MSEL = 50, 51
ISUB =
149  (obsolete) 
191  (obsolete) 
192  (obsolete) 
193  (obsolete) 
194  
195  
361  
362  
363  
364  
365  
366  
367  
368  
370  
371  
372  
373  
374  
375  
376  
377  
381  
382  
383  
384  
385  
386  
387  
388 
Technicolor (TC) uses strong dynamics instead of weaklycoupled fundamental scalars to manifest the Higgs mechanism for giving masses to the and bosons. In TC, the breaking of a chiral symmetry in a new, strongly interacting gauge theory generates the Goldstone bosons necessary for electroweak symmetry breaking (EWSB). Thus three of the technipions assume the rôle of the longitudinal components of the and bosons, but other states can remain as separate particles depending on the gauge group: technipions ( ), technirhos ( ), techniomegas ( ), etc.
No fullyrealistic model of strong EWSB has been found so far, and some of the assumptions and simplifications used in modelbuilding may need to be discarded in the future. The processes represented here correspond to several generations of development. Processes 149, 191, 192 and 193 should be considered obsolete and superseded by the other processes 194, 195 and 361377. The former processes are kept for crosschecks and backward compatibility. In section it is discussed how processes 7177 can be used to simulate a scenario with techni resonances in longitudinal gauge boson scattering.
Process 149 describes the production of a spin0 techni meson (particle code KF = 3000331), which is an electroweak singlet and a QCD colour octet. It is one of the possible techni particles; the name `techni' is not used universally in the literature. The techni couples to ordinary fermions proportional to fermion mass. The dominant decay mode is therefore , if kinematically allowed. An effective coupling arises through an anomaly, and is roughly comparable in size with that to . Techni production at hadron colliders is therefore predominantly through fusion, as implemented in process 149. In topcolorassisted technicolor (discussed below), particles like the techni should not have a predominant coupling to quarks. In this sense, the process is considered obsolete.
(The following discussion borrows liberally from the introduction to Ref. [Lan99a] with the author's permission.) Modern technicolor models require walking technicolor [Hol81] to prevent large flavorchanging neutral currents and the assistance of topcolor (TC2) interactions that are strong near 1 TeV [Nam88,Hil95,Lan95] to provide the large mass of the top quark. Both additions to the basic technicolor scenario [Wei79,Eic80] tend to require a large number of technifermion doublets to make the function of walking technicolor small. They are needed in TC2 to generate the hard masses of quarks and leptons, to induce the right mixing between heavy and light quarks, and to break topcolor symmetry down to ordinary colour. A large number of technidoublets implies a relatively low technihadron mass scale [Lan89,Eic96], set by the technipion decay constant , where GeV.
The model adopted in PYTHIA is the `Technicolor
Straw Man Model' (TCSM) [Lan99a,Lan02a].
The TCSM describes the phenomenology
of colorsinglet vector and pseudoscalar technimesons and their
interactions with SM particles.
These technimesons are expected to be the lowestlying
bound states of the lightest technifermion doublet, ,
with components that
transform under technicolor
as
fundamentals, but are QCD singlets; they have electric charges and
.
The vector technimesons form a spinone isotriplet
and an
isosinglet
. Since techniisospin is likely to be a good approximate
symmetry,
and
should be approximately
massdegenerate. The pseudoscalars,
or technipions, also comprise an isotriplet
and an isosinglet
. However, these are not mass eigenstates. In this
model, they are simple, twostate mixtures of the longitudinal
weak bosons ,  the true Goldstone bosons of dynamical
electroweak symmetry breaking in the limit that the
couplings vanish  and masseigenstate
pseudoGoldstone technipions
:
The coupling of technipions to quarks and leptons are induced mainly by extended technicolor (ETC) interactions [Eic80]. These couplings are proportional to fermion mass, except for the case of the top quark, which has most of its mass generation through TC2 interactions. The coupling to electroweak gauge boson pairs vanishes at treelevel, and is assumed to be negligible. Thus the ordinary mechanisms for producing Higgslike bosons through enhanced couplings to heavy fermions or heavy gauge bosons is absent for technipions. In the following, we will concentrate on how technipions decay once they are produced. Besides coupling to fermions proportional to mass (except for the case of top quarks where the coupling strength should be much less than ), the can decay to gluon or photon pairs through technifermion loops. However, there may be appreciable  mixing [Eic96]. If that happens, the lightest neutral technipions are ideallymixed and bound states. To simulate this effect, there are separate factors and to weight the and partial widths for decays. The relevant technipion decay modes are , , and ; , , and ; and , , , and . In the numerical evaluation of partial widths, the running mass (see PYMRUN) is used, and all fermion pairs are considered as final states. The decay is also included, with the finalstate kinematics distributed according to phase space (i.e. not weighted by the squared matrix element). The couplings to fermions can be weighted by parameters , , and depending on the heaviest quark involved in the decay.
The technivector mesons have direct couplings to the technipion interaction
states.
In the limit of vanishing gauge couplings ,
the
and
coupling to technipions are:
Walking technicolor enhancements of technipion masses are assumed to close off the channel (which is not included) and to kinematically suppress the channels and the isospinviolating (which are allowed with appropriate choices of mass parameters). The rates for the isospinviolating decays , , are given by where is the isospinviolating  mixing. Based on analogy with QCD, mixing of about is expected. Additionally, this decay mode is dynamically suppressed, but it is included as a possibility. While a light technirho can decay to or through TC dynamics, a light techniomega decays mainly through electroweak dynamics, , , , etc., where and may are transversely polarized. Since , the electroweak decays of to the transverse gauge bosons plus a technipion may be competitive with the openchannel strong decays.
Note, the exact meaning of longitudinal or transverse polarizations only makes sense at high energies, where the Goldstone equivalence theorem can be applied. At the moderate energies considered in the TCSM, the decay products of the and bosons are distributed according to phase space, regardless of their designation as longitudinal or ordinary transverse gauge bosons.
To calculate the rates for transverse gauge boson decay,
an effective Lagrangian for technivector interactions
was constructed [Lan99a], exploiting gauge invariance,
chiral symmetry, and angular momentum and parity conservation.
As an example, the lowestdimensional operator
mediating the decay
is
, where the mass parameter is expected to be
of order several 100 GeV. This leads to the
decay amplitude:
Next, we address the issue of techniparticle production. Final states containing Standard Model particles and/or pseudoGoldstone bosons (technipions) can be produced at colliders through two mechanisms: technirho and techniomega mixing with gauge bosons through a vectordominance mechanism, and anomalies [Lan02] involving technifermions in loops. Processes 191, 192 and 193 are based on channel production of the respective resonance [Eic96] in the narrow width approximation. All decay modes implemented can be simulated separately or in combination, in the standard fashion. These include pairs of fermions, of gauge bosons, of technipions, and of mixtures of gauge bosons and technipions. Processes 194, 195 and 361377, instead, include interference, a correct treatment of kinematic thresholds and the anomaly contribution, all of which can be important effects, but also are limited to specific final states. Therefore, several processes need to be simulated at once to determine the full effect of TC.
Process 194 is intended to more accurately represent the mixing between the , , and particles in the DrellYan process [Lan99]. Process 195 is the analogous charged channel process including and mixing. By default, the finalstate fermions are and , respectively. These can be changed through the parameters KFPR(194,1) and KFPR(195,1), respectively (where the KFPR value should represent a charged fermion).
Processes 361368 describe the pair production of technipions and gauge bosons through resonances and anomaly contributions. Processes 370377 describe pair production through the resonance and anomalies. It is important to note that processes 361, 362, 370, 371, 372 include final states with only longitudinallypolarized and bosons, whereas the others include final states with only transverse and bosons. Again, all processes must be simulated to get the full effect of the TC model under investigation. All processes 361377 are obtained by setting MSEL = 50.
The vector dominance mechanism is
implemented using the full


propagator matrix, , including
the effects of kinetic mixing. With the notation
and the
energydependent width for
, this
matrix is the inverse of
By default, the TCSM Model has the parameters = 4, = , = , = , = 1, = , = , =0, =1, = 0.05, = GeV, = GeV, = GeV, = GeV. The techniparticle mass parameters are set through the usual PMAS array. Parameters regulating production and decay rates are stored in the RTCM array in PYTCSM. This concludes the discussion of the electroweak sector of the strawman model.
In the original TCSM outlined above, the existence of topcolor interactions only affected the coupling of technipions to top quarks, which is a significant effect only for higher masses. In general, however, TC2 requires some new and possibly light coloured particles. In most TC2 models, the existence of a large , but not , condensate and mass is due to gauge interactions which are strong near 1 TeV. The interaction is  symmetric while couplings are  asymmetric. There are weaker gauge interactions in which light quarks (and leptons) may [Hil95], or may not [Chi96], participate. The two 's must be broken to weak hypercharge at an energy somewhat higher than 1 TeV by electroweaksinglet condensates. The full phenomenology of even such a simple model can be quite complicated, and many (possibly unrealistic) simplifications are made to reduce the number of free parameters [Lan02a]. Nonetheless, it is useful to have some benchmark to guide experimental searches.
The two TC2 's can be broken to their diagonal subgroup by using technicolor and interactions, both strong near 1 TeV. This can be explicitly accomplished [Lan95] using two electroweak doublets of technifermions, and , which transform respectively as and under the two colour groups and technicolor. The desired pattern of symmetry breaking occurs if and interactions work together to induce electroweak and noninvariant condensates and , . This minimal TC2 scenario leads to a rich spectrum of colournonsinglet states readily accessible in hadron collisions. The lowestlying ones include eight `colorons', , the massive gauge bosons of broken topcolor ; four isosinglet formed from and the isosinglet pseudoGoldstone technipions formed from . In this treatment, the isovector technipions are ignored, because they must be pair produced in decays, and such decays are assumed to be kinematically suppressed.
The colorons are new fundamental particles with couplings to quarks. In standard TC2 [Hil95], top and bottom quarks couple to and the four light quarks to . Because the interaction is strong and acts exclusively on the third generation, the residual coupling can be enhanced for and quarks. The coupling for and and for , where is the QCD coupling and is related to the original and couplings. In flavoruniversal TC2 [Chi96] all quarks couple to , not , so that colorons couple equally and strongly to all flavors: .
Assuming that techniisospin is not badly broken by ETC interactions, the are isosinglets labeled by the technifermion content and colour index : . The first two of these states, and , mix with and . The topcolorbreaking condensate, , causes them to also mix with and . Technifermion condensation also leads to a number of (pseudo)Goldstone boson technipions. The lightest technipions are expected to be the isosinglet octet and singlet states and .
These technipions can decay into either fermionantifermion pairs or two gluons; presently, they are assumed to decay only into gluons. As noted, walking technicolor enhancement of technipion masses very likely close off the channels. Then the decay into and . The rate for the former are proportional to the amount of kinetic mixing, set by . Additionally, the decays to .
The colorons are expected to be considerably heavier than the
,
with mass in the range 0.51 TeV. In both the standard and
flavoruniversal models, colorons couple strongly to , but with
only strength to . Since relatively light technipions are
states, it is estimated that
and
. Therefore, these decay
modes are ignored, so that
the decay rate is the
sum over open channels of
The phenomenological effect of this techniparticle structure is
to modify the gluon propagator in ordinary QCD processes, because
of mixing
between the gluon, and the
's.
The  propagator
is the inverse of the symmetric matrix
This extension of the TCSM is still under development, and any results should be carefully scrutinized. The main effects are indirect, in that they modify the underlying twoparton QCD processes much like compositeness terms, except that a resonant structure is visible. Similar to compositeness, the effects of these colored technihadrons are simulated by setting ITCM(5) = 5 for processes 381388. By default, these processes are equivalent to the 11, 12, 13, 28, 53, 68, 81 and 82 ones, respectively. The last two are specific for heavyflavour production, while the first six could be used to describe standard or nonstandard high jet production. These six are simulated by MSEL = 51. The parameter dependence of the `model' is encoded in (RTCM(21)) and a mass parameter (RTCM(27)), which determines the decay width analogously to for . For ITCM(2) equal to 0 (1), the standard (flavor universal) TC2 couplings are used. The mass parameters are set by the PMAS array using the codes: (3100021), (3100111), (3200111), (3100113), (3200113), (3300113), and (3400113). The mixing parameters take on the (arbitrary) values GeV, GeV, GeV and GeV, while the kinetic mixing terms are calculated assuming the technicolor condensates are fully mixed, i.e. .