of 0.65 + 0.05 [25,26],
in fair agreement with the OCBF estimate of Z(eg) for nuclear matter of the
appropriate density.

For illustration, we show in Fig. 5 a 3-dimensional plot of the correlated part of
P(k, E), calculated for 3 of the empirical nuclear-matter density. This plot clearly
shows the enhancement of P(k, E) at large k and E due to short-range NN
correlations.

3. Local-density approximation
3.1. Spectral function

A generic two-body quantity F(1, 2) related to nuclear properties may be
calculated within the local-density approximation (LDA) if its dependence on the
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center-of-mass coordinate R = 3(r, +r,) is weak. This is indeed the case for
short-range functions having a range in the interparticle distance r =r, — r, which
is small with respect to the surface thickness of the nucleus. In order to apply the
LDA, the spectral function is better studied in the coordinate rather than in the
momentum representation. The r-space spectral function is given by

P(ry, re, E) = L A01a"(r) INA (N4~ a(r,) [0)8( E — EZ ™' + EgY),
N

(8)

and its integral over the energy gives the one-body density matrix
p(ri,ry) =(0la'(r)a(ry) 10y = [dEP(r,, ry, E). (9)

Both the spectral function and the density matrix can be expressed in terms of the
variables r and R instead of r, and r,. The r-Fourier transform of P(R, r,
E)Y=P(r,, ry, E) is a measure [27)] of the probability of removing a nucleon with a
given momentum k at a distance R from the center of the nucleus associated with
a removal energy E:

P(R,k, E)= [dr ¢*"P(R, 1, E). (10)

Integration of P(R, k, E) over R gives the spectral function P(k, E) defined
previously,

P(k,E)= [dRP(R, k, E). (11)

As discussed in the preceding section for the nuclear-matter spectral function,
P(R, r, E) can be separated into a single-particle part and a correlated one,

P(R,r,E)=P (R,r,E)+P, (R, r, E), (12)

cor

where P, is obtained when only the one-hole correlated states are included in the
sum of Eq. (8).

In the present work, the single-particle part P, for finite nuclei is obtained
from the momentum dependence of the single-particle wave functions, as deter-

mined from (e, € p) reactions [28]. This leads to the mean-field spectral function

PME(ry, 1y, E) = Y ¢5(1)da(1)8(E — E,), (13)

where the single-particle wave functions ¢, are extracted from the measured
single-particle momentum distributions [29]. To account for the quenching of the
single-particle states due to NN short-range correlations we have normalized the
mean-field spectral function to the average strength factor Z taken from the
nuclear-matter calculations as discussed in the preceding section:

P, (R, r, E) ~Z™"™(p(R), ex)PM*(R, r, E), (14)
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where Z™(p(R), ey) is the quasiparticle strength for nuclear matter at the Fermi
energy and density p(R). Within the approximation employed here, P, (k, E) has
a &-function dependence on the energy E. The width of the single-particle peak,
due to the decay of one-hole correlated states into the other CBF states, could
casily be taken into account by using the full experimental E-dependence. How-
ever, such an improvement is not necessary here, because the calculation of the
inclusive cross section involves an integration over E; moreover, the data to be
compared with have an energy resolution of ~ 30 MeV. For the same reason, we
neglect the effect of long-range correlations (beyond the ones already accounted
for by the (e, €' p) results) as they would lead to a redistribution of the strength
over a narrow interval in E.

We also neglect the fact that the occupation of the single-particle orbits could
have a dependence on the orbit; the (e, ¢'p) results [28] indicate that this
dependence is quite weak.

Alternatively we could have used mean-field calculations such as DDHF to
determine the momentum distributions. We would expect to find very similar
results, as the mean-field calculations are quite successful in reproducing the
experimental momentum distributions measured at low k by (e, €'p).

The correlated part P, (R, r, E) for finite nuclei has been calculated by using
LDA. The cluster diagrams corresponding to p..(R, r) = p.,(ry, ry) have the two
external points 1 and 1 linked by dynamical correlations; thus p. (R, r) is
short-ranged in r. Therefore, it is plausible to use LDA to evaluate it. The
approximation

Peor( R, 1) ~p(R)pY (p(R), 1), (15)

where p™ is normalized so that p™™(r =0) =1, relies on the feature that the

exchange correlation may be approximated by

LOL(R+3r)do(R—3r) ~po(R)I(kgr), (16)

for a range of r-values which is small with respect to the surface thickness of the
nucleus. In the above equation I(kgr) is the Fermi gas density matrix, kg =
(3m%)'/? is the Fermi momentum, and

po(R) = L ¢4 (R)do(R) (17)

is the uncorrelated one-body density. A similar LDA has been recently analyzed in
Ref. [18] for the case of Jastrow-correlated model nuclei, and found to provide
extremely good results. We have verified that using p(r,)p(r,) instead of p(R)
in Eq. (15), as was done in Ref. [18], leads to almost indistinguishable results for
the density matrices of the model nuclei considered in Ref. [18]. Here, we have
adopted the simpler choice (15). As a consequence, we have used the following
approximation for the correlated part of the r-space spectral function:
Pou(R, 7, E) ~PPY(R, 7, E) = p(R) P! (p(R), 1, E). (18)

cor
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3.2. Inclusive cross section

The inclusive electron—nucleus cross sections have been calculated following the
approach developed in Ref. [11] for nuclear matter; here we extend this approach
using LDA for the treatment of final-state interactions (FSI) in finite nuclei. In
Born approximation the inclusive cross section is given by

d%o a’ e' waA 19
d..() dE’ q4 (q) ( )

where a = 537 is the fine-structure constant, € and € are the energies of the
incident and scattered electron, and g is the four-momentum transferred by the
virtual photon: g = k, — ki, with k.= (e, k) and k. =(€, k,). L* and W} are
the lepton and nuclear tensors, respectively.

The PWIA expression of the nuclear tensor is given by

Wit ia(a) = [dRF A A(R, a), (20)
with
#4ia(R, a) = [dk dEP(R, k, E)[ ZW2(k, E, q) + NW2L(k, E, )],

(21)

where WA‘,’,(“) is the electromagnetic tensor of an off-shell proton (neutron), and its
expression can be found in Ref. [11]. In the calculation of #  we employ the
appropriate relativistic expressions as imposed by the high recoil-nucleon mo-
menta.

Final-state interactions (FSI) have been included by using the convolution
approximation and correlated Glauber theory (CGT), as developed in Ref. [11]. In
this approach the effects of FSI appear in a quantity that is analogous to, but more
complicated than, the usual optical potential . The convolution approximation is
a direct consequence of neglecting the dependence of the complex potential
V=U+iW, felt by the struck nucleon in the nuclear medium, on the energy
release w in the scattering process. This approximation has been successfully used
in an number of studies of inclusive scattering on quantum liquids [30,31], and on
nuclei [32].

According to the convolution approximation, the nuclear tensor is given by

(q)—de[ dw'F(R, p, 0 — )72 a(R, 14|, &), (22)

where p =k + ¢ is the momentum of the recoiling nucleon, and where the folding
function F is given by

1 o ,
F(R,p,0o—w) = -T;Re(fo dt expli(w — w')t] eV RPD] (23)
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The folding accounts for the interaction of the knocked-out nucleon with the
(A — 1)-particle system, which couples the initial 1p1lh state to more complicated
2p2h states, etc.. Due to this, the initial 1p1h state acquires a width and does not
have to be on-shell. As a consequence the folding function F(R, p, w) extends to
both negative and positive w-values. Similar features are present also in non-rela-
tivistic calculations of the longitudinal response carried out for lower momentum
transfer [10], where FSI effects are “fully” included by means of OCBF theory.

Within CGT, the imaginary part of V' is obtained from [11,33]

27 o,
V(R, p; ) = —q—’: ) Prgg r) (k)

(2 ) a=n,p
xexplik- (r—R—-p¢) g(R, 1), (24)

where f{N*(k) is the (Na) amplitude for a nucleon of momentum p.

At hlgh momentum transfer, e.g. ¢> =2 to 10 (GeV /c)?, and for reactions on
medium-heavy nuclei one can safely use LDA, approximating the pair function
g(r,, r,) with the nuclear matter g"™(p(R), r,,) and performing the amplitude
average. This is justified as the scattered electron is sensitive only to the FSI of the
recoil nucleon that occurs within a distance of order 1/g, which is small. Under
this approximation, the imaginary part W results to be

27p(R) rucpy . o dk dr
O A=
xexp[ik - (r—p£)] g™ (p(R), r) Im[ f,(k)], (25)

where f,(k) is the free NN amplitude taken from experiment [34, 35]. (We neglect
the effect [36] of the change of the scattering amplitude off-shell, as too little is
known about it.) This expression for W leads to a folding function F(R, p, » — ')
which coincides with the nuclear-matter folding function evaluated at pyy = p(R).

We note that it is important to include the NN correlation function g(r —r’),
i.e. to use the correlated Glauber theory. This accounts for the fact that a nucleon
in the nucleus is surrounded by a correlation hole, and therefore the probability of
a collision with one of the spectator particles during the first 2 fm of its trajectory
as a recoil nucleon is reduced.

In principle, the real part U could be evaluated with the same approach as used
for the imaginary part W, i.e. from Eq. (25) but with Im[ f,,(k)] being replaced by
Rel f> (k)]. We note, however, that the real and the imaginary part of the optical
potentlal quantitatively have very different effects, and describe different aspects
of the FSI. The imaginary part W accounts for two-body scattering processes
involving large momentum transfers, which lead to a strong damping of the motion
of the recoiling particle, whereas the real part U produces a shift of its energy. The
effect of the imaginary part is known to be dominant at large momentum. The real
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part can only play a role at ¢t~ 0, when the attenuation associated with the
imaginary part is weak due to the correlation hole surrounding the struck nucleon.
It is therefore reasonable to neglect its time dependence. Due to the smallness of
its effects, an approximate treatment is sufficient.

U(R, p) is taken from the optical potential of a nucleon in nuclear matter with
density p(R) for p<3 fm~'. In Ref. [11] the phenomenological Dirac optical
model was used at larger momenta. However, the calculated U was positive for
p >3 fm™?, which is inconsistent with the correlated Glauber theory. Here, we use
the Glauber theory for p >3 fm™ L

In the calculation of the inclusive response, we also include the effect of colour
transparency. Here colour transparency refers to the fact that scattering at large
momentum transfer preferably selects nucleons in a ‘small’ configuration where
the quarks are close together and the colour of the three valence quarks is well
shielded, and the idea that such a Fock state of the nucleon has an interaction with
other nucleons which is reduced in strength. In order to describe this predicted
phenomenon, we have employed in our calculations a standard parametrization of
the cross section [37], and the evolution of the ‘small’ Fock state back to the
normal nucleon is treated as proposed by Ref. [38].

The “colour transparency” only plays a role for nucleons with initial momenta
k <kp, i.e. nucleons associated in PWIA with values of the Bjorken scaling
variable X = 1. The FSI only produces large effects when moving the strength
corresponding to initial momenta k <k to a lower energy loss, and it is only
when FSI is large that colour transparency has an effect.

Different treatments of the FSI have been published by Nikolaev et al. and
Kohama et al. [39,40]. Although these treatments refer to (e, ¢’'p) rather than the
inclusive cross section considered here, it may be instructive to compare to them.

For the description of correlations in the initial state, Nikolaev et al. use the
independent pair approximation, with a parametrized distribution function. Their
treatment of g(r; —r,) does not include terms of order 1/4, terms which are
important to fulfill the normalization sum rule. Here, we use a fully correlated
N-body wave function which takes into account consistently the many-body
ground-state correlations; hence, the main contribution to FSI due to spectator
nucleons is already included in our treatment. The remaining contributions coming
from n-body distribution functions with n > 2 correspond to the next order in our
correlated Glauber theory, and are expected to be extremely small. In evaluating
such contributions the use of the independent pair approximation as in Ref. [39]
would largely overestimate the effect.

The treatment of FSI in (e, ¢'p) of Kohama et al. is similar to the correlated
Glauber theory developed by Benhar et al. [11], but the NN correlations are
introduced in a way similar to the one employed by Nikolaev et al.. With their
parametrization of g, unrealistic at short distances as compared to the one
obtained from microscopic calculations, they find smaller correlation effects than
Benhar et al.. However, with a more realistic short-range behaviour, their correla-
tion effects appear to double.
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4. Results
4.1. Spectral function

In this section we want to discuss the numerical results obtained for P(k, E),
n(k) and the inclusive cross sections. We compare P(k, E) and n(k) to the results
of available microscopic calculations, and the calculated cross sections o(q, @) to
data on inclusive electron scattering.

For a calculation in terms of the local-density approximation discussed in the
preceding section we need to treat separately the different regions of density of the
nucleus, both in the calculation of P(k, E) and in the calculation of the folding
function F(w) which describes the effect of the FSI. As both P(k, E) and F(w)
are slowly varying functions of the density, it is sufficient to use a relatively coarse
grid {; in densities.

In order to obtain the coefficients v; that describe the fraction of the nucleus
having density ¢; times the nuclear-matter density, we start from the charge
density, known accurately from elastic electron scattering. We assume that proton
and neutron densities have the same shape, and differ only by overall normaliza-
tion (Z and N, respectively). The coefficients »; are given by the fraction of
nucleons located in the density bin centered at {; times the nuclear-matter density.
For very light nuclei, we take into account the fact that the charge density is
obtained from the nucleon density by folding with proton size. For the calculation
of the v; we use the unfolded density.

For the single-particle spectral function P,,(k, E), we start from the momen-
tum distributions of individual shells as determined from (e, €'p) reactions. The
measured momentum distributions in general have been fitted with Woods—Saxon
wave functions, which allows to easily recalculate P, (k, E) (for a review see
Frullani et al. [29]). For the case where the parametrization is given in radial space,
we take the appropriate Fourier transform. The sum over all occupied shells gives
the mean-field P, (k, E). Within the approximation employed here, P, (k, E)
corresponds to a sum of d-functions in the E-direction, as justified in the previous
section.

Alternatively, we could have used for the mean-field part the results from
realistic mean-field calculations, such as density-dependent Hartree—Fock (DDHF)
calculations employing finite-range forces [41,42]. Such calculations are known to
reproduce well the r-space densities, and can thus be expected to do well on the
mean-field part of the momentum distribution. For the present use, the calculation
of inclusive scattering cross sections, we would expect that such DDHF momentum
distributions would have produced very similar results for o(g, o).

The Woods—Saxon momentum distributions become very small at momenta
beyond 400 MeV/c. Ref. [19] showed that, for drops of liquid helium, the
quasiparticle orbits do indeed have momentum distributions that fall very quickly
at large k, and do not have the high-momentum tail that occurs for the continuum
part of the spectral function.
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Fig. 6. Momentum distribution of oxygen in the local-density approximation (solid curve) and in the
mean-field approximation (dashed curve).

For the correlated part P, (k, E) we employ the spectral function of nuclear
matter, calculated for different fractions {; of the full nuclear-matter density. The
calculation of the nuclear-matter spectral function, and the relative normalization
of the mean-field and correlated parts, have been discussed in the previous
sections.

For a comparison between different approaches, we will limit ourselves to the
confrontation of the momentum distributions n(k), i.e. the spectral function P(k,
E) integrated over the removal energy E. A comparison of different results for
P(k, E) is not practical, and for most cases only calculations for n(k), but not P(k,
E), are available.

In Fig. 6 we show the momentum distribution for oxygen. The dashed curve
gives the mean-field part, the full curve gives the sum of (renormalized) single-par-
ticle and correlated spectral functions. The effect of adding the short-range NN
correlations is clearly visible in the tail at high k.

Fig. 7 gives a comparison of our momentum distribution (labeled LDA) and the
one of Pieper et al. [9], calculated using the variational Monte Carlo (VMC)
approach. This calculation was based on a realistic nucleon-nucleon potential, the
Argonne v,, interaction supplemented by the Urbana VII three-nucleon potential.
In spite of the fact that the two results have been obtained using different nuclear
hamiltonians, we observe a remarkable agreement, indicating that the local-density
approximation is likely to be a good approximation for the description of the
correlated part. The small differences at low k probably reflect a shortcoming of
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Fig. 7. Momentum distribution of oxygen: LDA (solid line), variational Monte Carlo calculation [9]
(squares), nuclear-matter momentum distribution, normalized to 16 nucleons (dashed).

the variational wave function employed in Ref. [9], whereas the differences at large
k come from both the statistical fluctuations of the VMC calculation and from the
differences in the hamiltonians and in the correlation operators. For illustration,
Fig. 7 also gives the n(k) of infinite nuclear matter.

We have also compared our results to the momentum distribution of VanOrden
et al. [43] calculated using the RBHF approach and the Reid soft-core NN
interaction. As the momentum distribution of VanOrden is nearly indistinguish-
able from the one calculated via VMC, we do not show it in Fig. 7.

In order to see just how far the LDA could be pushed, we have also applied it
to *He. Clearly, “He is too small a nucleus to allow for a justifiable use of the
LDA. The extrapolation of cross sections to nuclear matter performed by Day et
al. [15] has also shown that “He stands apart from the nuclei 4 > 12 that allow —
also within the local-density approximation — an extrapolation to nuclear matter.
(While the data for A > 12 defined a straight line as a function of 47!/, the data
point for ‘He deviated from it.) Surprisingly, however, the LDA does still ex-
tremely well for n(k) of *He, as shown by Fig. 8. The momentum density obtained
in the LDA is very close to the one of Schiavilla et al. calculated using the VMC
approach [44]. We also compare in Fig. 8 to the momentum distribution obtained
by Morita and Suzuki [4], who have calculated the “He wave function using the
ATMS approach and the Reid soft-core vy interaction. The differences between
the VMC and ATMS calculations are probably related to both the approximations
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Fig. 8. Momentum distribution of *He. LDA (dashed), Monte Carlo calculation [44] (solid), ATMS
calculation [4] (dotted).

made in the latter calculation and to the NN interaction. While we do not
advocate use of the LDA for A < 12, we note that the LDA seems indeed to be
quite effective in treating short-range properties of the wave function.

4.2. Inclusive cross sections

In order to test the calculated P(k, E), we compare to the data on inclusive
electron scattering at high g. The data in the wings of the quasi-elastic peak are
sensitive to the high-momentum aspects of the nuclear wave function [8]. The wing
at low energy loss w is accessible to experiment.

To calculate the inclusive cross sections for finite nuclei, we employ the
approach we have developed for nuclear matter [11], and extended in the previous
section. For every density, we use the corresponding P(k, E) to calculate the cross
section in IA, employing the off-shell electron—nucleon cross section of deForest
[45]. All processes involving excitation of the nucleon are calculated according to
Ref. [11], employing the experimental response of the free nucleons. The folding
function required for the treatment of the final-state interaction is calculated using
CGT, starting from the experimental NN interaction and the NN correlation
function g(r — r’) obtained from CBF theory. The reduction of final-state interac-
tion due to colour transparency is taken into account as discussed in Refs. [11,33].
The FSI is evaluated separately for the different regions of density of the nucleus.
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Fig. 9. Inclusive cross sections for 12C at 3.6 GeV and 25°. LDA result (full line), calculation employing
the mean-field piece of the spectral function only and no FSI (dotted), calculation using the nuclear-
matter spectral function and the corresponding FSI for the empirical nuclear-matter density (dashed).

The effects of mesonic degrees of freedom in multi-nucleon processes, beyond the
ones already included in P(k, E), are neglected.

In Fig. 9 we show the cross sections for inclusive electron scattering from 2Cat
3.6 GeV and 25°. The data are the ones of Day et al. [46,47]. The solid curve shows
the full result, obtained using the spectral function calculated in local-density
approximation, and the FSI treated in CGT. The calculation agrees very well with
the data, both in the region of the quasi-elastic peak (w =1 GeV), and in the tail
at small energy loss.

The dashed curve shown in Fig. 9 uses the nuclear-matter spectral function for
the full nuclear-matter density, and the corresponding FSI. Due to the excess of
high-momentum components, and a final-state interaction which is too strong, the
cross section becomes too large at low energy loss. The dotted curve uses the
mean-field part of the spectral function only, and no FSI (the long-range part of
which has a small effect). This calculation also clearly disagrees with the data.

In Figs. 10 and 11 we show data and calculations for the same momentum
transfer as in Fig. 9, but for *He and *°Fe. Again we observe excellent agreement
with the data. From this we conclude that the LDA allows to correctly treat the
evolution of both the spectral function and final-state interaction as a function of
A.

Fig. 12 shows for the same kinematics the iron data and calculation. While the
dashed curve corresponds to the full calculation already discussed, the solid one is
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Fig. 12. Inclusive cross sections for 55Fe at 3.6 GeV and 25°. The LDA result (dashed line), without
reduction of FSI due to colour transparency (solid line).

obtained by omitting the effect of colour transparency predicted to occur in QCD
[38,48]. Fig. 12 shows that it is clearly important to include colour transparency, as
it was the case for nuclear matter [11]. For *°Fe the effects of colour transparency
are smaller, as has to be expected given the smaller average density of the matter
the nucleon recoils into.

As a matter of fact, the effect of colour transparency is still appreciable, and
much larger than for (e, €'p) at the same momentum transfer. This finding, which
at first sight is somewhat counter-intuitive, is explained by the fact that in inclusive
scattering one does observe the full effect of colour transparency, as 1/q, the
distance over which (e, €') is sensitive to the interaction of the recoiling system, is
smaller than the distance within which the ‘small’ 3g-state evolves back to a
normal nucleon. For (e, €'p), the ‘standard’ tool considered for the study of colour
transparency, a much larger ¢ is needed to observe the full effect of colour
transparency; to be specific, g has to be large enough to increase (by time
dilatation) the lifetime of the “small state” to the time it takes to traverse the
entire nucleus.

In Figs. 13 and 14 we further illustrate the quality of the results obtained. At the
lower momentum transfers (Fig. 13) the agreement with data deteriorates some-
what at very low energy loss. The differences to experiment are very similar to the
ones that had been observed for nuclear matter. These differences are the
consequence of the decreasing accuracy of Glauber theory at the lower recoil-
nucleon momenta. The folding function used for the description of FSI conse-
quently is no longer as realistic as at higher nucleon momenta.
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In Fig. 13 we also illustrate that it is important to use in the calculation the full
spectral function; with the often-used approximation of replacing P(k, E) by the
momentum distribution, the cross section is much too high at low « (dotted curve).

As shown by Fig. 14, the agreement with the data at higher momentum transfers
remains very good; the quasi-elastic contribution (dashed line) increasingly be-
comes smaller relative to the large contribution of inelastic scattering on the
nucleon at the larger w.

5. Conclusion

In the present work we address the problem of deriving a spectral function P(k,
E) for finite nuclei that is realistic at both low and high nucleon momenta, and
small and large nucleon removal energies. As exact calculations for 4 <4 < « are
not yet feasible, we employ an approach where we split the P(k, E) into its
single-particle and its correlated parts. The single-particle piece can be calculated
using standard mean-field approaches such as DDHF with finite-range effective
forces; alternatively it can be obtained from presently available data on (e, €'p)
reactions. The correlated part can be calculated for nuclear matter for various
nuclear-matter densities using CBF theory and a realistic NN interaction. As the
correlated part concerns short-range nuclear properties only, the local-density
approximation can be used to calculate the correlated part for finite nuclei.

We find that the resulting P(k, E) agrees extremely well with the momentum
distribution for those cases where variational Monte Carlo calculations can be
performed. This is true even for a nucleus as light as *He, where the LDA could
no longer be expected to be applicable.

We use the resulting P(k, E) to calculate the response for inclusive electron—
nucleus scattering at large momentum transfer, a process that is sensitive to the
high-momentum aspects of P(k, E). To achieve a quantitative description of (e, €')
we also properly account for the short-range part of the recoil-nucleon final-state
interaction. This again has become possible by using the LDA, without using any
adjustable parameters.

We find excellent agreement between calculation and data for finite nuclei,
similar in quality to the results previously obtained for infinite nuclear matter.
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