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Abstract

We demonstrate that the Main Injector Particle Production (MIPP) exper-
iment has the ability to detect neutrons with good energy resolution [1]. The
most comprehensive measurements of inclusive neutron production cross sec-
tions were recently made by the NA49 collaboration using pp collisions at 158
GeV/c [2]. Using the Fermilab Main Injector proton beam we study the neutron
production spectra at 58 GeV/c and 120 GeV/c with liquid hydrogen, beryl-
lium, carbon, bismuth and uranium targets. This note describes the detailed
analysis procedure for inclusive neutron production cross section measurements
using data from the MIPP experiment.
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1 Introduction

The neutron analysis is based on MIPP experimental data processed with MIPP
software release “passdf”.

2 Interaction Targets

The target properties shown on Table 1.

name A d,em | m, g | AD, g/cm? | IL, % | n;x10%cm=2 | p(db) | p(MC)
Hj liquid | 1.008 | 14.0 0.991 5.922

Beryllium | 9.012 | 0.399 | 144 | 0.71 0.94 | 0.4744 1.779 | 1.848
Carbon 12.011 | 1.003 | 34.0 | 1.677 1.94 | 0.8408 1.672 | 2.000
Bismuth | 208.98 | 0.173 | 34.25 | 1.69 0.87 | 0.0487 9.769 | 9.780
Uranium | 238.03 | 0.1 38 1.875 ? 0.0474 18.75 | 18.95

Table 1: The targets and their properties, where d - thickness in cm, m - mass in g,
AD - areal density in g/cm?, IL - interaction length and n; is a number of nucleus

2
per cm?.

The n; quantity in Table was calculated as:

ng =

N g xdensityXthickness

A

Y

where N4 is Avogadro number, density x thickness is an areal density AD and A
is a target atomic weight.
Figure 1 shows the nuclear target positions within the “target wheel” vs run

number for 58 GeV/c (on left) and 120 GeV/c (on right) data.
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Figure 1: The nuclear target positions within the “target wheel” vs run number for
58 GeV/c (on left) and 120 GeV/c (on right) data.




3 Event Selection

The neutron analysis was done using a “good” event sample. It means that each
event should pass some preliminary conditions:

e No more than 30 tracks per event

EMCAL and HCAL detectors status should have readout

“Good” beam track

Trigger scintillator is on

Use events with reliable tracking conditions

Each event was tested for “clean” conditions: no more than 30 tracks and valid
EMCAL and HCAL status. We used data when “SciHi” scintillator trigger was
available and it’s conditions (HV, threshold) were stabilized. According to [3] such
conditions are started from run number 13267. Efficiencies for each above mentioned
cuts are summarized in Tables 3 and 4.

3.1 Selection of “good” beam track
The beam track selection was done according to following criteria:
e Use events with single beam track
e Reduce unreconstructed second beam tracks: nBeamCrossings<4

e Apply beam track time cut

Use beam track segment “xbc3[3]” and track slopes

Project it to Z., and apply a specific spot size cut depending on the target type
and beam momenta

e Beam divergence cut

The proton beam track time distributions are presented in Figure 2 for 58 GeV/c
and 120 GeV/c momenta. Plots clearly shows the presence of the bucket structure,
with about 19 ns separation and half width of 9.5 ns. Buckets closest to central bucket
are at -12 ns and at 24 ns. Hence we set cuts at -2 ns and at 15 ns.

The fraction of events when the beam track is off-time is 2.5%. The time gates for
the tracking system and calorimeters are wider than for the BC1-3 beam chambers.
Hence the actual contribution to the neutron candidates from other buckets might be
more significant.

Selection of the transverse position cut for the incident beam is based on the beam
spot at the center of the target. This is a good approach for the thin target data. But
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Figure 2: The beam track time distributions for 58 GeV/c (on left) and for 120
GeV/c protons (on right). The time info is based on the beam chambers. The red
lines illustrate the selected time cut: time should be within -2 ns < ¢ < 15 ns.

for the liquid hydrogen data we need to follow the LH2 tube position and its radius.
We also found that part of the transport pipes are shadowing the LH2 volume. For
the shadowed area we might expect that the beam track with some probability might
interact with pipe and disappear. Then the incident beam might be overestimated.
The best solution is to drop the beam tracks in this area. The details on this matter
are described in Appendix A.

In order to calculate the beam spot we used the beam track segment “xbc3” and
its slopes. We assumed that these parameters are less biased to the tracks downstream
of the target. The beam positions shown in Figure 3 for 58 GeV/c and in Figure 5
for 120 GeV/c protons at Z of the thin target. The red lines show what was selected
as the beam spot center, (X, and Y,). We used a cut of R < 2.0 cm for 58 GeV/c
and R < 0.8 cm for 120 GeV/c beam, in order to eliminate the beam halo. This cut
drops about 3% of events (using 120 GeV/c). The beam spot position for 58 GeV/c
data was considered as run dependent (see Fig. 6).
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Figure 3: The beam track position distributions at Z of thin target using 58 GeV/c
protons. The red lines on left and in middle plots illustrate the average beam spot
center, X, and Y,. The right plot shows the distance between target center and the
position of the particle. The red line there shows the radius cut position.



The 58 GeV/c beam divergences shown in Figure 4.
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Figure 4: Left plot: the beam track divergence distributions for 58 GeV/c protons.
Middle plot: track projections at HCAL for beam triggers and single track events.
Right plot: same as on middle except that the divergence cut applied: from -0.7 up
to 0.8 mrad in X-view and from -0.9 up to 0.6 mrad in Y-view.
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Figure 5: The beam track position distributions at Z of carbon (2%) target using 120
GeV/c protons. The red lines on left and in middle plots illustrate the selected beam
spot center, X, and Y,. The right plot shows the distance between beam center and
the position of the particle. The red line there shows the radius cut position.

Selected beam spot centers (X,,Y,) and radius values for the different beam set-
tings and targets are presented in Table 2.

The beam track transverse position and the width variations at the Z Z;, vs run
number presented in Figure 6. So, we required that both distances: from the beam
mean position up to the particle and particles distance from the beam axis should be
less than 2.0 cm.

3.2 Trigger Scintillator

Our neutron analysis would be based on the trigger scintillator. Figure 7 illustrates
the scintillator trigger behavior vs the run number.

The left plot in Fig. 7 is “SciHi” rate vs run number for 58 GeV/c data, right
plot - for 120 GeV/c data. By viewing “SciHi” rates we conclude that some runs
are not useful for the neutron analysis: runs where rate is equal to 0 or below of the



beam momentum | X,,cm | Y,cm | Radius, cm | €peam
58 GeV/c, LH
58 GeV/c, thin 0.05 -0.2 120 0.92
84 GeV/c, LH
120 GeV/c, thin | 0.05 0.53 |0.8 0.95

Table 2: Selected spot center (X,,Y,) and radius values used as the transverse position
cut for counting of incident protons. Last column represents the combined efficiency
of the beam track time, divergence and radius cuts.
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Figure 6: The beam track transverse position (on left) and width (on right) distribu-
tions vs run number at Z of thin target using 58 GeV/c protons.
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Figure 7: “SciHi” fires normalized per single proton interaction vs the run number:
at 58 GeV/c (on left) and at 120 GeV/c (on right).



respective band. For 58 GeV/c data (left plot) we see that “SciHI” rate in run range
between 14060 and 14300 are systematically lower by at least factor of 2 than for data
with runs above 17000. What is a reason for that? Study shows that if we require a
reasonable Z cut on 58 GeV/c data, then the “SciHi” rate would be more uniform.
Figure 8 illustrates the case when -4cm< Z,;, <2cm requirements made for the 58
GeV/c data. The remained run dependence can be explained by the beam width and
the transverse position variations.
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Figure 8: “SciHi” fires rate per proton interactions vs the run number, 58 GeV/c
data

Figure 9 illustrates the scintillator trigger rate per single incident proton beam vs
the run number.
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Figure 9: “SciHi” fires normalized per single incident proton beam vs the run number.
Left plot - 58 GeV /c, right - 120 GeV /c data.
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3.3 Selection of events with reliable tracking conditions

We found that in a relatively small fraction of events the sum of momenta of tracks
is significantly higher than the beam momentum. Figure 10 illustrates the sum of
momenta of the charged tracks in event using 120 GeV/c proton beam incident on
carbon 2% target. The tracks from the primary vertex were used to make this plot.
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Figure 10: The sum of momenta of the charged tracks in event using the p+C inter-
actions at 120 GeV/c for data (black) and Monte Carlo (red). Calculated sum based
on the tracks which belong to the primary vertex.

The fraction of the events when the sum of momenta exceeds 1.1ppeam are 7.0%
data and 5.0% for Monte Carlo. It is obvious that events, where the momentum
conservation law is violated, might be useful for special studies, but not for cross
section measurements. Thus, we identified a special category of events in which
MIPP detector and software do not allow us to perform physics analysis. Speaking of
the neutron analysis momentum conservation is one of the key requirements. Hence
we drop those events before counting of the incident protons.

3.4 Beam track selection cut efficiencies

Beam track selection cut efficiencies are summarized in two Tables: Table 3 for the
thin target data and Table 4 for the liquid hydrogen data.

3.5 Counting of incident protons

The counting of incident protons was done for events which passed all above discussed
selection requirements. The incident proton counting was based on two methods: the
proton beam prescalers (rs—trigps[6]+1) and direct scalers (spill—gatedTrigBit[6]),
where “rs” represents the run summary pointer and “spill” - spill summary. First pro-
ton counter was incremented by each “good” event times the proton beam prescaler,
second - direct accumulating of given scaler. If beam trigger event was failed by

11



cut name N(58-thin) | EFF(58-thin) | N(120-thin) | EFF(120-thin)
Total events 1667211 2615429

n'Trks>30 1543447 0.926 2518598 0.963
Calo status 1543447 1.000 2518592 1.000
Is beam trk? 1477568 0.957 2470960 0.981
Single beam trk | 869439 0.558 2011903 0.814
nCrossing < 5 | 685526 0.788 1674480 0.832
radius-1<2.0cm | 670633 0.978 1618680 0.967
radius-2<2.0cm | 653655 0.975 1618680 1.000
track time 646536 0.989 1610870 0.995
trk divergence 645172 0.998 1610784 1.000
P<1.1Ppeam 602133 0.933 1509270 0.937
Total efficiency 0.361 0.577
Proton fraction | 246413 0.409 1499105 0.993

Table 3: Beam track selection cut efficiencies and proton fractions for the thin target
data.

cut name N(58-LH2) | EFF(58-LH2) | N(84-LH2) | EFF(84-LH2)
Total events 802616 916581

n'Trks>30 772373 0.962 847790 0.925
Calo status 772373 1.000 847787 1.000
Is beam trk? 745447 0.965 826374 0.975
Single beam trk | 480130 0.644 590770 0.715
nCrossing < 5 386237 0.804 492143 0.833
ellipse cut 300063 0.777 364479 0.741
track time 291234 0.971 363265 0.997
trk divergence 290707 0.998 362342 0.997
P<1.1Ppeam 275275 0.947 328733 0.907
Total efficiency 0.343 0.359
Proton fraction | 92414 0.336 202371 0.616

Table 4: Beam track selection cut efficiencies and proton fractions for the liquid
hydrogen data.
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some reasons: the track time is off or the calorimeter status is not readable, then the
scaler subtraction was applied. For the test purpose we count the incident protons in
two ways: in first - without subtraction applied (in Table 5) and second - with the
correction for those protons which was rejected by some reason(s) - in Table 6.

target DPoeam, GeV/c | prescaler bit | direct scalers | ratio
H, 20 6863900 6712290 1.023
Empty Cryo | 20 1077263 1055900 1.020
H, 58 55527097 55046896 1.009
Empty Cryo | 58 12250227 11941328 1.026
Beryllium 58 4435167 4448628 0.997
Carbon 58 16159654 16011182 1.010
Bismuth 58 33625880 32735965 1.027
Uranium 58 71706424 69833283 1.027
Empty thin | 58 26332939 25641913 1.027
H, 84 71645485 69168883 1.036
Empty Cryo | 84 24199480 22290732 1.086

Table 5: The number of incident protons calculated with two methods: accumulating
the direct scaler and using the proton prescaler. Data selection: all data events
without any rejections.

4 Vertex Method Selection

MIPP software has two options for fitting of the interaction point - a vertex. They
are “dafit” and “confit”. The first one has an advantage on the transverse and total
momentum resolution. The second option, “confit”, uses what was done by the first
method and then refits incoming and outgoing track parameters simultaneously. We
select this method because it has a better resolution in Z direction. Using the “confit”
method we are better able to reduce (subtract) backgrounds due to interactions with
the trigger scintillator. The neutron analysis is not sensitive to the track momentum
resolution, which might be gained by using the “dafit” method, because the neutron
momentum resolution is defined by the calorimeter.

For the neutron analysis we required that the incident protons should interact
within the target region. This case was named as “primary vertex” selection. We
applied both transverse and longitudinal vertex position cuts. For the transverse
position cut we used the same cut as for the beam track with a slightly bigger radius
to account the possible multiple scattering of the incident particle between DC3 and
the target. But there are some vertices’s with the transverse positions are way off
(2-3 cm and more away from the edge of the beam spot). This effect is present for
the multi track (n>5) vertices’s too. At this moment we have only one explanation:
misreconstracted vertex and or tracking.

13



Table 6:

target DPoeam, GeV/c | prescaler bit | direct scalers | ratio
H, 20* 2215467 2063857 1.07
Empty Cryo | 20* 397364 376001 1.06
H, 58 17156645 16572320 1.03
Empty Cryo | 58 2877699 2740163 1.05
Beryllium 58 2207422 2220883 0.99
Carbon 58 8751838 8603366 1.02
Bismuth 58 17164512 16274597 1.05
Uranium 58 32643688 30770547 1.06
Empty thin | 58 12397130 11706104 1.06
H, 84 31372847 28896245 1.09
Empty Cryo | 84 10962656 9053908 1.21
Beryllium 120 19864149 0.08
Carbon 120 5542062 0.07
Bismuth 120 21559032 0.08
Empty thin | 120 8004477 0.15

The number of incident protons calculated with two methods: accumulat-
ing the direct scaler and using the proton prescaler. Results presented for different
momenta and targets. Both results were corrected for protons which was rejected by
some reason(s). Last column represents the ratio of two approaches. For 120 GeV/c
it was estimated using runs, where the spill info was reliable. *Note: studies with
RICH detector indicates that the pion contamination on 20 GeV/c proton beam is

about 25%.

14




The fraction of the off-spot events for different beam momenta and targets are
presented in Table 7. Using this data we might assign the systematic uncertainty or
apply correction?

Pbeam / target | Hy Be C Bi U

58 GeV/c 0.066 | 0.093 | 0.072 | 0.067 | 0.046
84 GeV/c 0.114

120 GeV/c 0.019 | 0.015 | 0.021

Table 7: The fraction of events when the transverse position of primary vertex was
out of the beam spot.

The longitudinal (along Z direction) position cut depends on the length of the
target. The vertex resolution in Z direction for the track multiplicity of 2 is about
3 cm (half width). Hence we are not capable of separating the interactions with
the target from the interactions with the trigger scintillator, (about 2 cm from each
other). Thus, we selected as the Z cut for the thin target -4 cm upstream of the target
center and +4 cm downstream of the trigger scintillator. For the liquid hydrogen
target data the Z cut was £15 cm around the center of liquid hydrogen tube. The Z
cut was applied for the primary vertices with any charged track multiplicity except
single straight through track. In the primary vertex with the multiplicity of 1 the
track is considered as a straight through if momentum was greater than 15 GeV/c.
Figure 11 shows the longitudinal position distribution for the 120 GeV/c protons
striking the carbon 2% target using both “dafit” and “confit” vertex methods. The
trigger conditions: both proton beam and proton interaction triggers were used to
make these plots.

The peak at about 0.4 cm represents the interactions with carbon 2% target, the
peak at 2.5 cm indicates the interactions with trigger scintillator. The dashed plot
illustrates the target-out only case. One can see from the plots that “confit” has
sharper peaks. Due to of that we decided that it is better for the neutron analysis.
The captions in plots allow to tell what is the fraction of interactions within the
target region and downstream of the trigger scintillator. For example, using the
“confit” plot we can read that the occupancy of both peaks (-2.5< Z <5.0 cm) is
about 53%. The events with Z<-2 cm has occupancy of 36%. They represent the
single beam track events where the Z value was assigned to be from -17 cm through
-2 cm. The interactions downstream of the trigger scintillator are of 11%. They
represent the interactions within the TPC volume. The surviving rate of events after
both transverse and longitudinal vertex position cuts for this beam and target are
0.892 with “confit” and 0.887 with “dafit” vertex methods, respectively.
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Figure 11: The longitudinal (along Z direction) position distribution for the 120
GeV /c protons striking the carbon 2% target with “confit” (on left) and “dafit” (on
right) vertex fit methods. The solid line plot illustrates the target-in and dashed -
target-out data. One can see from these plots that the “dafit” method has broader
signal and background peaks.

5 Sum of Momenta: “confit” vs “dafit”

We knew that the “confit” vertex method drops an off-time track from the primary
vertex list. It raised questions: how valid the time assignment for the track? What
would be with the sum of momenta of tracks in case if this assignment is false?
Remind that value of sum in use for the neutron selection. How to distinguish cases
when drop was true and when it false? If it is the false then how recognize a right
track in an unused list and bring it to the momentum balance?

Below we describe the study we performed in order to answer above questions.
We select a control sample, run 15742 p+C interactions at 120 GeV /c. This control
sample was processed with both “confit” and “dafit” vertex methods. We trying to
see what are differences between these approaches. A comparison made on the event-
by-event basis considering tracks from the primary vertex only. Figure 12 shows two
plots: the sum of momenta of tracks (on left) and the differences for the sum between
“confit” and “dafit”.

The left plot on Figure 12 shows that the “confit” has a little higher occupancy
at a peak and it below of “dafit” at low p.,, region. Plot indicates that the Apgum
in 6% of cases might exceed 10 GeV/c. Due to of drop one might expect to see a
tail on negative side. But the distribution tells that the tail on the positive side is
not less, but a little higher. What is an explanation on that? An analysis shows that
the major part of events are due to some issues with the “dafit” method. Remaining
part caused by the reforming of the vertex. Figure 13 show the track multiplicity
and the multiplicity differences for the same primary vertex between the both vertex
methods.

Figure 13 right plots clearly shows the track drops by “confit”. For drop the
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Figure 12: Left plot represents the sum of momenta of tracks. Right plot shows the
differences for the sum of momenta of tracks between “confit” and “dafit”
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Figure 13: Left plot - the track multiplicity distributions for the primary vertex with
“dafit” and “confit” methods. Right plot - multiplicity difference distribution.
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difference became negative. We identified 323 multiplicity changes for 8226 consider-
ations, about 4%. Drops occur in 303 events for 1, in 19 events for 2 and in 1 event
for 5 tracks. Thus, the “confit” method slightly reduce the multiplicity of the charged
tracks, but in another hand it keeps the momentum balance same as “dafit”. How-
ever, our concerns are events on the negative tail, including underflows. By viewing
the underflow events - 24 candidates, which associated with track drops, we found:
11 out of 24 - are looks a real off-time tracks, they have no match with RICH. We
knew that RICH has a tight, 50 ns, time gate. 22 events out of 24 are cases when
dropped track(s) used to form another vertex with different the vertex position. One
event out of 24 is case when one off-time track is present in the vertex, but another
off-time was dropped. Finally, we bring the dropped track back to the primary vertex
list, if it has match with RICH ring position within +3 cm and has match with vertex
within 0.8 cm in the transverse plane. For an example, in p+C interaction run 15359
event 2499 has a track with time 494 ns and momentum of 84 GeV/c which was
dropped from the primary vertex. We found that for this track there is an unused
RICH ring within 2.2 cm. Also, the track - vertex distance appear to be 0.3 cm.
Figure 14 shows the track multiplicity per the primary vertex (blue plot). A red plot
shows the multiplicity when “off-time” track was brought back to the vertex and it
was in match with RICH ring. The distribution made using p+C interactions at 120
GeV/c. The fraction of events when the multiplicity was updated is 2.3%.
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Figure 14: The track multiplicity per the primary vertex (blue plot). Red plot shows
the multiplicity when the “off-time” track was brought back to the vertex and it was
in match with RICH ring. The distribution was made using p+C interactions at 120
GeV/c.

6 Segment 456 Track Usage

What is a tracking efficiency? We have no information on this matter so far. But by
viewing the neutron candidates on an “event display” tool we found a few missing
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tracks. In one of such events we found that if we will use an unused track from the
downstream segment track, then it would perfectly match with the EMCAL hits and
unused RICH ring. Hence we decided to include to our track collection unused tracks
from the downstream segment, which was named as a segment 456 track. There are
some code modifications was needed to achieve this goal [4]. Since “passdc” processed
DST data has such option. Now we will discuss how to use it for the neutron analysis.

The problem with the segment 456 track is that the momentum information is
not supported by the MIPP software. But RICH - track match procedure require the
knowledge of the particle momentum vector, which used to pass the light through set
of mirrors. We can assign a Pz momentum component for the track using the missing
momentum in event. It can be done only if there is a single segment 456 track. Px
and Py values can by calculated using the track slopes. Then the RICH ring and
segment 456 track match procedure is following:

e Select single track events

Assign Pz from the missing momentum in the primary vertex: Pream - 2. Pirk

Calculate Px and Py using Pz and track slopes

e Apply the RICH ring position prediction function - PredictRingCenter
e Use average mirror offsets in X and Y views
o Test for the segment 456 track - RICH ring match (within 2 cm)

Figure 15 shows two plots: the RICH ring (on left) and the segment 456 track (on
right) multiplicities. Both plots illustrate what was reconstructed by these detectors
but did not fall into the global track stream.

For the given p+C interaction data at 120 GeV/c on average the segment 456
track and the unused RICH ring availabilities are about 32% and 22%, respectively.
The numbers from captions on Figure 15 allow to calculate the segment 456 track -
RICH ring match efficiency: e = 7944 / 28249 = 0.281. The low efficiency indicates
that the segment 456 track in most of the cases is a fake. For example, the fraction
of events, when the number of hits on this track equal to 8, is about 45%. In this
subsample the track can be made using 4 hits from DC4, nothing from PWC5 and
4 hits from PWC6. Another example, if we require 9 hits on the segment 456 track,
then the match efficiency rises to 36%. But some of the fake tracks survive. The main
reason for the fakes is that PWC6 is very noisy. Thus, we might accept only those
segment 456 tracks, which match with the RICH ring position. Only those tracks
were considered for the neutron analysis. For an example, in p+C interaction run
15327 event 2441 for the single segment 456 track particle momentum of 97 GeV/c
was assigned. Then it was found to be in match with RICH ring within 0.8 cm and
with the EMCAL shower too. Figure 16 shows the assigned momentum distribution
for the segment 456 tracks when match with RICH ring is on. The distribution made
using p+C interactions at 120 GeV/c. The fraction of such events is 2.3%.
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Figure 15: Left plot represents the RICH ring multiplicity: black plot indicates the
multiplicity of unused rings (rate is about 0.22), the red plot shows cases when it
associated with a single segment 456 track. The right plot shows the segment 456 track
multiplicity: the black plot represents the total occupancy (rate is about 0.32). The
blue and red plots show cases when it matches with EMCAL and RICH respectively.
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Figure 16: The assigned momentum distribution for segment 456 tracks when it
matches with a RICH ring. The distribution was made using p+C interactions at 120
GeV/c..

20



7 Missing Total Momentum

Before discussing the neutron selection we might try to answer the question: is there
any room for the neutrons in our data?” We can answer this question by viewing the
missing momentum distribution. Figure 17 represents the missing momentum for two
proton beam momenta: 58 GeV/c (on left) and 120 GeV/c (on right). The missing
momentum is Ap = Ppeam - 2 Perr quantity, where Y py.. is based on tracks from the
primary vertex.
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Figure 17: The missing total momentum distributions for two proton beam momenta:
58 GeV/c (on left) and 120 GeV/c (on right). The missing total momentum represents
ADP = Ppeam - 2 Perk quantity, where Y py,i is based on tracks from the primary vertex.

The negative tail of the distribution in Figure 17 represents the cases when Y py.x
is significantly higher than the beam momentum. The peak represents cases when
Pream = Y Pirk- The width of the peak reflects the momentum resolution integrated
over all outgoing tracks. The cases with pyissea >7 GeV/c (on left) and piissea >20
GeV/c (on right) represents the room for neutrals in the event. According to this
data almost every third event for left plot and every second event for right plot
are associated with neutrals production, where neutrons are a subsample of these
neutrals.

8 Missing Transverse Momentum

Here we like to find out that is any an advantage on the neutron selection by using the
missing transverse momentum value? Figure 18 represents the pr differences between
the combined transverse momentum of all outgoing tracks in the primary vertex and
incoming beam track. Plots made using the p+C interactions at 120 GeV/c for the
different bin size in Apr: 0.25 GeV/c (on left) and 0.01 GeV/c (on right).

The blue plot in Fig. 18 made for events after the vertex Z position cut applied,
the red plot - events passed the neutron selection requirements (details are on next
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Figure 18: The missing transverse momentum distributions using the p+C interac-

tions at 120 GeV/c. The missing transverse momentum represents Apr = ptT’"k - pg?‘””

quantity, where p4* is based on tracks from the primary vertex. Left plot done with

0.25 GeV/c and right with 0.01 GeV /c bin sizes, respectively.

section). Plots illustrate that with and without the neutron selection requirements
behavior of distributions are pretty much similar, except 0 < Apr < 0.05 GeV/c
region. The peak at low missed momentum region illustrate the presence of the beam
straight through events. Plots made with interaction trigger and SciHi suggests that
by applying the Apy > 0.05 GeV/c cut we might exclude the beam straight throughs.
The caption in the right plot tells that 89.6% of events would survive this cut. While
it cutting only 0.7% of neutron sample.

How this peak will looks like for the unbias data (beam triggers without SciHi
requirement)? Figure 19 represents such cases for 58 GeV/c (on left) and for 120
GeV/c (on right) using all thin targets data.
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Figure 19: The missing transverse momentum distributions using the thin targets at
58 GeV/c (on left) and at 120 GeV/c (on right). Plots suggests that the straight
through partially will remain there. Most effective cut might be 0.015 GeV /c.

We do not expect that the transverse momentum cut would be useful for Monte

22



Carlo samples. As indicated in Figure 20 by applying this cut we just slightly reducing
the statistics.
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Figure 20: The missing transverse momentum distributions for Monte Carlo samples
at 58 GeV/c (on left) and at 120 GeV/c (on right).

9 Neutron Selection Requirements

Below we summarize cuts applied after the event selection listed in Section 3.

e use the primary vertex only

e transverse position of vertex for thin targets is same as radius of the incoming

beam: 0.8cm for 120 GeV/c and 2.0cm for 58 GeV/c

longitudinal position is within -4cm < Z,;, < 6cm for thin targets and +15 cm

for the liquid hydrogen target

e missing transverse momentum cut: Ap >0.15 GeV/c

Finally, neutron selection requirements are:

Proton interaction bit in the prescaled trigger word is on
“SciHi” trigger bit in the raw trigger word should be on

Choose the lowest momentum value of neutron P,,(min) for given beam settings
using the missing momentum distribution.

There is no charged track with P>0.7*Ppyeam

Include the segment 456 track to the momentum balance if it points to HCAL
and matches with a RICH ring
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e Momentum balance requirement: (3 Pyacks + P - Pukmea) <1.2*Ppeam, where
> Piracks is the total momentum of all charged tracks in event, P,, is the neutron
momentum and Py, ge.q is the combined momentum of charged tracks pointing
to the HCAL. Term Pypgeq is a subsample of Y Piexs and it needs to be
subtracted in order to avoid double counting.

e Candidate should have sufficient deposition to calorimeter compared with the
sum of momenta of tracks pointing to calorimeter: (P, — Pygpea) > 30, where
o represents the HCAL energy resolution

The neutron momentum is: P, = Epcar + Eemeat = (Pirkrea - EtrksEmear), where
Encar 1s an energy deposition into HCAL, E.,,.. is projected energy losses of neutrons
in EMCAL, Py xgea is tracks momentum pointing to HCAL and Epspmea 18 track
energy lost in EMCAL. The neutron energy scale normalization and the estimated
Eecrmear values based on protons are described in Appendix B.

Neutron counting: each candidate event accumulated with a weight, where weight
is the proton interaction prescaler on run-by-run basis.

What is the minimum neutron momentum to choose? To answer for this question
we will review more closely the missing total momentum distribution. Figure 21
represents the missing momentum for two proton beam momenta: 58 GeV/c (on left)
and 120 GeV/c (on right) with different cuts.
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Figure 21: The missing total momentum distributions for two proton beam momenta:
58 GeV/c (on left) and 120 GeV/c (on right) with different cuts. Black plot - events
passed the selection requirements discussed in section 3. Green plot - passed the
vertex 7Z position cut, blue plot - passed the transverse momentum cut. Dashed black
plot - energy deposited into HCAL for the neutron sample. Red plot - sum of tracks
momenta pointing to HCAL fiducial.

Figure 22 shows the neutron spectrum with carbon target at 58 and 120 GeV /c,
where the neutron minimum momentum selected as 4 GeV/c and 10 GeV/c, respec-
tively.
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Figure 22: The neutron momentum distributions using p+C interactions at 58 GeV/c
and 120 GeV /¢, where the neutron minimum momentum selected as 4 GeV/c and 10
GeV /¢, respectively.

10 Neutron Uncorrected Spectra

Below we present the uncorrected neutron spectra from various targets using 20
GeV/e, 58 GeV/e, 84 GeV/c and 120 GeV/c proton beams. The measurements
were done using liquid hydrogen, Beryllium, Carbon, Bismuth and Uranium targets.
Uncorrected means that we have not applied yet the trigger efficiency, calorimeter
acceptance, and other corrections.

Our longitudinal vertex position resolution not allow to distinguish interactions at
target versus interactions with the trigger scintillator. Due to of that we measured the
neutron spectra also with the target-out case and then applied the subtraction pro-
cedure. For proper subtraction both target-in and target-out samples are normalized
to same number of the incident proton beam particles.

10.1 Spectra at 20 GeV/c
Figure 23 shows the neutron spectrum with liquid hydrogen target at 20 GeV /c.

10.2 Spectra at 58 GeV/c

Figure 24 shows the neutron spectrum with liquid hydrogen target at 58 GeV /c.
Figure 25 shows the neutron spectrum with beryllium target at 58 GeV/c.
Figure 26 shows the neutron spectrum with carbon target at 58 GeV/c.
Figure 27 shows the neutron spectrum with bismuth target at 58 GeV/c.
Figure 28 shows the neutron spectrum with uranium target at 58 GeV/c.
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Figure 23: The neutron momentum distributions using p+p interactions at 20 GeV /c.
Left plot represents both the target-in and target-out data. The right plot shows the
neutron spectrum when the target-out subtraction was applied.
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Figure 24: The neutron momentum distributions using p+p interactions at 58 GeV/c.
Left plot represents both the target-in and target-out data. The right plot shows the
neutron spectrum when the target-out subtraction was applied.

26



p+Be — n+..., 58 GeV/c
Neutrons: 4164

1000 p+Be — n+..., 58 GeV/c 700
Neutrons: 4164

0 - target-in
.1 - target-out

@
3
(L B L L

N
o
o

neutron candidates
(2]
S

n

=}

S
T

neutron candidates
S
R R

20 30 40 50 60 ) 30 40 50 60
neutron momentum, GeV/c neutron momentum, GeV/c

o

Figure 25: The neutron momentum distributions using p+Be interactions at 58
GeV/c. Left plot represents both the target-in and target-out data. The right plot
shows the neutron spectrum when the target-out subtraction was applied.
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Figure 26: The neutron momentum distributions using p+C interactions at 58 GeV/c.
Left plot represents both the target-in and target-out data. The right plot shows the
neutron spectrum when the target-out subtraction was applied.
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Figure 27: The neutron momentum distributions using the p+Bi interactions at 58
GeV/c. Left plot represents both the target-in and target-out data. The right plot
shows the neutron spectrum when the target-out subtraction was applied.
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Figure 28: The neutron momentum distributions using the p+U interactions at 58
GeV/c. Left plot represents both the target-in and target-out data. The right plot
shows the neutron spectrum when the target-out subtraction was applied.
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10.3 Spectra at 84 GeV/c
Figure 29 shows the neutron spectrum with liquid hydrogen target at 84 GeV/c.
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Figure 29: The neutron momentum distributions using p+p interactions at 84 GeV /c.
Left plot represents both the target-in and target-out data. The right plot shows the
neutron spectrum when the target-out subtraction was applied.

10.4 Spectra at 120 GeV/c

Using 120 GeV/c protons we measured the neutron production from interactions
with beryllium, carbon and bismuth targets. Figure 30 shows the neutron spectrum
with beryllium target. Figure 31 shows the neutron spectrum with carbon target.
Figure 32 shows the neutron spectrum with bismuth target.
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Figure 30: The neutron momentum distributions using the p+Be interactions at 120
GeV/c. Left plot represents both the target-in and target-out data. The right plot
shows the neutron spectrum when the target-out subtraction was applied.

Table 8 represents the summary of the neutron sample size.
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Figure 31: The neutron momentum distributions using the p+C interactions at 120
GeV/c. Left plot represents both the target-in and target-out data. The right plot
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Figure 32: The neutron momentum distributions using the p+Bi interactions at 120
GeV/c. Left plot represents both the target-in and target-out data. The right plot
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N, growth
H,-20 GeV/c | 88648
H,-58 GeV/c | 8057841154 | 1.16
Be-58 GeV/c | 41644247 1.16
C-58 GeV/c 32589£773 1.19
Bi-58 GeV/c 17860+405 1.21
U-58 GeV/c 30864+421 1.20
Hy—84 GeV/c | 161097+1517 | -
Be-120 GeV/c | 610474199 1.15
C-120 GeV/c | 355684165 1.15
Bi-120 GeV/c | 398254146 1.17

Table 8: The summary of the neutron sample size. Growth column represents the
increase factor relative to the previous neutron energy scale.
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10.5 Vertex Z distributions for neutron samples
10.5.1 Z positions for data without scintillator

Before to look on the Z vertex distribution for the neutron samples we might want
to see once how the Z positions looks like for data prior of the trigger scintillator
was installed. Figure 33 shows Z position distributions for 7/K/p incident beams
interacting with Be (on left), Bi (on middle) and target-out (on right) at 58 GeV/c.
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Figure 33: Z position distributions for 7/K /p incident beams interacting with Be (on
left), Bi (on middle) and target-out (on right) at 58 GeV/c. The distributions with Be
and Bi targets indicates the interactions around Z=4.5 cm. Target-out distribution
shows same bump, but more pronounce. This peak represents interactions with TPC
wall. For data with the scintillator installed the distance between the target center
and TPC wall is about 7.5 cm

10.5.2 Z positions for data with the trigger scintillator

Below we will discuss the results of the target-out subtraction. Prior subtraction the
target-out samples were normalized to same number of incident proton beam particles
as in the target-in samples. Even so, the peak on the scintillator with target-out data
appear to be slightly below than for the same peak on the target-in data.

Figure 34 shows the longitudinal vertex position distributions for the neutron
candidates based on the interactions with the liquid hydrogen at 20 GeV/c beam
momentum using the proton interaction triggers.

Figure 35 shows the longitudinal vertex position distributions for the neutron
candidates based on the interactions with the liquid hydrogen at 58 GeV/c beam
momentum using the proton interaction triggers.

Figure 36 shows the longitudinal vertex position distributions for the neutron
candidates based on the interactions with the liquid hydrogen at 84 GeV/c beam
momentum using the proton interaction triggers.

Figure 37 shows the longitudinal vertex position distributions for the neutron
candidates based on the interactions with the Be target at 58 GeV /¢ beam momentum
using the proton interaction triggers.
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Figure 34: The longitudinal vertex position distributions for the neutron candidates
based on the interactions with the liquid hydrogen at 20 GeV/c: without (on left)
and with (on right) correction to the target-out size normalization. The correction
factor is 1.7
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Figure 35: The longitudinal vertex position distributions for the neutron candidates
based on the interactions with the liquid hydrogen at 58 GeV/c: without (on left)
and with (on right) correction to the target-out size normalization. The correction
factor is 1.11
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Figure 36: The longitudinal vertex position distributions for the neutron candidates
based on the interactions with the liquid hydrogen at 84 GeV/c: without (on left)
and with (on right) correction to the target-out size normalization. The correction
factor is 1.18
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Figure 37: The longitudinal vertex position distributions for the neutron candidates
based on the interactions with the Be target at 58 GeV/c: without (on left) and with
(on right) correction to the target-out size normalization. The correction factor is
1.33

Figure 38 shows the longitudinal vertex position distributions for the neutron
candidates based on the interactions with the C target at 58 GeV/c beam momentum
using the proton interaction triggers.

0’10000} p+C — n+..., 58 GeV/c /0000 p+C — n+..., 58 GeV/c
(0] - Neutrons: 35390.8 (0]
P F N(AZ>2.5cm)=2285, 0.065 P N(AZ>2.5cm)=1101, 0.034
-3 8000 58 8000~
'.5 I O-target-in '6 I O-target-in
[ [ «- target-out [y [« - target-out
S 6000: 0 - subtracted 8 8000: 0 - subtracted
S 4000 S 4000
= b = r
> F > -
@ 2000 @ 2000~
c r c r

o L o L T

-2 0 2 4 6 -4 -2 0 2
Z - Zgy o] Zy - Zg [om]

Figure 38: The longitudinal vertex position distributions for the neutron candidates
based on the interactions with the C target at 58 GeV/c: without (on left) and with
(on right) correction to the target-out size normalization. The correction factor is
1.33

Figure 39 shows the longitudinal vertex position distributions for the neutron
candidates based on the interactions with the Bi target at 58 GeV/c beam momentum
using the proton interaction triggers.

Figure 40 shows the longitudinal vertex position distributions for the neutron
candidates based on the interactions with the U target at 58 GeV /c beam momentum
using the proton interaction triggers.

Figure 41 shows the longitudinal vertex position distributions for the neutron can-
didates based on the interactions with the Be target at 120 GeV/c beam momentum
using the proton interaction triggers.
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Figure 39: The longitudinal vertex position distributions for the neutron candidates
based on the interactions with the Bi target at 58 GeV /c: without (on left) and with
(on right) correction to the target-out size normalization. The correction factor is
1.14
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Figure 40: The longitudinal vertex position distributions for the neutron candidates
based on the interactions with the U target at 58 GeV/c: without (on left) and with
(on right) correction to the target-out size normalization. The correction factor is
1.09
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Figure 41: The longitudinal vertex position distributions for the neutron candidates
based on the interactions with the Be target at 120 GeV/c: without (on left) and
with (on right) correction to the target-out size normalization. The correction factor
is 1.087
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Figure 42 shows the longitudinal vertex position distributions for the neutron
candidates based on the interactions with the C target at 120 GeV /¢ beam momentum
using the proton interaction triggers.
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Figure 42: The longitudinal vertex position distributions for the neutron candidates
based on the interactions with the C target at 120 GeV/c: without (on left) and with
(on right) correction to the target-out size normalization. The correction factor is
1.25

Figure 43 shows the longitudinal vertex position distributions for the neutron can-
didates based on the interactions with the Bi target at 120 GeV/c beam momentum
using the proton interaction triggers.
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Figure 43: The longitudinal vertex position distributions for the neutron candidates
based on the interactions with the Bi target at 120 GeV/c: without (on left) and
with (on right) correction to the target-out size normalization. The correction factor
is 1.042

Table 9 represents the number of neutrons calculated with and without corrections
applied to the target-out size.

Figure 44 shows the neutron yields vs the run number.

The neutron yield calculated as:

1 x L x L xipr x 104
nt

Y, = nc X
n run Nyeam—run A
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Table 9: The number of neutrons with and without corrections applied to the target-

out size.
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Figure 44: The neutron yield vs run number: 58 GeV/c data (on left) and 120 GeV/c
data (on right). The target-out subtraction procedure is not applicable for this study.
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where, nc,,,, and Npeam_run are both represents what was accumulated for given
run. The target-out subtraction procedure is not applicable for this study. 58 GeV/c
data shows a great spread for the early runs. What is a reason for that? Possible an
explanation is due to a big discrete beam and interaction prescalers for those runs.
Figure 45 shows the beam and the interactions prescalers vs run number.
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Figure 45: The proton beam and interaction prescalers values vs run number for the
58 GeV/c data

38



11 Trigger Efficiency

We study the trigger efficiency on both ways: using the unbias beam triggers in data
and using Monte Carlo. We use the data sample consisting of the proton beam triggers
and all requirements for the neutron selection applied, except “SciHi” (trigger) fires.
As a supporting information, the track multiplicities for the proton interaction triggers
are given in Appendix D.

11.1 Trigger efficiency for p+p at 20 GeV/c

Figure 46 shows the trigger scintillator pulse height distributions for the p+p inter-
actions at 20 GeV /c using the liquid hydrogen target data for target-in (on left) and
target-out subtraction applied (on right), respectively.
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Figure 46: The “SciHi” pulse height distributions for the liquid hydrogen target data
using 20 GeV /c proton beam triggers for target-in (on left) and target-out subtraction
applied (on right), respectively.

Figure 47 shows the charged track multiplicities for the p+p interactions at 20
GeV/e.
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Figure 47: The charged track multiplicities for the liquid hydrogen target using 20
GeV /c proton beam triggers for data (left) and Monte Carlo (right), respectively.
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Figure 48 shows the trigger efficiency as a function of the neutron momentum for
p+p interactions at 20 GeV/c.
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Figure 48: The trigger efficiency as a function of the neutron momentum for p+p
interactions at 20 GeV/c: Monte Carlo efficiency dependence without (left) and with
(middle) the neutron momentum smearing applied and MC average trigger efficiency
(right).

The trigger efficiency study for p+p interactions at 20 GeV/c are summarized in
Table 10.

Nevt €trig (data) €trig (MC—BB) €trig (MC—SC]H]) €trig (ﬁnal) Aetrig
19(1) | 0.53(0.50)40.12 | 0.38+0.003 0.394+0.003 0.46 +0.10

Table 10: Summary of the trigger efficiency studies for p+p interactions at 20 GeV/c.
Last two columns represent assigned the final trigger efficiency and the systematic
uncertainty.

11.2 Trigger efficiency for p+p at 58 GeV/c

Figure 49 shows the trigger scintillator pulse height distributions for the p+p inter-
actions at 58 GeV /c using the liquid hydrogen target data for target-in (on left) and
target-out subtraction applied (on right), respectively.

Figure 50 shows the charged track multiplicities for the p+p interactions at 58
GeV/c.

Figure 51 shows the trigger efficiency as a function of the neutron momentum for
p+p interactions at 58 GeV/c.

The charged track multiplicities passing through the trigger scintillator for p+p
interactions at 58 GeV/c are summarized in Table 11.

The trigger efficiency study for p-+p interactions at 58 GeV/c are summarized in
Table 12.
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Figure 49: The “SciHi” pulse height distributions for the liquid hydrogen target data
using 58 GeV /c proton beam triggers for target-in (on left) and target-out subtraction
applied (on right), respectively.
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Figure 50: The charged track multiplicities for the liquid hydrogen target using 58
GeV/c proton beam triggers for data (left) and Monte Carlo superimposed (right),

respectively.

p+p — n+..., 58 GeV/c
o - Data

- Monte Carlo
--- fit of data

60

40F

trigger efficiency, %

‘

trigger efficiency, %

ok . . . ) R
20 30 40 50 60
neutron momentum, GeV/c

p+p — Nn+..., 58 GeV/c
- Data

- Monte Carlo

10000

8000

6000

4000

2000

L L L
0 20 30

neutron momentum, GeV/c

L
40

1
50

MC p+p — n+..., 58 GeV/c

MG SciHi required: 71909, 0.745:0.001
BB trigger required: 69536, 0.72040.001 Lt
| |

0- n-Events: 96561
53~ SciHiis on
53~ BB-trig is on

L

60 =% 30

40

50 60

neutron momentum, GeV/c

Figure 51: The trigger efficiency as a function of the neutron momentum for p+p
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(right).
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Nig(beam-tr) | Ny (intr-tr) Ny (MC-true) | Ny (MC-reco)
4.9(5.1)40.47 | 4.81(4.62)+0.05 | 4.55+0.01 4.2640.01

Table 11: Summary of the charged track multiplicities for p+p interactions at 58
GeV/c. The difference between Ny, (MC-true) and Ny, (MC-reco) are mainly due to
of TPC acceptance.

Nevt etrig(data) Etm'g(MC-BB) Etm'g(MC—SCiHi) etrig(ﬁnal) Aetrig
13(2) [ 0.67(0.68)£0.07 | 0.72£0.001 | 0.74=0.001 0.71 £0.10

Table 12: Summary of the trigger efficiency studies for p+p interactions at 58 GeV/c.
Last two columns represent assigned the final trigger efficiency and the systematic
uncertainty.

11.3 Trigger efficiency for p+Be and p+C at 58 GeV/c

Figure 52 shows the trigger scintillator pulse height distributions for the p+Be and
p+C interactions at 58 GeV/c.
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Figure 52: The “SciHi” pulse height distributions for p+Be (left) and p+C (right)
interactions with 58 GeV/c proton beam triggers, respectively.

Figure 53 shows MC charged track multiplicities for the p+Be and p+C interac-
tions at 58 GeV/c using interaction triggers.

Figure 54 shows Monte Carlo the average trigger efficiencies for p+Be and p+C
interactions at 58 GeV/c.

Figure 55 shows Monte Carlo the trigger efficiency as a function of the neutron
momentum for p+Be and p+C interactions at 58 GeV/c.

The charged track multiplicities passing through the trigger scintillator for p+Be
and p+C interactions at 58 GeV/c are summarized in Table 13.

The trigger efficiency study for p+Be and p+C interactions at 58 GeV/c are
summarized in Table 14.
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Figure 53: Monte Carlo charged track multiplicities for p+Be (left) and p+C inter-
actions at 58 GeV/c. Since the multiplicities for the beam trigger requirements are
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not available, then compasion made for the interaction trigger cases.
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Figure 54: Monte Carlo the average trigger efficiencies for p+Be (left) and p+C

(right) interactions at

58 GeV/c.
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Figure 55: Monte Carlo the trigger efficiency as a function of the neutron momen-
tum for p+Be (left) and p+C (middle and right) interactions at 58 GeV/c. Monte
Carlo efficiency dependence with (middle) and without (right) the neutron momen-

tum smearing applied.
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Niri(beam-tr)

Ny (intr-tr)

Ny (MC-true)

Ny (MC-reco)

Be, 58 GeV/c

n/a

6.03(6.23)£0.21

5.90+0.04

5.714+0.04

C, 58 GeV/c

n/a

6.10(6.40)£0.11

6.61£0.01

5.96£0.01

Table 13: Summary of the charged track multiplicities for p+Be and p+C interactions
at 58 GeV/c

Nevt €trig (data) €trig (MC—BB) €trig (MC—SCIHI) €trig (ﬁnal) Aetrig
Be, 58 GeV/c | 3(6) | 1.00(7)£? | 0.83£0.004 | 0.8220.004 0.82 10.10
C, 58 GeV/c | 5(6) | 0.80(?)£0.18 | 0.85£0.001 | 0.840.001 0.84 10.10

Table 14: Summary of the trigger efficiency studies for p+Be and p+C interactions
at 58 GeV /c. Last two columns represent assigned the final trigger efficiency and the

systematic uncertainty.

11.4 Trigger efficiency for p+Bi and p+U at 58 GeV/c

Figure 56 shows the trigger scintillator pulse height distributions for the p+Bi and

p+U interactions at 58 GeV/c.
4F A 14
p+Bi— n+..., 58 GeV/c F p+U—n+...,, 58 GeV/c
m3-5 E Beam trigger, neutron passed * 12~ Beam trigger, neutron passed
€ 3f £
S S S 10
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o ~E tgt-in: 9 6,€=0.667+0.157 o 8F tgt-in: 40 31,e=0.775+0.066
- oF tot-out: 6 3,e=0.500£0.204 = tgt-out: 6 3,e=0.500+0.204
2 2 6
c15E
515) 5
> E > 4
o 1 o T
H H H ]
E | | | | 0 Lonn.an I I L0
O 200 400 600 800 1000 0 200 400 600 800 1000
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Figure 56: The “SciHi” pulse height distributions for p+Bi (left) and p+U (right)
interactions with 58 GeV/c proton beam triggers, respectively.

Figure 57 shows the charged track multiplicities for the p+U interactions at 58
GeV/c.

Figure 58 shows the trigger efficiency as a function of the neutron momentum for
p+Bi interactions at 58 GeV /c.

Figure 59 shows the trigger efficiency as a function of the neutron momentum for
p+U interactions at 58 GeV/c.

The charged track multiplicities passing through the trigger scintillator for p+Bi
and p+U interactions at 58 GeV/c are summarized in Table 15.

The trigger efficiency study for p+Bi and p+U interactions at 58 GeV/c are
summarized in Table 16.
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Figure 57: The charged track multiplicities for p+U interactions using 58 GeV /c pro-
ton beam triggers for data (left) and Monte Carlo superimposed (right), respectively.
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Figure 58: The trigger efficiency as a function of the neutron momentum for p+Bi
interactions at 58 GeV /c: Monte Carlo efficiency dependence without (left) and with
(right) the neutron momentum smearing applied and MC average trigger efficiency
(right).
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Figure 59: The trigger efficiency as a function of the neutron momentum for p+U
interactions at 58 GeV /c: Monte Carlo efficiency dependence without (left) and with
(right) the neutron momentum smearing applied and MC average trigger efficiency
(right).
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Nipi(beam-tr)

Ny (intr-tr)

Ny (MC-true)

Ny (MC-reco)

Bi, 58 GeV/c

n/a

6.96(8.87)£0.19

9.76x£0.04

8.31£0.03

U, 58 GeV/c

5.30(6.25)+£0.50

6.65(7.29)+0.07

10.06+0.04

8.52£0.03

Table 15: Summary of the charged track multiplicities for p+Be and p+C interactions
at 58 GeV/c. For U target MC multiplicity is 8.52/6.25=1.36 times higher than in
data. Due to of that the MC trigger efficiency could be overestimated.

Nevt etrig(data) Etrig(MC—BB) Gtrig(MC—SCiHi> etrig(ﬁnal) AGtrig
Bi, 58 GeV/c | 9(6) | 0.67(7)£0.16 | 0.9140.002 0.91£0.002 0.845 +0.10
U, 58 GeV/c | 40(6) | 0.78(?)%£0.07 | 0.92£0.002 | 0.9120.002 0.845 £0.10

Table 16: Summary of the trigger efficiency studies for p+Bi and p+U interactions
at 58 GeV/c. Note: the efficiencies based on data have high level of statistical un-
certainties. Last two columns represent the final trigger efficiency and the systematic
uncertainty.

11.5 Trigger efficiency for p+p at 84 GeV/c

Figure 60 shows the trigger scintillator pulse height distributions for the p+p inter-
actions at 84 GeV/c using the liquid hydrogen target data for target-in (on left) and
target-out subtraction applied (on right), respectively.
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Figure 60: The “SciHi” pulse height distributions for the liquid hydrogen target data
using 20 GeV /c proton beam triggers for target-in (on left) and target-out subtraction
applied (on right), respectively.

Figure 61 shows the charged track multiplicities for the p+p interactions at 84
GeV/c.

Figure 62 shows the trigger efficiency as a function of the neutron momentum for
p+p interactions at 84 GeV/c.

The trigger efficiency study for p+p interactions at 84 GeV/c are summarized in
Table 17.

Why the trigger efficiency at 84 GeV/c is lower than at 58 GeV/c? Let’s compare
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Figure 61: The charged track multiplicities for the liquid hydrogen target using 84
GeV /c proton beam triggers for data (left) and Monte Carlo (right), respectively.
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Figure 62: The trigger efficiency as a function of the neutron momentum for p+p
interactions at 84 GeV/c: Monte Carlo efficiency dependence without (left) and with
(middle) the neutron momentum smearing applied and MC average trigger efficiency

(right).
Nevt €trig (data) €trig (MC-BB) €trig (MC-SCIHI) €trig (ﬁnal) Aetrig
137(12) | 0.66(0.66)=0.04 | 0.82£0.001 | 0.80£0.001 0.73 £0.10

Table 17: Summary of the trigger efficiency studies for p+p interactions at 84 GeV/c.
Last two columns represent assigned final trigger efficiency and systematic uncer-

tainty.
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SciHi rates for these two datasets. Figure 63 shows the SciHi fires rate as a function
of the dataset number for both 58 and 84 GeV/c datasets using the beam triggers.
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Figure 63: The SciHi fires rate as a function of the dataset number for both 58
GeV/c (left) and 84 GeV/c (right) using the beam triggers. Each data point on
figures represents a single run number. Plots indicates that the SciHi fires at 84
GeV/c occurs at least twice lower than at 58 GeV/c.

Figure 64 shows the SciHi fires rate as a function of the dataset number for both
58 and 84 GeV/c datasets using the proton interaction triggers.
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Figure 64: The SciHi fires rate as a function of the dataset number for both 58 GeV /¢
(left) and 84 GeV/c (right) using the proton interaction triggers. Each data point
on figures represents a single run number. Plots indicates that the SciHi fires at 84
GeV/c occurs about 30% lower than at 58 GeV /c.

Figure 65 shows the SciHi ADC distributions for 58 and 84 GeV/c data using the

beam triggers.
Figure 66 shows the SciHi ADC distributions for 58 and 84 GeV/c data using the

beam triggers.

11.6 Trigger efficiency for p+Be at 120 GeV /c

Figure 67 shows the trigger scintillator pulse height distributions for the p+Be inter-
actions at 120 GeV/c.
Figure 68 shows the trigger efficiency as a function of the neutron momentum for

p+Be interactions at 120 GeV/c.
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Figure 65: The SciHi ADC distributions for 58 (left) and 84 GeV /c (right) data using
the beam triggers.
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Figure 66: The SciHi ADC distributions for 58 (left) and 84 GeV/c (right) data
using the proton interaction triggers. Left plot indicates that the trigger at 58 GeV
mainly caused by SciHi with small straight through contamination. While 84 GeV
data (right) mainly was triggered by iDC and it highly populated with the straight
through. That can lead to the lower efficiency at 84 GeV in compare with 58 GeV
data. Unfortunately, Monte Carlo could not able to reproduce these effects. Due to
of that as the central value of trigger efficiency we used what was derived from data,
while the momentum dependence follows according to Monte Carlo curve. So, Monte
Carlo trigger efficiency function values were scaled down by coefficient of 0.82
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Figure 67: The “SciHi” pulse height distributions for p+Be interactions at 120 GeV /c:
for target-in (left) and target-out subtraction applied (right), respectively.
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Figure 68: The trigger efficiency as a function of the neutron momentum for p+Be
interactions at 120 GeV/c. Combined fit, Be and Bi data values are scaled to the
C (left), predicted MC behavior (middle) and the average MC predictions (right).
Monte Carlo efficiency dependence was made with the neutron momentum smearing
applied.

Figure 69 shows the charged track multiplicities for the p+Be interactions at 120
GeV/ec.
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Figure 69: The charged track multiplicities for p+Be interactions at 120 GeV/c for
data (left) and Monte Carlo superimposed (right), respectively.

The charged track multiplicities passing through the trigger scintillator for p+Be
interactions at 120 GeV/c are summarized in Table 18.

The trigger efficiency study for p+Be interactions at 120 GeV/c are summarized
in Table 19.

11.7 Trigger efficiency for p+C at 120 GeV/c

Figure 70 shows the trigger scintillator pulse height distributions for the p+C inter-
actions at 120 GeV/c.

Figure 71 shows the trigger efficiency as a function of the neutron momentum for
p+C interactions at 120 GeV/c.

Figure 72 shows the charged track multiplicities for the p+C interactions at 120
GeV/ec.
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Niri(beam-tr)

Ny (intr-tr)

Ny (MC-true)

Ny (MC-reco)

7.10(7.3)20.49

7.9(7.8)£0.02

8.2£0.02

8.0£0.02

Table 18: Summary of the charged track multiplicities for p+Be interactions at 120
GeV/c. MC multiplicity is 8.0/7.3=1.1 times higher than in data. Both multiplicities
and MC average efficiency suggests that €;,=0.99 looks unreasonable.

N evt

€rig(data)

€rig(MC-BB)

€trig (MC—SCIHI)

€rig(final)

AEtrz‘g

235(35)

0.85(0.88)£0.03

0.92+0.001

0.92+0.001

0.885

+0.07

Table 19: Summary of the trigger efficiency studies for p+Be interactions at 120
GeV/c. What to use as the average trigger efficiency: 0.84(data) or 0.92(MC)? The
value 0.84 is way off, however MC average is slightly overestimated. We might use
MC value and assign 0.08 as systematic uncertainty.
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Figure 70: The “SciHi” pulse height distributions for p+C interactions at 120 GeV /c:
for target-in (left) and target-out subtraction applied (right), respectively.
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Figure 71: The trigger efficiency as a function of the neutron momentum for p+C
interactions at 120 GeV/c: Monte Carlo efficiency dependence without (left) and with
(right) the neutron momentum smearing applied and MC average trigger efficiency

(right).
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Figure 72: The charged track multiplicities for p+C interactions at 120 GeV/c for
data (left) and Monte Carlo superimposed (right), respectively.

The charged track multiplicities passing through the trigger scintillator for p+C
interactions at 120 GeV/c are summarized in Table 20.

Ny (beam-tr) | Ny (intr-tr) | Ny (MC-true) | Ny (MC-reco)
7.7(7.7)£0.55 | 8.3(8.4)£0.02 | 9.3%+0.01 8.5+0.01

Table 20: Summary of the charged track multiplicities for p+C interactions at 120
GeV/c. MC multiplicity is 8.5/7.7=1.1 times higher than in data. Both multiplicities
and MC average efficiency suggests that €;,,=0.96 looks unreasonable.

The trigger efficiency study for p+C interactions at 120 GeV/c are summarized
in Table 21.

Nevt €trig (data) €trig (MC—BB) €trig (MC—SC]H]) €trig (ﬁnal) AGtrig
129(35) | 0.88(0.967)40.03 | 0.934+0.001 0.93+0.001 0.905 £0.05

Table 21: Summary of the trigger efficiency studies for p+C interactions at 120
GeV/c. Last two columns represent assigned the final trigger efficiency and the
systematic uncertainty.

11.8 Trigger efficiency for p+Bi at 120 GeV /c

Figure 73 shows the trigger scintillator pulse height distributions for the p+Be inter-
actions at 120 GeV/c.

Figure 74 shows the trigger efficiency as a function of the neutron momentum for
p+Bi interactions at 120 GeV /c.

Figure 75 shows the charged track multiplicities for the p+Bi interactions at 120
GeV/c.

The charged track multiplicities passing through the trigger scintillator for p+Bi
interactions at 120 GeV/c are summarized in Table 22.
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Figure 73: The “SciHi” pulse height distributions for p+Be interactions at 120 GeV /c:
for target-in (left) and target-out subtraction applied (right), respectively.
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Figure 74: The trigger efficiency as a function of the neutron momentum for p+Bi
interactions at 120 GeV/c: Monte Carlo efficiency dependence without (left) and with
(right) the neutron momentum smearing applied and MC average trigger efficiency

(right).
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Figure 75: The charged track multiplicities for p+Bi interactions at 120 GeV/c for

data (left) and Monte Carlo superimposed (right),
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Table 22: Summary of the charged track multiplicities for p+Bi interactions at 120

Niri(beam-tr)

Ny (intr-tr)

Ny (MC-true)

Ny (MC-reco)

8.6(10.0)+0.77

9.6(11.0)£0.05

14.23+0.03

12.62£0.03

GeV/c. MC multiplicity is 12.62/10.0=1.26 times higher than in data. Due to of that
the MC trigger efficiency could be overestimated.

The trigger efficiency study for p+Bi interactions at 120 GeV/c are summarized

in Table 23.
Nevt €trig (data) €trig (MC-BB) €trig (MC—SCIHI) €trig (ﬁnal) Aetrig
193(35) | 0.77(0.79)£0.03 | 0.96+0.001 0.97£0.001 0.87 +0.10

Table 23: Summary of the trigger efficiency studies for p+Bi interactions at 120

GeV/c. Last two columns represent assigned the final trigger efficiency and the

systematic uncertainty.

The charged particles multiplicities for the Monte Carlo non-neutron samples are

given in Appendix E.
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12 Neutron Production Properties Depending on
Generator

We considered the particles production multiplicities, the true neutron spectra and
the neutron an angular distribution. Comparison made for FLUKA/DPMJET and
LAQGSM generators. DPMJET used for p+p interactions at 58 GeV/c only.

12.1 General particle multiplicities

Below we compare the particle production multiplicities of FLUKA and LAQGSM [5,
6, 7] generators calculated per single p+A interaction.

The particles multiplicity production from p+p, p+C and p+Bi interactions at
58 GeV/c using Fluka and LAQGSM models are shown in Table 24.

58 GeV/c p+p p+C p+Bi
DPMJET LAQGSM FLUKA LAQGSM FLUKA LAQGSM

Tt 2.71 1.81 2.05 2.84 1.97 5.35

T 2.00 1.28 1.82 2.50 1.89 5.81

K~ 0.21 0.15 0.16 0.25 0.16 0.48

K~ 0.11 0.10 0.09 0.15 0.09 0.20

p 1.59 1.41 1.65 2.86 3.10 11.01

n 0.68  0.52(0.51) 149  2.61(1.20)  3.20  32.27(4.49)

Total (charged) 6.62 4.75 5.77 8.60 7.21 22.85

Table 24: The particles multiplicity production from p+p, p+C and p+Bi interactions
at 58 GeV/c using Fluka and LAQGSM generators. The multiplicities are calculated
per single interaction. The number of neutrons in parenthesis represents yield with
pn >100 MeV /c threshold.

The particles multiplicity production from p+p, p+C and p+Bi interactions at
120 GeV/c using Fluka and LAQGSM models are shown in Table 25.

12.2 MC neutron production per single p+A interaction

Figure 76 shows the neutron production spectra and rates normalized per single p+p
interactions at 20, 58 and 84 GeV/c.

Figure 77 shows the neutron production spectra and rates normalized per single
p+Be or p+C interactions at 58 GeV/c.

Figure 78 shows the neutron production spectra and rates normalized per single
p+Bi or p+U interactions at 58 GeV/c.

Figure 79 shows the neutron production spectra and rates normalized per single
p+Be, p+C or p+Bi interactions at 120 GeV /c.
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120 GeV/c p+p p+C p+Bi

DPMJET LAQGSM FLUKA LAQGSM FLUKA LAQGSM

7wt - 2.36 2.56 3.87 2.53 7.72
T - 1.82 2.33 3.53 2.46 8.24
K+ - 0.25 0.21 0.41 0.22 0.79
K~ - 0.18 0.13 0.28 0.14 0.39
D - 1.39 1.67 2.97 2.92 11.88
n ; 0.54(0.52) 153  2.74(1.26)  3.16  33.69(4.99)
Total (charged) - 6.00 6.90 11.06 8.27 29.02

Table 25: The particles multiplicity production from p+p, p+C and p+Bi interactions
at 120 GeV /c using Fluka and LAQGSM generators. The multiplicities are calculated

per single interaction. The number of neutrons in parenthesis represents yield with
pn >100 MeV /¢ threshold.
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Figure 76: The neutron production spectra and rates normalized per single p+p in-
teractions at 20 GeV/c (left), 58 GeV /c (middle) and 84 GeV/c (right) using FLUKA
and LAQGSM (if possible).
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Figure 77: The neutron production spectra and rates normalized per single p+Be

(left) or p+C (right) interactions at 58 GeV/c using FLUKA and LAQGSM (if pos-
sible).
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Figure 78: The neutron production spectra and rates normalized per single p+Bi
(left) and p+U (right) interactions at 58 GeV/c using FLUKA and LAQGSM (if
possible).
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Figure 79: The neutron production spectra and rates normalized per single p+Be
(left), p+C (middle) and p+Bi (right) interactions at 120 GeV/c using FLUKA and
LAQGSM (if possible).

57



Table 26 illustrates Monte Carlo neutron production rates per single p+A inter-
action with p,, >100 MeV/c threshold.

FLUKA | LAQGSM
H,-20 | 0.66
H,-58 | 0.68 0.51
Be-58 | 1.03
C58 | 1.49 1.20
Bi-58 | 3.20 4.49
U-58 | 3.47
M,-84 | 0.69
Be-120 | 1.06
C-120 | 1.53 1.26
Bi-120 | 3.16 1,99

Table 26: Summary of Monte Carlo neutron production rates per single p+A inter-
action with p, >100 MeV/c threshold. FLUKA column for Hy target actually done
with DPMJET generator.

Figure 80 shows the neutron pr spectra normalized per single p+A interactions
at 58 and 120 GeV/c.
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Figure 80: The neutron pr spectra normalized per single p+A interactions at 58 (left)
and 120 GeV /c (right) using FLUKA generator. Prediction for p target at 58 GeV/c
was done by DPMJET.
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12.3 Neutron spectra with p, > p,in

Figure 81 shows the true neutron production spectra from p+p interactions at 20, 58
and 84 GeV/c using FLUKA and LAQGSM models.
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Figure 81: The true neutron production spectra from the p+p interactions at 20
GeV/c (left), 58 GeV/c (middle) and 84 GeV /c using FLUKA and LAQGSM (where
it was possible) models.

Figure 82 shows the true neutron production spectra from p+Be and p+C inter-
actions at 58 GeV/c using FLUKA and LAQGSM models.
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Figure 82: The true neutron production spectra from the p+Be (left) and p+C (right)
interactions at 58 GeV/c using FLUKA and LAQGSM models.

Figure 83 shows the true neutron production spectra for the p+Bi and p+U
interactions at 58 GeV/c using FLUKA and LAQGSM models.

Figure 84 shows the true neutron production spectra from p+Be, p+C and p+Bi
interactions at 120 GeV/c using FLUKA and LAQGSM models.

12.4 Neutron an angular distribution

The neutron angular distribution effecting the calorimeter acceptance. Below we
compare the neutron exit angle, a pr/psr variable, from Fluka and LAQGSM [5, 6, 7]
generators.

Figure 85 shows the pr/p;; quantity distributions for p+p at 20, 58 and 84 GeV/c
using Fluka and LAQGSM models (where it was available).
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Figure 83: The true neutron production spectra from p+Bi (left) and p+U (right)
interactions at 58 GeV/c using FLUKA and LAQGSM models.
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Figure 84: The true neutron production spectra from p+Be (left), p+C (middle) and
p+Bi (right) interactions at 120 GeV/c using FLUKA and LAQGSM models.
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Figure 85: The pr/pi distributions for neutrons from p+p at 20 GeV/c (left), 58
GeV/c (middle) and 84 GeV/c (right) using Fluka and LAQGSM models.
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Figure 86 shows the pr/py quantity distributions for p+Be and p+C interactions
at 58 GeV/c using Fluka and LAQGSM models.
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Figure 86: The pr/pio distributions for neutrons from p+Be (left) and p+C (right)
interactions at 58 GeV/c using Fluka and LAQGSM models.

Figure 87 shows the pr/p;o: quantity distributions for p+Bi and p+U interactions
at 58 GeV/c using Fluka and LAQGSM models.
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Figure 87: The pr/p distributions for neutrons from p+Bi (left) and p+U (right)
interactions at 58 GeV/c using Fluka and LAQGSM models.

Figure 88 shows the pr/pi quantity distributions for p+Be. p+C and p+U
interactions at 120 GeV/c using Fluka and LAQGSM models..

13 Summary of the Neutron Production: data vs
Monte Carlo

Table 27 illustrates the summary of data and Monte Carlo neutron production prop-
erties. Neutron fractions were calculated per single p+A interactions with p,, > pin
requirements.
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Figure 88: The pr/piy distributions for neutrons from p+Be (left), p+C (middle)
and p+Bi (right) interactions at 120 GeV/c using Fluka and LAQGSM models.

Niner(d) | F,(data) Fn(FL) | Fo(LA) | Fron(FL)
H,-20 | 208786 | 0.0042+£0.0002 | 0.014 | - 0.502
H,-58 | 2001048 | 0.0346£0.0005 | 0.111 | 0.109 | 0.450
Be-58 | 575635 | 0.0063+0.0004 | 0.104 | - 0.154
C-58 | 1258291 | 0.0217+0.0005 | 0.102 | 0.099 | 0.156
Bi-58 | 1383354 | 0.0107+£0.0003 | 0.066 | 0.047 | 0.091

U-58 1426534 | 0.018040.0003 | 0.067 - 0.094
Hy-84 | 2710439 | 0.0594+£0.0003 | 0.162 - 0.438
Be-120 | 607457 | 0.0874+0.0003 | 0.201 - 0.151

C-120 | 319103 | 0.0966=0.0005 | 0.201 0.095 0.153
Bi-120 | 587048 | 0.058240.0002 | 0.156 0.042 0.105

Table 27: Summary of data and Monte Carlo neutron production properties. Neutron
fractions were calculated per single p+A interactions with p, > p, requirements.
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14 Hadron calorimeter’s solid angle

The solid angle, €2, subtended at the center of a sphere of radius r by a portion of
the surface S of the sphere is defined as: 2 = r%, where S is area of calorimeter in
m?, r = Z is a distance from the reconstructed interaction vertex up to HCAL front
surface in m.

Calorimeter’s designed surface area size is equal to S = 0.989 x 0.979 = 0.968 m?.
An active surface area size can be estimated by Monte Carlo.

At this moment the Monte Carlo information about the neutron passage simu-
lation and it’s position at HCAL front surface is not available. But we have the

projected positions. We applied following cuts to the neutron sample in Monte Carlo:

e select events when there only single high momentum neutron being generated,
Pn > Dmin

e require that the high momentum neutron directed toward downstream of the
beam line, within £80 cm from beam line in both views at Z equal to the the
Z of HCAL front face. This sample represents the denominator

e calculate p,(true) / p,(HCAL) variable, where p,,(HCAL) is reconstructed neu-
tron momentum according to the procedure same as in data

e select events when ratio value would be within 0.8-1.2 range. This sample
represents the numerator

e make 2D Y-projection vs X-projection plot
e the edges of the 2D plot will tell what is the active calorimeter area size

Figure 89 shows the distributions of p,(true)/p,(HCAL) variable and the 2D X-
Y-projection plot made using the p+C interactions at 58 GeV/c
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Figure 89: The distributions of p,(true)/p,(HCAL) variable (left) and the 2D X-Y-
projection plot (right) made using the p+C interactions at 58 GeV/c

Figure 90 shows X and Y projections for subsample shown on Fig. 89 (right plot).
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Figure 90: The X and Y projections for subsample shown on Fig. 89 (right plot).

Figure 91 shows the neutron reconstruction rates depending on X and Y projec-
tions.
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Figure 91: The neutron reconstruction rates depending on X and Y projections. The
rate is a ratio of what shown on Fig. 90 over the generated sample.

The vertical red lines in Fig. 91 illustrates defined by the fit the X (or Y) posi-
tion where the neutron rate reached 1/2 of it’s maximum value. The active edges
of the hadron calorimeter were found as: -46.39 cm and 44.47 c¢cm in X view and
-46.27 ¢cm and 41.62 cm in Y view, respectively. Thus, the active surface area is
equal to 0.9086x0.8789 = 0.79857 m2. The uncertainty in the surface area value is
+0.001 m? (or 0.0005 m in single estimate). Then, the expected solid angle value for
the thin target would be: Q = 0.7986 / 24.76% = 0.001302+0.000002 (syst) steradians.

What is an angular coverage of the calorimeter? Our calorimeter front surface is
a rectangular. An equivalent radius value can be found through the formula: S =

7r?, then r = \/g . The equivalent radius would be r = 391'1?283 = 0.5047 m. Thus,
the angular coverage: sinf = 6 = 02'29;“67 = (0.0204 radians, or 20.4 mrad.

Figure 92 shows the solid angle value distributions for p+p, p+C and p+Bi inter-
actions at 58 GeV/c
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Figure 92: The solid angle value distributions for p+p, p+C and p+Bi interactions
at 58 GeV /c.

Figure 93 shows the solid angle value distributions for p+p at 84 GeV/c and for
p+C and p+Bi interactions at 120 GeV/c
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Figure 93: The solid angle value distributions for p+p at 84 GeV/c and p+C and
p+Bi interactions at 120 GeV /c.

Table 28 illustrates the summary of the solid angle values calculated for the active
and designed front surface area of the hadron calorimeter.
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Quctive X103 st | RMSqx10% | Qgesign x 1035t | AQ(assign)
H,-20 | 1.2986 3.89 1.5742 0.003
H,-58 | 1.2976 4.22 1.5729 0.003
Be-58 | 1.3014 0.82 1.5775 0.002
C-58 1.3017 0.88 1.5779 0.002
Bi-58 1.3013 0.77 1.5774 0.002
U-58 1.3014 0.75 1.5775 0.002
H,-84 | 1.2975 4.30 1.5728 0.003
Be-120 | 1.3015 0.92 1.5777 0.002
C-120 | 1.3018 0.92 1.5781 0.002
Bi-120 | 1.3014 0.78 1.5775 0.002

Table 28: Summary of €2 values.
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15 Calorimeter Acceptance

The geometrical acceptance of the calorimeter is certain. However, as was shown on
previous section that the neutron angular distribution is model dependent. Due to
of this fact the calorimeter acceptance would depend on what model in use. So, we
used two Monte Carlo generators: FLUKA and LAQGSM [5, 6, 7] generators to see
for the possible variations in acceptance.

Figure 94 shows the neutron spectra and calorimeter acceptance as the function
of the neutron momentum from p+p interactions at 20 GeV/c.
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Figure 94: Neutron spectra and calorimeter acceptance as the function of the neutron
momentum from p+p interactions at 20 GeV/c. Left: neutron spectra with and
without HCAL fiducial requirements. Calorimeter acceptance without (left) and with
(right) Fluka neutron smearing applied.

Figure 95 shows the neutron spectra and calorimeter acceptance as the function
of the neutron momentum from p+p interactions at 58 GeV/c.

18000 r r
16000 MG p+p — n+..., 58 GeV/c 2 1001 MC p+p — n+..., 58 GeV/c L R 100 MC p+p — n+..., 58 GeV/c et
- FLUKA ~ |- FLUKA truth et [ - FLUKA, smeared: 0.523:0.001 T A
14000 o —— within HCAL 8 gol - LAQGSM "’* et g go[_* - LAQESM: 0.627:0.001 fr,f" ‘.“‘4"
E c "t PR t I
12000 o LAGGSM s I It 8 I Eas
10000| ~— within HCAL S ol o S gl s
o °°F bs o °0r ba
,,,,,,, 8t - g #
g | - s f &
401 - 40F b
- * - r j
< [ g < L 4
3 Q 200 o O 20F L
Er T [ .= T "
E - [ .* he
ot I I I L L oea® . | I L I I I [oea® .\ | I I I I I
20 30 40 50 60 00 10 20 30 40 50 60 OU 10 20 30 40 50 60
neutron momentum (truth), GeV/c neutron momentum, GeV/c neutron momentum, GeV/c

Figure 95: Neutron spectra and calorimeter acceptance as the function of the neutron
momentum from p+p interactions at 58 GeV/c. Left: neutron spectra with and
without HCAL fiducial requirements. Calorimeter acceptance without (left) and with
(right) Fluka neutron smearing applied.

Figure 96 shows the neutron spectra and calorimeter acceptance as the function of
the neutron momentum from p+Be interactions at 58 GeV/c and HCAL acceptance.
Figure 97 shows the neutron spectra and calorimeter acceptance as the function of
the neutron momentum from p+C interactions at 58 GeV/c and HCAL acceptance.
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Figure 96: Neutron spectra and calorimeter acceptance as the function of the neutron
momentum from p+Be interactions at 58 GeV/c. Left: neutron spectra with and
without HCAL fiducial requirements. HCAL acceptance without (left) and with
(right) Fluka neutron smearing applied.
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Figure 97: Neutron spectra and calorimeter acceptance as the function of the neutron
momentum from p+C interactions at 58 GeV/c. Left: neutron spectra with and
without HCAL fiducial requirements. HCAL acceptance without (left) and with
(right) Fluka neutron smearing applied.
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Figure 98 shows the neutron spectra and calorimeter acceptance as the function of
the neutron momentum from p+Bi interactions at 58 GeV/c and HCAL acceptance.
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Figure 98: Neutron spectra and calorimeter acceptance as the function of the neutron
momentum from p+Bi interactions at 58 GeV/c. Left: Neutron spectra with and
without HCAL fiducial requirements. HCAL acceptance without (left) and with
(right) Fluka neutron smearing applied.

Figure 99 shows the neutron spectra and calorimeter acceptance as the function of
the neutron momentum from p+U interactions at 58 GeV /c and HCAL acceptance.
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Figure 99: Neutron spectra and calorimeter acceptance as the function of the neutron
momentum from p+U interactions at 58 GeV/c. Left: Neutron spectra with and
without HCAL fiducial requirements. HCAL acceptance without (left) and with
(right) Fluka neutron smearing applied.

Figure 100 shows the neutron spectra and calorimeter acceptance as the function
of the neutron momentum from p-+p interactions at 84 GeV/c.

Figure 101 shows the neutron spectra and calorimeter acceptance as the function of
the neutron momentum from p+Be interactions at 120 GeV /c and HCAL acceptance.

Figure 102 shows the neutron spectra and calorimeter acceptance as the function of
the neutron momentum from p+C interactions at 120 GeV /c and HCAL acceptance.

Figure 103 shows the neutron spectra and calorimeter acceptance as the function of
the neutron momentum from p+Bi interactions at 120 GeV /c and HCAL acceptance.

Average HCAL acceptances for the various targets and beam momenta are sum-
marized in Table 29.
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Figure 100: Neutron spectra and calorimeter acceptance as the function of the neutron
momentum from p-+p interactions at 84 GeV/c. Left: neutron spectra with and
without HCAL fiducial requirements. Calorimeter acceptance without (left) and with

(right) Fluka neutron smearing applied.

3500F MC p+Be — n+..., 120 GeV/c 5 100p T FLUAIN e eecesseesessasssseeses s 100 MC p+Be - n+..., 12.?'93.\119"”_“,,“,,
3000 0- FLUKA - o 5 [ -~
— within HCAL 8 s o 8 8ol -~
c T r K3 c T r *
s I R s L /
2 gl . Q gl ¢
E S 60 . 2 60 E
F 8 r . 8 4
F © 40; . MC p+Be — n+..., 120 GeV/c © 40; N « - FLUKA, smeared: 0.835:0.001
E = < L .
E < [ - < [ .
E O 200 O 20 .
E T i T .
E L L L | [a” L L L L | | [ar” L L L L I |
%O 40 60 80 100 120 00 20 40 60 80 100 120 00 20 40 60 80 100 120

neutron momentum (truth), GeV/c

neutron momentum, GeV/c

neutron momentum, GeV/c

Figure 101: Neutron spectra and calorimeter acceptance as the function of the neutron
momentum from p+Be interactions at 120 GeV/c. Left: Neutron spectra with and

without HCAL fiducial requirements.

(right) Fluka neutron smearing applied.
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Figure 102: Neutron spectra and calorimeter acceptance as the function of the neutron
momentum from p+C interactions at 120 GeV/c. Left: Neutron spectra with and

without HCAL fiducial requirements.

(right) Fluka neutron smearing applied.
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Figure 103: Neutron spectra and calorimeter acceptance as the function of the neutron
momentum from p+Bi interactions at 120 GeV/c. Left: Neutron spectra with and
without HCAL fiducial requirements. HCAL acceptance without (left) and with
(right) Fluka neutron smearing applied.

Pbeam €hcal (FLUKA) €hcal (LAQGSM)
Hs-20 GeV/c | 0.166+0.001 -
H,-58 GeV/c | 0.52340.001 0.627+0.001
Be-58 GeV/c | 0.4924+0.004 | -
C-58 GeV/c 0.478=+0.001 0.528+0.002
Bi-58 GeV/c | 0.348+0.002 0.451£0.005
U-58 GeV/c 0.349£0.002 | -
Hs-84 GeV/c | 0.680+0.001 -
Be-120 GeV/c | 0.835+0.001 -
C-120 GeV/c | 0.829+0.001 0.775£0.001
Bi-120 GeV/c | 0.714+0.001 0.710£0.001

Table 29: Average HCAL acceptances based on FLUKA and LAQGSM generators.
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16 Effect of Calorimeter Resolution to Neutron
Spectrum

The calorimeter resolution, o, as a function of the incident proton beam momenta
was found to be [1]:

o = 1/0.5542F + 0.0262E>

where E is proton beam energy in GeV. One can assume that the calorimeter
performance for neutrons would be pretty match similar to protons. We see also
a small nonlinearity there, which can be taken in account by using a second order
polynomial function:

0 = /1.982 + 0.20482E,, + 005582 E%

In this formula E; represents the true summed neutron momentum pointing to
HCAL fiducial. An actual smearing value for given event has been derived as a
random number from Gaussian distribution, where o used as an input parameter to
Gauss. Thus, for each MC event we have two neutron energies: F;, and E; + Ag.
Figure 104 illustrates the calorimeter resolution vs the proton beam energy and what
used to smear neutron energy in MC.
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Figure 104: The hadron calorimeter energy resolution, o/E, vs the incident proton
energy (left) and how neutron energy resolution was simulated in MC (right - blue
curve).

Figure 105 illustrates the effect of calorimeter resolution to the neutron spectrum
using p+p interactions at 20 GeV/c.

Figure 106 illustrates the effect of calorimeter resolution to the neutron spectrum
using p+p interactions at 58 GeV /c.

Figure 107 illustrates the effect of calorimeter resolution to the neutron spectrum
using p+Be interactions at 58 GeV/c.
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Figure 105: The effect of calorimeter resolution to the neutron spectrum using p+p
interactions at 20 GeV/c: smeared and unsmeared summed neutron spectra (left)
and the unsmeared over smeared ratio (right).
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Figure 106: The effect of calorimeter resolution to the neutron spectrum using p+p
interactions at 58 GeV/c: smeared and unsmeared summed neutron spectra (left)
and the unsmeared over smeared ratio (right).

800F o 3
ook MC p+Be — n+..., 58 GeV/c B o5t MC p+Be — n+..., 58 GeVi/c
600F - smeared B ok
E 0-MC true © L .F
500F o 1.5F
E = PO St S
400F o s e et
F el E
300F @ 05
200E g 0E
E E
100F- @ -05F
E | | | | | S E | | | | | |
% 10 20 30 40 50 _ 60 o 10 20 30 40 50 _ 60
neutron momentum (smeared), GeV/c neutron momentum (smeared), GeV/c

Figure 107: The effect of calorimeter resolution to the neutron spectrum using p+Be
interactions at 58 GeV/c: smeared and unsmeared summed neutron spectra (left)
and the unsmeared over smeared ratio (right).
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Figure 108: The effect of calorimeter resolution to the neutron spectrum using p+C
interactions at 58 GeV/c: smeared and unsmeared summed neutron spectra (left)
and the unsmeared over smeared ratio (right).

Figure 108 illustrates the effect of calorimeter resolution to the neutron spectrum
using p+C interactions at 58 GeV /c.

Figure 109 illustrates the effect of calorimeter resolution to the neutron spectrum
using p+Bi interactions at 58 GeV/c.
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Figure 109: The effect of calorimeter resolution to the neutron spectrum using p+Bi
interactions at 58 GeV/c: smeared and unsmeared summed neutron spectra (left)
and the unsmeared over smeared ratio (right).

Figure 110 illustrates the effect of calorimeter resolution to the neutron spectrum
using p+U interactions at 58 GeV/c.

Figure 111 illustrates the effect of calorimeter resolution to the neutron spectrum
using p+p interactions at 84 GeV/c.

Figure 112 illustrates the effect of calorimeter resolution to the neutron spectrum
using p+Be interactions at 120 GeV/c.

Figure 113 illustrates the effect of calorimeter resolution to the neutron spectrum
using p+C interactions at 120 GeV /c.

Figure 114 illustrates the effect of calorimeter resolution to the neutron spectrum
using p+Bi interactions at 120 GeV/c.
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Figure 110: The effect of calorimeter resolution to the neutron spectrum using p+U
interactions at 58 GeV/c: smeared and unsmeared summed neutron spectra (left)
and the unsmeared over smeared ratio (right).
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Figure 111: The effect of calorimeter resolution to the neutron spectrum using p+p
interactions at 84 GeV/c: smeared and unsmeared summed neutron spectra (left)
and the unsmeared over smeared ratio (right).
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Figure 112: The effect of calorimeter resolution to the neutron spectrum using p+Be
interactions at 120 GeV/c: smeared and unsmeared summed neutron spectra (left)
and the unsmeared over smeared ratio (right).

75



8000 S
E MC p+C = n+..., 120 GeVie ® 258 MC p+C — n+..., 120 GeVic
7000 - f
60005 0- smeared 19} 2F
F 0- MC true T 15i
5000F o 158
2 E . o o~
4000F CO * o
E B .
3000F © 05F
E 3 o
2000F E
E £k
1000 @ -05F
| | | | | S E | | | | | |
% 20 40 60 80 100 120 © 20 40 60 80 100 120
neutron momentum (smeared), GeV/c neutron momentum (smeared), GeV/c

Figure 113: The effect of calorimeter resolution to the neutron spectrum using p+C
interactions at 120 GeV/c: smeared and unsmeared summed neutron spectra (left)
and the unsmeared over smeared ratio (right).
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Figure 114: The effect of calorimeter resolution to the neutron spectrum using p+Bi
interactions at 120 GeV/c: smeared and unsmeared summed neutron spectra (left)
and the unsmeared over smeared ratio (right).
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17 Neutron Selection Efficiency

On previous subsection we discussed the HCAL acceptance using Fluka and LAQGSM
neutron generators. However, in analysis of the real data we applied the Z,;, and Apy
and other cuts to select neutrons. Below we will present the neutron reconstruction
efficiency.

Figure 115 shows the neutron reconstruction efficiency as the function of the neu-
tron momentum for p+p interactions at 20, 58 and 84 GeV/c.
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Figure 115: The neutron reconstruction efficiency as the function of the summed
neutron momentum for p+p interactions at 20 GeV/c (left), 58 GeV/c (middle) and
84 GeV/c (right), respectively.

Figure 116 shows the neutron reconstruction efficiency as the function of the neu-
tron momentum for p+Be and p+C interactions at 58 GeV/c
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Figure 116: The neutron reconstruction efficiency as the function of the summed
neutron momentum for p+Be (left) and p+C (right) interactions at 58 GeV/c.

Figure 117 shows the neutron reconstruction efficiency as the function of the neu-
tron momentum for p+Bi and p+U interactions at 58 GeV/c

Figure 118 shows the neutron reconstruction efficiency as the function of the neu-
tron momentum for p+Be, p+C and p+Bi interactions at 120 GeV/c

Monte Carlo the neutron reconstruction efficiency for the various targets and beam
momenta are summarized in Table 30.
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Figure 117: The neutron reconstruction efficiency as the function of the summed
neutron momentum for p+Bi (left) and p+U (right) interactions at 58 GeV/c.
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Figure 118: The neutron reconstruction efficiency as the function of the summed
neutron momentum for p+Be (left), p+C (middle) and p+Bi (right) interactions at
120 GeV/c

Pveam €cuts

Hy-20 GeV/c | 0.80140.004
H,-58 GeV/c | 0.86640.001
Be-58 GeV/c | 0.905+0.004
C-58 GeV/c 0.900+0.001
Bi-58 GeV/c | 0.91740.002
U-58 GeV/c 0.917£0.002
Hy-84 GeV/c | 0.890+0.001
Be-120 GeV/c | 0.8984+0.001
C-120 GeV/c | 0.903£0.001
Bi-120 GeV/c | 0.916+0.001

Table 30: Monte Carlo the neutron selection efficiency for the various targets and
beam momenta. The efficiencies were calculated with FLUKA.
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18 Neutron Backgrounds

The studies of the events when the total momentum of all tracks significantly exceed
Drearn indicates the presence of a failure in the track reconstruction. We found that
this effect take place in data as well in Monte Carlo within compatible rate. Some K¢
from the primary target, the neutrons produced by the charged tracks downstream
of target and photons might also contribute to the neutron spectrum. The neutron
backgrounds are listed below:

e fakes due to unreconstructed tracks
e fakes due to misreconstructed tracks
e combinatoric backgrounds

e contributions from K7

e neutrons from downstream of target

e photons (left over after passing EMCal)

18.1 Tracking source of backgrounds

Monte Carlo track momentum true-reco difference vs the reconstructed momentum
distribution illustrated in Figure 119 using p+C interactions at 120 GeV/c.
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Figure 119: The true - reco vs the reco momentum distribution from p+C interac-
tions at 120 GeV/c. Tracks are from the primary vertex. Match inefficiency (when
|Ap| >5 GeV/c) is about 0.7% (was 5%). Upper edge line of the distribution illus-
trates pyor(reco)=0 case. Bottom edge - pio (true)=0

All data points away from Ap = 0 line in Fig. 119 illustrates the presence of the
failure in track reconstruction. They all might contribute to the fake neutrons.
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18.2 Total backgrounds
Below we describe the total background calculation procedure.
e apply the selection cuts as in data where it possible
e calculate neutron momentum in MC same way as in data: E,, = Ejqq-Egi (heal)(if)
e use MC sample where neutron was NOT generated
e what will be selected are fake neutrons
e calculate fake rate per single MC event

— denominator: events passed Z,:, Apr and trigger requirements

— numerator: same as above and is sufficient energy in HCAL?

Usage of HCAL responses for the sample without neutrons will allow to estimate
an integral of all backgrounds: contribution from track failure as well as K7, neutrons
from downstream of target and photons.

Assumptions:

e tracking detectors’ simulation, track and vertex reconstruction software in MC
are compatible with data

e contributions from ng, K,y are about the same as in data

e HCAL simulation is more less reasonable (at least central value)

18.3 Fake neutron rates

Figure 120 illustrates the neutron fake rates and predicted contribution to the neutron
sample in data for p+p interactions at 20 GeV/c.
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Figure 120: The neutron fake rates (left) and predicted contribution to the neutron
sample in data for p+p interactions at 20 GeV/c..

Figure 121 illustrates the neutron fake rates and predicted contribution to the
neutron sample in data for p+p interactions at 58 GeV/c.
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Figure 121: The neutron fake rates (left) and predicted contribution to the neutron
sample in data (right) for p+p interactions at 58 GeV /c.
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Figure 122: The neutron fake rates (left) and predicted contribution to the neutron
sample in data (right) for p+Be interactions at 58 GeV/c.

Figure 122 illustrates the neutron fake rates and predicted contribution to the
neutron sample in data for p+Be interactions at 58 GeV/c.

Figure 123 illustrates the neutron fake rates and predicted contribution to the
neutron sample in data for p+C interactions at 58 GeV/c.
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Figure 123: The neutron fake rates (left) and predicted contribution to the neutron
sample in data (right) for p+C interactions at 58 GeV/c.

Figure 124 illustrates the neutron fake rates and predicted contribution to the
neutron sample in data for p+Bi interactions at 58 GeV /c.

Figure 125 illustrates the neutron fake rates and predicted contribution to the
neutron sample in data for p+U interactions at 58 GeV/c.
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Figure 124: The neutron fake rates (left) and predicted contribution to the neutron
sample in data (right) for p+Bi interactions at 58 GeV /c.
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Figure 125: The neutron fake rates (left) and predicted contribution to the neutron
sample in data (right) for p+U interactions at 58 GeV/c.

Figure 126 illustrates the neutron fake rates and predicted contribution to the
neutron sample in data for p+p interactions at 84 GeV/c.
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Figure 126: The neutron fake rates (left) and predicted contribution to the neutron
sample in data (right) for p+p interactions at 84 GeV/c.

Figure 127 illustrates the neutron fake rates and predicted contribution to the
neutron sample in data for p+Be interactions at 120 GeV/c.

Figure 128 illustrates the neutron fake rates and predicted contribution to the
neutron sample in data for p+C interactions at 120 GeV/c.

Figure 129 illustrates the neutron fake rates and predicted contribution to the
neutron sample in data for p+Bi interactions at 120 GeV/c.
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Figure 127: The neutron fake rates (left) and predicted contribution to the neutron
sample in data (right) for p+Be interactions at 120 GeV/c.
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Figure 128: The neutron fake rates (left) and predicted contribution to the neutron
sample in data (right) for p+C interactions at 120 GeV/c.
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Figure 129: The neutron fake rates (left) and predicted contribution to the neutron
sample in data (right) for p+Bi interactions at 120 GeV/c.
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Monte Carlo neutron fake rate studies for the various targets and beam momenta
are summarized in Table 31.

DPoearn | Fake rate,% | non-matches, % | < Nyi > | < P > < Flp4kp4y) >
Ho-20 | 0.714+0.02 | 0.48 0.30£0.03 | 7.2+£0.4 0.25
Hy-58 | 8.16+0.04 1.41 0.734+0.01 | 11.840.1 0.33
Be-58 | 7.77+0.24 1.66 0.63£0.03 | 12.4£0.4 0.38
C-58 6.65+0.07 1.76 0.6840.02 | 12.0+0.2 0.31
Bi-58 10.084+0.18 | 1.21 0.65+0.02 | 11.740.2 0.45
U-58 10.59+0.20 | 1.37 0.664+0.01 | 11.840.1 0.53
Ho-84 | 11.69+0.04 | 1.79 1.15+0.01 | 12.4+0.1 0.33
Be-120 | 19.22+0.14 | 2.50 1.514+0.01 | 16.36£0.04 | 0.39
C-120 | 16.92+0.09 | 2.68 1.50+0.01 | 16.36+£0.05 | 0.34
Bi-120 | 21.76+0.19 | 2.21 1.534+0.01 | 15.854+0.04 | 0.46
Table 31: Summary of Monte Carlo neutron fake rate studies. “Non matches” rep-

resents the fraction of tracks when reconstructed one is off (at least 5 GeV/c for 20
GeV/c beam momentum) from a true value. < Ny, > and < P, > are data based
the mean value of charged track multiplicities and the mean value of track momentum
pointing to front wall of RICH within +40 cm rectangular with center at the beam
line. < F,+K,+y) > is MC predicted fraction of the neutrals in the neutron fake
rate.

18.4 Backgrounds due to of the neutrals

Figure 130 illustrates the fractions of the neutrals to respect of the total background
based on the GEANT simulated depositions into HCAL. Calculations made for p+p
interactions at 20, 58 and 84 GeV/c.
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Figure 130: The fractions of the neutrals to respect of the total background based on
the GEANT simulated depositions into HCAL. Calculations made for p+p interac-
tions at 20 (left), 58 (middle) and at 84 GeV/c.

Figure 131 illustrates the fractions of the neutrals to respect of the total back-
ground based on the GEANT simulated depositions into HCAL. Calculations made
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for p+Be and p+C interactions at 58 GeV/c.
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Figure 131: The fractions of the neutrals to respect of the total background based
on the GEANT simulated depositions into HCAL. Calculations made for p+Be (left)
and p+C (right) interactions at 58 GeV/c.

Figure 132 illustrates the fractions of the neutrals to respect of the total back-
ground based on the GEANT simulated depositions into HCAL. Calculations made
for p+Bi and p+U interactions at 58 GeV /c.
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Figure 132: The fractions of the neutrals to respect of the total background based
on the GEANT simulated depositions into HCAL. Calculations made for p+Bi (left)
and p+U (right) interactions at 58 GeV/c.

Figure 133 illustrates the fractions of the neutrals to respect of the total back-
ground which calculated through the GEANT simulated depositions into HCAL. Cal-
culations made for proton interactions with thin target at 120 GeV/c beam momen-
tum.

The predicted fractions of the neutrals at the total background calculated using the
GEANT simulated depositions into HCAL in Monte Carlo events where the neutrons
were NOT generated are summarized in Table 32.
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Figure 133: The fractions of the neutrals to respect of the total background which
calculated through the GEANT simulated depositions into HCAL. Calculations made
for the MC samples at 120 GeV/c beam momentum for targets: Be (on left), C (on
middle) and Bi (on right).

Pbeam F(ns) | F(K9) | F(y) | F(neutrals-total)
H>-20 GeV/c | 0.22 | 0.02 0.01 | 0.25
Hy-58 GeV/c | 0.23 | 0.05 0.05 | 0.33
Be-58 GeV/c | 0.31 | 0.04 0.03 |0.38
C-58 GeV/c 0.22 ] 0.04 0.05 | 0.31
Bi-58 GeV/c | 0.40 | 0.02 0.03 | 0.45
U-58 GeV/c 0.46 | 0.04 0.03 | 0.53
Hy-84 GeV/c | 0.23 |0.05 0.05 | 0.33
Be-120 GeV/c | 0.29 | 0.06 0.04 | 0.39
C-120 GeV/c | 0.23 | 0.06 0.05 | 0.34
Bi-120 GeV/c | 0.38 | 0.05 0.03 | 0.46

Table 32: The predicted fractions of the neutrals at the total background which is
the GEANT simulated depositions into HCAL. The fractions estimated using Monte
Carlo events where the neutrons were NOT generated. F(ns) - secondary neutrons,

F(K9) - contribution from K¢ and F(v) - remained gamma’s energy after passing
EMCAL.
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19 Final Neutron Sample Sizes and Spectra

Corrections applied to the neutron sample sizes are summarized in Table 33.

N, (data) -Backgr X7 ”1,2.9) X E(h—lcal) G(Tlsen Final
Hy-20 | 886448 0007880 | ©w2160 | 18607 | 7023649 | 2364941292
Hy-58 | 8057821154 | _00s74121 | 571109633 | 752219883 | 557 254575 | 25457543646
Be-58 | 41644247 0083856 | 725025 | 91510344 | oe111475 | 114754681
C-58 | 325894773 | 00730427 | 55137418 | om83785 | 5092874 | 9287442204
Bi-58 | 178614405 | _01016099 | 055519542 | 05561120 | 05266279 | 66279+1503
U-58 | 308644421 | _01127640 | 051533114 | 055104385 | 592113005 | 113005+£1541
Hy-84 | 16109741517 | _12143496 | 575201994 | 565278596 | 59314452 | 31445242962
Be-120 | 610474199 | 1049436 | 5557567 | 05171233 | 5079377 | 793774258
C-120 | 35568+£165 | _01729575 | 090533621 | 05841991 | 59046493 | 464934216
Bi-120 | 398254146 | 0231254 | 5536463 | 77153492 | 55258341 | 583414214

Table 33: Summary of corrections to

statistical

the neutron sample size.

Uncertainties are

Figure 134 shows the detected and finalized neutron spectra for p+p interactions

at 20, 58 and 84 GeV/c.
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Figure 134: The detected and finalized neutron spectra for p+p interactions at 20
GeV/c (left), 58 GeV/c (middle) 84 GeV/c (right), respectively. The final spectrum
include the background subtraction and corrections for trigger efficiency, HCAL ac-
ceptance and neutron selection efficiency.

Figure 135 shows the detected and finalized neutron spectra for p+Be and p+C

interactions at 58 GeV/c.

Figure 136 shows the detected and finalized neutron spectra for p+Bi and p+U

interactions at 58 GeV/c.

Figure 137 shows the detected and finalized neutron spectra for p+Be, p+C and
p+Bi interactions at 120 GeV /c.
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Figure 135: The detected and finalized neutron spectra for p+Be (left) and p+C
(right) interactions at 58 GeV/c. The final spectrum include the background sub-
traction and corrections for trigger efficiency, HCAL acceptance and neutron selection
efficiency.
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Figure 136: The detected and finalized neutron spectra for p+Bi (left) and p+U
(right) interactions at 58 GeV/c. The final spectrum includes the background sub-
traction and corrections for trigger efficiency, HCAL acceptance and neutron selection
efficiency.
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Figure 137: The detected and finalized neutron spectra for p+Be (left), p+C (mid-
dle) and p+Bi (right) interactions at 120 GeV/c. The final spectrum include the
background subtraction and corrections for trigger efficiency, HCAL acceptance and
neutron selection efficiency.
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20 Systematic Uncertainty

The statistical, estimated and assigned systematic uncertainties for the incident pro-
tons are summarized in Table 34.

target Pream | Stat. | estim.sys. | assigned syst.
H, 20 0.054 | +£0.07 +0.10
H, 58 0.026 | +0.03 +0.10

Beryllium | 58 0.052 | £0.01 £0.10
Carbon 58 0.028 | £0.02 £0.10
Bismuth | 58 0.018 | £0.05 +0.10
Uranium | 58 0.015 | £0.06 £0.10
H, 84 0.009 | £0.09 +0.10
Beryllium | 120 | 0.009 | £0.08 £0.10
Carbon 120 | 0.012 | £0.07 £0.10
Bismuth | 120 | 0.009 | £0.08 £0.10

Table 34: The statistical, estimated and assigned systematic uncertainties for the in-
cident protons. The systematic uncertainties for the target-out sample size considered
separately.

The systematic uncertainty studies of the target-out subtraction procedure are
summarized in Table 35.

The systematic uncertainty studies of the trigger efficiency are calculated accord-
ing to formula:

Ny (pn > Ponin) = "zlizim—nn(izout) nnlbacker) 410 1() 5 ANyyig)

€trig X€pcal X€cuts

and summarized in Table 36.

The HCAL acceptance uncertainty was estimated by two approaches: a)using a
difference between FLUKA and LAQGSM predictions and b)by assigning the some
uncertainty.

The systematic uncertainty studies of the HCAL acceptance using the differences
between FLUKA and LAQGSM predictions are summarized in Table 37.

The systematic uncertainty studies of the HCAL acceptance uncertainty using the
second approach are summarized in Table 38.

Figure 138 shows the corrected neutron spectra from p+p interactions at 20, 58
and 84 GeV/c with HCAL systematic uncertainties superimposed.

Figure 139 shows the corrected neutron spectra from p+Be and p+C interactions
at 58 GeV/c with HCAL systematic uncertainties superimposed.

Figure 140 shows the corrected neutron spectra from p+Bi and p+U interactions
at 58 GeV/c with HCAL systematic uncertainties superimposed.

Figure 141 shows the corrected neutron spectra from p+Be, p+C and p+Bi in-
teractions at 120 GeV /c with HCAL systematic uncertainties superimposed.
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N, (nominal) | Fy_ou | AF_out | Ny, variations | Ae;ou
H,-20 | 23649 0.50 | £0.17 | 73553 40.050
H,-58 | 254575 1.16 | +£0.10 | 78752 +0.051
Be-58 | 11475 1.47 | £0.16 | 12 +0.112
C-58 | 92874 1.39 [ £0.13 | T +0.043
Bi-58 | 66279 1.14 | £0.10 | T3 +0.091
U-58 | 113005 1.09 | £0.10 | F5508 +0.098
H,-84 | 314452 111 | £0.10 | F355037 +0.045
Be-120 | 79377 1.09 [ £0.10 | 753553 40.068
C-120 | 46493 1.25 [ £0.10 | 383 +0.036
Bi-120 | 58341 1.04 | +0.10 | 553 +0.108

Table 35: The systematic uncertainty studies of the target-out subtraction proce-
dure. Second column represents the correction to the target-out sample size applied.
Third column represents an assigned uncertainty in correction factor. Forth column
represents corresponding variations on the number of neutrons. Last column - the

systematic uncertainty.

N, (nominal) | Aeyig(ass) | Ny (var) | Aegyig
Hy-20 | 23649 +0.10 Tooag | £0.053
H,-58 | 254575 +0.10 ey | £0.028
Be-58 | 11475 +0.10 s 1 40.017
C-58 | 92874 +0.10 o | £0.013
Bi-58 | 66279 +0.10 e | £0.014
U-58 | 113005 +0.10 Tiiee | £0.013
H,-84 | 314452 +0.10 Tasesty | £0.027
Be-120 | 79377 +0.07 e | £0.009
C-120 | 46493 +0.05 Her | £0.005
Bi-120 | 58341 +0.10 o | £0.014

Table 36: The systematic uncertainty studies of the trigger efficiency. The Aey,.;,(ass)
is an assigned uncertainty applied to the correction value. N,, represents the neutron

sample size variations. Last column - the final uncertainty.
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N, (FLUKA) | N,,(LAQGSM) | Aepen | chr
H,-20 | 23649 n/a n/a 10
H,-58 | 254575 241506 +0.051 | 4.14
Be-58 | 11475 12096 +0.054 | 3.95
C-58 | 92874 95362 +0.027 | 4.25
Bi-58 | 66279 61602 +0.076 | 5.61
U-58 113005 105435 £0.072 | 5.52
H,-84 | 314452 n/a n/a 2.5
Be-120 | 79377 86496 £0.090 | 2.02
C-120 | 46493 50599 +0.088 | 2.04
Bi-120 | 58341 62501 +0.071 | 2.30

Table 37: The systematic uncertainty studies of the HCAL acceptance using the
differences between FLUKA and LAQGSM predictions. Middle column - the system-
atic uncertainty. Last column - the correction factor for the lowest momentum bin

(FLUKA).

N, (nominal) | N,, variations | A€pcq
H,-20 | 23649 R +0.263
H,-58 | 254575 o i64s +0.149
Be-58 | 11475 Tt +0.153
C-58 | 92874 T +0.165
Bi-58 | 66279 REEH +0.203
U-58 | 113005 T aoons’ +0.204
Hy-84 | 314452 e85 +0.082
Be-120 | 79377 s +0.057
C-120 | 46493 et 40.060
Bi-120 | 58341 e +0.095

Table 38: The systematic uncertainty studies of the HCAL acceptance using the
second approach. Middle column represents the neutron samples due to £0.30*(corr-
uncorr) variations in the HCAL acceptance correction. Last column - the systematic
uncertainty.
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The systematic uncertainty studies of the neutron selection efficiency are summa-
rized in Table 39.

N, (nominal) | €g N,, variations | A€, s
H,-58 | 23649 0.801 | T35.%2 +0.064
H,-58 | 254575 0.866 | T35 5a +0.041
Be-58 | 11475 0.905 | T11%35 +0.030
C-58 | 92874 0.900 | Too05m +0.029
Bi-58 | 66279 0.917 | T87557 +0.023
U-58 | 113005 0.917 | F11233% +0.023
H,-58 | 314452 0.890 | F325200 +0.034
Be-120 | 79377 0.898 | T25533 +0.031
C-120 | 46493 0.903 | T15%55 +0.029
Bi-120 | 58341 0.916 | F2058 +0.025

Table 39: The systematic uncertainty studies of the neutron selection efficiency. Sec-
ond column represents the neutron selection efficiency. Third column represents the
N,, numbers for £0.30% (corr —uncorr) variations in the correction value. Last column
- the systematic uncertainty.

The systematic uncertainty studies of the neutron backgrounds are summarized
in Table 40.

N, (nominal) | Fake, | N,, variations | A€puckgr
H,-20 | 23649 0.007 | F3370% +0.002
H,-58 | 254575 0.082 | T25373% +0.031
Be-58 | 11475 0.078 | 1150 +0.027
C-58 | 92874 0.066 | Toosay +0.024
Bi-58 | 66279 0.101 | T551%% +0.032
U-58 | 113005 0.106 | Figoma +0.034
Hy-84 | 314452 0.117 | £3559% +0.036
Be-120 | 79377 0.192 | F33020 +0.071
C-120 | 46493 0.169 | Ti35m +0.063
Bi-120 | 58341 0.218 | F83022 +0.081

Table 40: The systematic uncertainty studies of the neutron backgrounds. Middle
column represents the N,, numbers for +0.30 variations in the neutron fake rate. Last
column - the systematic uncertainty.

The total systematic uncertainty shown in Table 41.

Figure 142 shows the neutron spectra from p+p interactions at 20, 58 and 84
GeV /c with the total systematic uncertainties superimposed.

Figure 143 shows the neutron spectra for p+Be and p+C interactions at 58 GeV /c
with the total systematic uncertainties superimposed.
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Inc T-out. | Trig. Accept | Cuts Backgr | Total
Hy-20 | £0.10 | £0.050 | £0.053 | +0.263 | £0.064 | £0.002 | +0.298
Hy-58 | £0.10 | £0.051 | £0.028 | +0.149 | £0.041 | £0.031 | +0.196
Be-58 | #£0.10 | £0.112 | £0.017 | £0.153 | £0.030 | £0.027 | £0.219
C-58 +0.10 | £0.043 | £0.013 | £0.165 | £0.029 | +0.024 | £0.202
Bi-58 | £0.10 | £0.091 | £0.014 | £0.203 | £0.023 | £0.032 | £0.247
U-58 +0.10 | £0.098 | £0.013 | £0.204 | £0.023 | £0.034 | +£0.251
Hy-84 | £0.10 | £0.045 | £0.027 | +0.082 | £0.034 | £0.037 | +0.148
Be-120 | #£0.10 | #0.068 | £0.009 | £0.057 | #0.031 | £0.071 | £0.155
C-120 | +£0.10 | £0.036 | £0.005 | £0.060 | +0.029 | £0.063 | £0.140
Bi-120 | #0.10 | £0.108 | £0.014 | £0.095 | £0.025 | £0.081 | £0.195
Table 41: The total and partial systematic uncertainties.
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Figure 144 shows the final neutron spectra for p+Bi and p+U interactions at 58
GeV/c with the total systematic uncertainties superimposed.
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Figure 144: The neutron spectra for p+Bi (left) and p+U (right) interactions at 58
GeV/c with the total systematic uncertainties superimposed.

Figure 145 shows the neutron spectra for p+Be, p+C and p+Bi interactions at
120 GeV/c with the total systematic uncertainties superimposed.
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Figure 145: The final neutron spectra for p+Be (left), p+C (middle) and p+Bi (right)
interactions at 120 GeV/c with the total systematic uncertainties superimposed.
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21 Cross Section Results

We calculate the inclusive neutron production cross sections for following cases:

e spectra were corrected for the neutrons missed due to calorimeter’s geometrical
acceptance

e spectra NOT corrected for the geometrical acceptance
e invariant cross section with the calorimeter’s solid angle included

Before to discuss the neutron cross section we like to do some cross check. For
example, estimate the inelastic cross section using our neutron sample and compare
it with PDG.

21.1 Inelastic cross section estimate (cross check)

Our neutron sample represents a subsample of the inelastic processes, or g;,¢. If we
count events prior the neutron selection, then it would be the inelastic sample. We
calculate 0,0 as:

Oine = Sl o Shestar 5 3%, b/ (GeV /o)

where Nj,.; are events passed Z.:,, Apr and SciHi reqirements for both: target-in
and target-out. Nygergr is remained elastic and straight through backgrounds, which
survived Apyp cut. Npegrm is number of incident protons, €., is the trigger efficiency, .
Quantity n, is number of target particles per cm?, details are on Table 1. The factor
10* is to bring the cross section in mbarns units.

We present results for both a)default events selection requirements and b)with an
additional cut to reduce the straight throughs

21.1.1 Default event selection
Default event selection requirements:
e the interaction position should be around of the target
e the straight throughs are rejected by Apr >0.15 GeV/c cut

e SciHi trigger is on

Resulting input numbers and the oy, for p+p interactions at 58 GeV /c are shown
in Table 42.

Figure 146 shows the Z,;, and charged track multiplicities for p+p interactions at
58 GeV/c.

Comparison of our N, result with PDG using p+p interactions at 58 GeV/c are
shown in Table 43
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Apr >0.15 GeV/c | Apr >0.25 GeV/c
Nieam 2.6206e+4-07 2.6206e+-07
Niner(t — in) 562704 507120
Ninet(t — out) 37920*5.196 34584*5.196
Etrig 0.6040.03 0.65+0.03
Oinel, OUT 39.4 mb 32.6 mb
Oinel, PDG 31.0 mb 31.0 mb
Oinel, DPMJET | 30.6 mb 30.6 mb

Table 42: The input numbers and the oy, for p+p interactions at 58 GeV/c. Factor
5.196 in Ny, (t — out) line is to bring target-out sample size to same value as target-
in. Apr >0.15 GeV/c cut is default value for the neutron analysis. n,=5.922 for the

liquid hydrogen.
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Figure 146: The Z,, (left) and charge track multiplicities (middle and right) for p+p
interactions at 58 GeV /c. Multiplicities were normalized per single incident proton for
events passed Z.,., Apr and SciHi requirements (in black) and beam trigger events
passed Z.,;, and App cuts only (in red, not in scale). Target-out subtraction were
applied. nTrks=1 in red plots illustrate the presence of the straight throughs. In
black nTrks=1,2 are reduced by SciHi.

Our | PDG
Ncha ApT >0.15 GGV/C 5.4 6.0
Ncha ApT >0.25 GGV/C 5.8 6.0

Table 43: Comparison of our N, with PDG. Our results are based on the unbias
trigger data (without SciHi requirements).
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Apr >0.15 GeV/c | Apr >0.25 GeV/c
Nbeam 3.1373e+07 3.1373e+4-07
Noet(t —in) | 771367 703365
Niner(t — out) 79653*3.278 73626%3.278
€trig 0.66£0.02 0.71£0.03
Oinel, OUT 41.7 mb 35.0 mb
Tinet; PDG 31.0 mb 31.0 mb
Tinet; DPMJET | 30.9 mb 30.9 mb

Table 44: The input numbers and the oy, for p+p interactions at 84 GeV/ec.
Apr >0.15 GeV/c is default value for the neutron analysis.

The input numbers and the 0, for p+p interactions at 84 GeV/c are shown in
Table 44.

Figure 147 shows the Z,;, and charged track multiplicities for p+p interactions at
84 GeV/c
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Figure 147: The Z,, (left) and charge track multiplicities (middle and right) for p+p
interactions at 84 GeV /c. Multiplicities were normalized per single incident proton for
events passed Z.,., Apr and SciHi requirements (in black) and beam trigger events
passed Z,, and Apr cuts only (in red, not in scale). Target-out subtraction were
applied. nTrks=1 in red plots illustrate the presence of the straight throughs. In
black nTrks=1,2 are reduced by SciHi. N, PDG is 7.0

By viewing above results someone might come-up with an idea why we not using
more tight Apr cut? Another possible question: If an input sample size for the
neutron analysis is about 30% higher than what supposed to be, then what is possible
impact to the neutron cross section? Short answer would be: In neutron selection
we have an additional cut to reduce the straight throughs: Event rejected if there
charged track with psx >0.7*Pyeam. Figure 148 shed some lights on this.

Results for the neutron cross section with more tight Apy cut shown on Table 45

From o, studies we might conclude:

® 0, with the default cuts appear to be about 30% higher than PDG value
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Figure 148: Charged track multiplicities for neutron candidates from p+p interactions
at 58 GeV /c. Requirements: beam trigger, SciHi not required, target-out subtracted.

Apr >0.15 GeV/c | Apr >0.25 GeV/c | variation
20 GeV/c | 2.240.3 mb 1.940.3 mb 0.14£0.14
58 GeV/c | 8.241.0 mb 7.240.9 mb 0.12+0.12
84 GeV/c | 12.34+1.5 mb 11.0£1.4 mb 0.114+0.12

Table 45:

Neutron cross section, [ Z—Z (discussed on following pages), calculated for

different Apy cuts from p+p—n+X. NOTE: for Apr >0.25 GeV/c results were used
the same the trigger efficiency, neutron selection efficiency and background level as

for Apr >0.15 GeV/c case. But it might be not correct.
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e tightening of Apr cut, which helps to reduce the background, lead to better
agreement with PDG (30% —10%).

e tightening of Apr cut for the neutron analysis reduces the neutron cross section
value in level of one uncertainty. This variation can be overestimated.

21.1.2 An additional cut to reject the straight throughs

For this study we implemented the additional cut to reject remained straight throughs:
reject event if charged track has pyr >0.7*Ppean. This cut is in use to select neutrons.
Results with the additional cut for p+p interactions are presented in Table 46

beam momentum | 20 GeV/c | 58 GeV/c 84 GeV/c
Noeam 2.2155e4-06 | 2.6206e+07 | 3.1373e+07
Nine(t —in) 24492 496464 697154
Ninei(t — out) 1929*3.98 | 32856%4.364 | 70581*3.347
Etrig 0.65+0.03 | 0.78+£0.03 | 0.73£0.02
Oinel, OUT 19.6 mb 29.2 mb 33.7 mb
Oinel, PDG 30.5 mb 31.0 mb 31.4 mb
Oinets DPMJET | 30.5 mb 30.6 mb 30.9 mb

Table 46: Inelastic cross sections for pp interactions at 20, 58 and 84 GeV/c. Our
result for the momentum of 20 GeV/c is 30% below of expectation. Partially it can
be explained by presence of 25% of pions in beam, where the ¢, (7" p)=20 mb

Figure 149 shows the comparison of the g;,, as a function of the charged track
multiplicity for data and MC using p+p interactions at 20, 58 and 84 GeV/c.
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Figure 149: Comparison of the 0, as a function of the charged track multiplicity
for data and MC using p+p interactions at 20, 58 and 84 GeV/c

Below we present the inelastic cross section results for heavier targets. The input
numbers and the 0, for pC and pBi interactions at 58 and 120 GeV /c proton beams
are shown in Table 47.

Figure 150 shows the pC and pPb oy, world data presented as a function of the
proton momentum.
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p+C p+C p+Bi p+Bi
Pream 58 GeV/c 120 GeV/c | 58 GeV/c 120 GeV/c
Npeam 8.7518e+06 | 5.5421e+06 | 2.1832e+07 | 2.8955e+07
Niper(t —in) 199944 101513 261096 282351
Ninet(t — out) | 46797*0.545 | 26592*0.665 | 58942*1.239 | 35096*2.579
Etrig 0.82+0.07 0.85+0.02 0.84+0.04 0.7840.02
ng 0.8408 0.8408 0.0487 0.0487
Oinel, OUT 289 mb 212 mb 2108 mb 1736 mb
Oinet, FLUKA | 286 mb 287 mb 1875 mb 1880 mb
Oinet, LAQGSM | 265 mb 266 mb 1674 mb 1676 mb

Table 47: Inelastic cross sections for pC and pBi interactions at 58 and 120 GeV/c.
Note: p+Bi data calculated w/o nTrack<30 and pgum < 1.1 % Pyegr, cuts.

\ p-C inelastic cross-section

o
=]
=)

[_p-Pb inelastic cross-section |

g B200F
£ - —— Geisha inelastic £ f=: — Barashenkov o,
§as0— ] s | ‘2000 —— Geisha inelastic
2 3 § ¢
a iL — G-G inelastic aeoo : G4 HPW-Axen
$ 400 ‘ 3 —4— ihep-exp db data 2 [ —— G-Ginelastic
] ¥ | | —d— dubna-exp db data %300 = —4— dubna-exp db data
S 350 G4 HPW-Axen § 400 E —$— ihep-exp db data
2 ﬁ 22007 |
3000 \ i I 4
. 2000
A\ . g | Ay i
Y1 — ' : - e 1800" / - - JA
1] oot 12 ® ?‘3’ g 1600 £ .
2005k fedtant S/ !
g i I & E ] T
| Ip 1400 ?”
150 1200F ;}.
107 107 1 10 2 10° 10?2 107 1 10 102 10° o
l]Prah:n energy (Ge\})

Figure 150: pC and pPb inelastic cross section world data presented as a function of

the proton momentum.
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Figure 151: Absorption rate as a function of the run number for 120 GeV beam
momentum. Blue: the trigger efficiency and target-out subtraction were NOT applied.
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Red: interactions with the trigger scintillator.
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Figure 151 shows the pC and pBi absorption rates as a function of the run number.
Figure 152 shows the comparison of the g, as a function of the charged track
multiplicity for data and MC using p+p interactions at 20, 58 and 84 GeV/c.
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Figure 152: Comparison of the 0y, as a function of the charged track multiplicity
for data and MC using p+C and p+Bi interactions at 58 and 120 GeV/c
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21.2 Cross section with the calorimeter’s geometrical accep-
tance correction applied

The forward neutron production cross section calculated as:

= MR X X 107, mb/ (GeV ¢)

where, N,, is number of the neutron candidates passing the selection requirements,
where t-in and t-out are target-in and target-out respectively. N, (backgr) is the
background, Npeqn, is the number of incident protons, e, is the trigger efficiency,
€ncar 18 the calorimeter acceptance, €., is the neutron selection efficiency, Ap is
momentum bin width. Quantity n, is number of target particles per cm?, details are
on Table 1. The factor 10* is to bring the cross section in mbarns units.

The inclusive forward neutron production cross sections are summarized in Ta-

ble 48.

on(detect) | o,(corr) | stat. | tot.syst. | syst-2
Hy-20 | 0.7 18.0 +£1.0 | £54 £2.5
Hy-58 | 5.2 16.4 +0.2 | £3.2 +2.1
Be-58 | 39.8 109.6 +6.5 | £24.0 +17.1
C-58 44.3 126.2 +3.0 | £254 +14.6
Bi-58 | 213.7 792.9 +18.0 | £196.2 | £112.2
U-58 199.5 730.3 +£10.0 | £183.4 | £107.0
Hy-84 | 8.7 16.9 +£0.2 | £2.5 +2.1
Be-120 | 64.8 84.2 +0.3 | £13.0 +12.1
C-120 | 76.3 99.8 +0.5 | £14.0 +12.7
Bi-120 | 379.3 555.7 +2.0 | £108.4 | £94.7

Table 48: The inclusive forward neutron production cross section within the neutron
momentum range from p,,;, up to the beam momentum value using p+A collisions
at different momentum of the incident protons. The cross section units are in mbarn.
Last column represents the total systematics without HCAL acceptance uncertainty
included.

Figure 153 shows the forward neutron production cross section for p+p interac-
tions at 20, 58 and 84 GeV/c with the total systematic uncertainties superimposed.

Figure 154 shows the forward neutron production cross section for p+Be and p+C
interactions at 58 GeV/c with the total systematic uncertainties superimposed.

Figure 155 shows the forward neutron production cross section for p+Bi and p+U
interactions at 58 GeV/c with the total systematic uncertainties superimposed.

Figure 156 shows the forward neutron production cross section for p+Be, p+C and
p+Bi interactions at 120 GeV /c with the total systematic uncertainties superimposed.

Figure 157 shows the forward neutron production cross section as a function of
the target atomic weight.
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Figure 153: The forward neutron production cross section for p+p interactions at
20 (left), 58 (middle) and 84 GeV/c with the total systematic uncertainties superim-

posed.

4B p+p — N+..., 58 GeV/c T
o F = L
S 1.2 - corrected s o.8/%
8 4 - detected [0
<t colored - systematics O s
9 osf re}
E T S
o O5F =04
E a
oo E 02
[} k. .2
T o2f : F
] of | | [ et o ol
20 22 24 20 30 40 60 20 30

neutron momentum, GeV/c

L
40

do/dp [mb/(GeVic)]

p+Be — n+..., 58 GeV/c
« - corrected
4 - detected
colored - systematics

Figure 154: The forward neutron production cross section for p+Be (left) and p+C
(right) interactions at 58 GeV /c with the total systematic uncertainties superimposed.
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Figure 155: The forward neutron production cross section for p+Bi (left) and p+U
(right) interactions at 58 GeV /c with the total systematic uncertainties superimposed.

Table 49: The fit parameters of the production cross section as a function of the

| T ) | .
20 30 40 50 60
neutron momentum, GeV/c

o

1 I X iy Al
20 30 40 50 60
neutron momentum, GeV/c

58 GeV/c coefficient | power
Total syst 28.4 £ 8.4 | 0.606 4+ 0.075
w/o HCAL syst | 28.2 + 5.2 | 0.607 + 0.046

target atomic weight using incident protons at 58 GeV/c.
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Figure 156: The forward neutron production cross section for p+Be (left), p+C (mid-
dle) and p+Bi(right) interactions at 120 GeV /c with the total systematic uncertainties

superimposed.
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Figure 157: The forward neutron production cross section as a function of the target
atomic weight with the incident proton momentum of 58 GeV /c (left) and 120 GeV/c
(right), respectively. On left plot Hy data point is not included to the fit.
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The fit parameters for 58 GeV/c data are shown in Table 49.
The fit parameters for 120 GeV/c data are shown in Table 50.

120 GeV/c coefficient | power
Total syst 22.4 + 5.4 1 0.601 £ 0.074
w/o HCAL syst | 22.4 + 4.8 | 0.601 + 0.065

Table 50: The fit parameters of the production cross section as a function of the
target atomic weight using incident protons at 120 GeV/c.
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21.3 Cross section for case when the geometrical acceptance
correction was NOT applied

21.3.1 Results for data

The neutron production cross section for case without acceptance corrections was
calculated as:

don _ Nn(t—in)— Ny (t—out)— Ny (backgr) 1 4
dp - Nbea'mxetr'ingcutsXAp X ng X 10 ’ mb/(GeV/C)

Figure 158 shows the forward neutron production cross section for case without
geometrical acceptance corrections applied using p+p interactions at 20, 58 and 84

GeV/ec.
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Figure 158: The forward neutron production cross section for case without geometrical
acceptance corrections applied using p+p interactions at 20 (left), 58 (middle) and
84 GeV/c.

Figure 159 shows the forward neutron production cross section for case without
geometrical acceptance corrections applied using p+Be and p+C interactions at 58

GeV/ec.
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Figure 159: The forward neutron production cross section for case without geometrical
acceptance corrections applied using p+Be (left) and p+C (right) interactions at 58
GeV/ec.

Figure 160 shows the forward neutron production cross section for case without
geometrical acceptance corrections applied using p+Bi and p+U interactions at 58

GeV/ec.
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Figure 160: The forward neutron production cross section for case without geometrical
acceptance corrections applied using p+Bi (left) and p+U (right) interactions at 58
GeV/ec.

Figure 161 shows the forward neutron production cross section for case without

geometrical acceptance corrections applied using p+Be, p+C and p+Bi interactions
at 120 GeV/c.
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Figure 161: The forward neutron production cross section for case without geometrical
acceptance corrections applied using p+Be (left), p+C (middle) and p+Bi(right)
interactions at 120 GeV /c.

The inclusive forward neutron production cross sections for case without geomet-
rical acceptance corrections applied are summarized in Table 51.

21.3.2 Comparison with NA49 results
Figure 162 shows comparison of our results from p+p at 58 and 84 GeV /c with results
from p+p at 158 GeV/c, NA49 experiment.

21.3.3 Comparison with Monte Carlo

Below we will present comparison of the measured neutron cross section, where data
NOT corrected for the HCAL acceptance, with Monte Carlo neutron cross section.
Requirements for MC: neutrons within HCAL geometry and p,, > ppin. Figure 163
shows comparison of the forward neutron production cross section with Monte Carlo
results using p+p, p+C and p+Bi interactions at 58 GeV/c.
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on(detect) | o,(corr) | stat. | tot.syst.
Hy-20 | 0.7 2.2 £0.1 | £0.3
Hy-58 | 5.2 8.2 £0.1 | £1.0
Be-58 | 39.8 593.7 +3.2 | £84
C-58 44.3 56.8 +1.3 | £6.6
Bi-58 | 213.7 255.9 5.8 | £36.2
U-58 199.5 234.0 +3.2 | £34.3
Hy-84 | 8.7 12.3 £0.1 | £1.5
Be-120 | 64.8 68.1 +0.2 | £9.8
C-120 | 76.3 79.9 +0.4 | £10.1
Bi-120 | 379.3 379.7 +1.4 | £64.7

Table 51: The inclusive forward neutron production cross section calculated without
HCAL geometrical acceptance corrections applied.
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Figure 162: The comparison of our results from p+p at 58 (left) and at 84 GeV/c
(middle) with results from p+p at 158 GeV/c, NA49, (right).
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Figure 163: The comparison of forward neutron production cross section from data
with Monte Carlo cross section using p+p (left), p+C (middle) and p+Bi (right) inter-
actions at 58 GeV/c. Data were corrected for everything, except HCAL acceptance.
Requirements for MC: neutrons within HCAL geometry and p,, > pmin-
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Figure 164 shows comparison of the forward neutron production cross section with
Monte Carlo results using p+p at 84 GeV/c and p+C and p+Bi interactions at 120
GeV/e. .
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Figure 164: The comparison of forward neutron production cross section with Monte
Carlo results using p+p at 84 GeV/c (left), p+C (middle) and p+Bi (right) interac-
tions at 120 GeV/c. Data were corrected for everything, except HCAL acceptance.
Requirements for MC: neutrons within HCAL geometry and p,, > pmin.-

Comparison of the production cross sections for case without geometrical accep-
tance corrections applied with Monte Carlo cross section are presented in Table 52.

o, (data), mb | o, (PEHEIEL) mb | 0, (LAQGSM), mb
Hy-20 | 2.2+0.3 0.80
Hy-58 | 8.2£1.0 4.4 4.2
Be-58 | 53.7£9.0 16.5
C-58 56.81+6.6 29.0 27.7
Bi-58 | 255.91+36.2 123.7 70.7
U-58 234.0+34.3 142.7
Hy-84 | 12.3£1.5 6.0
Be-120 | 68.1£9.8 29.7
C-120 | 79.94+10.1 53.0 39.5
Bi-120 | 379.7£64.7 273.5 100.1

Table 52: Comparison of the neutron production cross sections for case without
geometrical acceptance corrections applied with Monte Carlo cross section.

Figure 165 shows comparison of the MC neutron production cross section as func-
tion of the target atomic weight for FLUKA and LAQGSM at 58 and 120 GeV/c
beam momenta. Requirements for Monte Carlo neutrons: within HCAL geometry
and Dn > Pmin-

21.3.4 Neutrals total cross section: data vs MC. More on K7 background

Figure 166 shows Monte Carlo neutrals multiplicities per single pp interactions at 20
GeV/c and comparison of K¢ with K* spectra vs xp variable.
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Figure 165: The data vs MC comparison of the neutron production cross section
as function of the target atomic weight at 58 (left) and 120 (right) GeV/c beam
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Figure 166: The neutrals multiplicities distributions per single inelastic pp interaction
at 20 GeV/c: left - without cuts, middle - neutrals required to be pointing to HCAL
volume and p>py,. Right - comparison of K¢ with K* spectra vs xp variable
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Neutrals average multiplicities per single pp interactions and total cross sections
at 20 GeV/c are summarized in Table 53.

<nyc > | < Ndata—W > | OMC Odata—W
m° | 1.719 1.55 52.4 mb | 45+4 mb
K? | 0.065 0.05 2.0mb | 1.3£7 mb
K9 | 0.066 n/a 2.0 mb | 1.3 mb(pred)
n | 0.663 n/a 20.2 mb | n/a

Table 53: Neutrals average multiplicities per single pp interactions and total cross
sections at 20 GeV/c. MC prod. cross section: 30.5 mb. < 7° > in data was
calculated as: < 7% > =-0.82 + 0.79*In(pyap) - J.Withmore Physics Reports 27, No.5
(1976) 187-273. oy =< npye > * 30.5 mb

Neutron and K¢ average multiplicities per single pp interactions and cross sections
at 20 GeV/c are summarized in Table 54.

<n>|omc Odata ([ fl—g)
n 0.0289 | 0.88 mb | 2.24+0.3 mb
K} 0.0005 | 0.015 mb | n/a
9/n | 0.017

Table 54: n and K¢ are within HCAL and p>p.;,. Background level is 0.007 per
neutron. It looks like that 0.01 of K¢ contribution is remained there.

Figure 167 shows Monte Carlo neutrals multiplicities per single pp interactions at
58 GeV/c and comparison of K¢ with K* spectra vs xp variable.
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Figure 167: The neutrals multiplicities distributions per single inelastic pp interaction
at 58 GeV/c: left - without cuts, middle - neutrals required to be pointing to HCAL
volume and p>pyin. Right - comparison of K¢ with K* spectra vs xp variable

Neutrals average multiplicities per single pp interactions and total cross sections
at 58 GeV/c are summarized in Table 55.

Neutron and K¢ average multiplicities per single pp interactions and cross sections
at 58 GeV/c are summarized in Table 56.
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<Nnyc > | < Ndata—Ww > | OMC Odata—W
m° | 2.587 2.39 79.2 mb | 8144 mb (69GeV)
K° | 0.146 0.13£0.03 | 4.5 mb | 4£1 mb (69GeV)
K¢ | 0.147 n/a 4.5 mb | 441 mb(pred)
n | 0.684 n/a 20.9 mb | n/a

Table 55: Neutrals average multiplicities per single pp interactions and total cross
sections at 58 GeV/c. MC prod. cross section: 30.6 mb. < 7° > in data was
calculated as: < 7 > = -0.82 + 0.79%In(pjwp). ope =< nayre > * 30.6 mb

<n>|ouc | dua(] F)
n 0.154 [ 4.7mb | 8.24+1.0 mb
K¢ 0.006 | 0.18 mb | n/a
K9 /u | 0.04

Table 56: n and K¢ are within HCAL and p>p;,;,. Estimated background level for
this data is 0.082 per single neutron candidate.

Figure 168 shows Monte Carlo neutrals multiplicities per single pp interactions at
84 GeV/c and comparison of K¢ with K* spectra vs xp variable.
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Figure 168: The neutrals multiplicities distributions per single inelastic pp interaction
at 84 GeV/c: left - without cuts, middle - neutrals required to be pointing to HCAL
volume and p>pyin. Right - comparison of K¢ with K+ spectra vs xp variable

Neutrals average multiplicities per single pp interactions and total cross sections
at 84 GeV/c are summarized in Table 57.

Neutron and K¢ average multiplicities per single pp interactions and cross sections
at 84 GeV/c are summarized in Table 58.

From above studies we observed:

e the neutron production cross section in our data, ( fl—;), systematically higher
than the prediction from DPMJET, by factor 2.

e K?2/K9 production cross section in DPMJET is slightly higher than the existing
inclusive K¢ production data, J.Whitmore Physics Reports 27, No.5 (1976) 187-
273.
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<nyc > | < Ndata—W > | OMC Odata—W
7 | 2.905 2.68 89.6 mb | 83+4 mb (PEEGeV)
K? [ 0.177 0.1440.02 |55 mb [ 4.34+1 mb (PHEGeV)
K9 10.179 n/a 5.5 mb | 4.34+1 mb(pred)
n | 0.696 n/a 21.5mb | n/a

Table 57: Neutrals average multiplicities per single pp interactions and total cross
sections at 84 GeV/c. MC prod. cross section: 30.9 mb. < 7° > in data was
calculated as: < 7 > = -0.82 + 0.79%In(pjwp). ope =< nayre > * 30.9 mb

<n>|omc Odata ([ Z—Z)
n 0.205 | 6.5mb | 12.3+£1.5 mb
K¢ 0.009 | 0.28 mb | n/a
K9 /n | 0.04

Table 58: n and K¢ are within HCAL and p>p,,;,. Estimated background level for
this data is 0.117 per single neutron candidate.

e our background estimates covers well the K¢ contribution. It is consistent for
20 GeV/c data within 1-2% level. For 58 and 84 GeV/c data predicted K¢
contributions are not greater than half of what we considering as the total
background.

One can conclude that K¢ contribution in our data is not underestimated.
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21.4 Invariant cross section with the calorimeter’s solid angle

included

The invariant inclusive neutron production cross section was calculated as:

nn (t—in)—nm, (t—out) —ny, (backgr) w Low 1047 mb/(GeV/C)2/SI'

ng

Y
q

S N
p2Q NbeamXEtrigXEcutsXAp

Qu

£
p2Q dp

where () is the calorimeter’s solid angle, presented in Table 28
Figure 169 shows the forward neutron production cross section for p+p interac-

tions at 20, 58 and 84 GeV/c with the total systematic uncertainties superimposed.
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Figure 169: The forward neutron production cross section for p+p interactions at
20 (left), 58 (middle) and 84 GeV/c with the total systematic uncertainties superim-

posed.

Figure 170 shows the forward neutron production cross section for p+Be and p+C
interactions at 58 GeV/c with the total systematic uncertainties superimposed.

180F
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Figure 170: The forward neutron production cross section for p+Be (left) and p+C
(right) interactions at 58 GeV /c with the total systematic uncertainties superimposed.

Figure 171 shows the forward neutron production cross section for p+Bi and p+U

interactions at 58 GeV/c with the total systematic uncertainties superimposed.
Figure 172 shows the forward neutron production cross section for p+Be, p4+C and

p+Bi interactions at 120 GeV /c with the total systematic uncertainties superimposed.
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Figure 171: The forward neutron production cross section for p+Bi (left) and p+U
(right) interactions at 58 GeV /c with the total systematic uncertainties superimposed.
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Figure 172: The forward neutron production cross section for p+Be (left), p+C (mid-
dle) and p+Bi(right) interactions at 120 GeV /c with the total systematic uncertainties

superimposed.
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21.5 Cross section as a function of the variable xp

21.5.1 Cross section when the geometrical acceptance correction was
NOT applied

The neutron production cross section (without acceptance corrections) as a function
of variable xp was calculated as:

do  __ [Nn(t—in)—Np(t—out)—Np (backgr)] X pmaa 1 4
dXFp - Nbeamxetrigxecutsxpn X ng X 10 ’mb

where p,, is neutron momentum, p,,.. is the beam momentum in lab system.
The initial cross section calculations made for the neutron momentum bin width,
Ap,, of 2, 3, 3 and 3 GeV/c for 20, 58, 84 and 120 GeV/c data, respectively. If
we want to use the same target-out, background and neutron selection efficiencies as
before, then the corresponding Xz bin widths would be 0.10, 0.0517, 0.0357 and 0.025,
respectively. For purpose to compare results from different momenta and targets, the
&—"F values were calculated for the single unified bin width: 0.05. NOTE: if someone
want to calculate the integral cross section from the plot, then the result would be
not consistent with what presented in Table 51.

Figure 173 shows the forward neutron production cross section vs variable xz using
p+p interactions at 20, 58 and 84 GeV/c. The geometrical acceptance corrections

NOT applied.
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Figure 173: The forward neutron production cross section vs variable xz using p+p
interactions at 20 (left), 58 (middle) and 84 GeV/c. The geometrical acceptance
corrections NOT applied.

Figure 174 shows the forward neutron production cross section vs variable xz using
p+Be and p+C interactions at 58 GeV/c. The geometrical acceptance corrections
NOT applied.

Figure 175 shows the forward neutron production cross section vs variable xr using
p+Bi and p+U interactions at 58 GeV/c. The geometrical acceptance corrections
NOT applied.

Figure 176 shows the forward neutron production cross section vs variable xp
using p+Be, p+C and p+Bi interactions at 120 GeV /c. The geometrical acceptance
corrections NOT applied.
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Figure 174: The forward neutron production cross section vs variable xz using p+Be
(left) and p+C (right) interactions at 58 GeV/c. The geometrical acceptance correc-
tions NOT applied.
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Figure 175: The forward neutron production cross section vs variable xp using p+Bi
(left) and p+U (right) interactions at 58 GeV/c. The geometrical acceptance correc-
tions NOT applied.
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Figure 176: The forward neutron production cross section vs variable xp using p+Be
(left), p+C (center) and p+Bi (right) interactions at 120 GeV/c. The geometrical
acceptance corrections NOT applied.
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21.5.2 Cross section corrected for the geometrical acceptance

The neutron production cross section with acceptance corrections applied as a func-
tion of variable xr was calculated as:

d _ [Nn(t—in)—Np (t—out)—Np (backgr)] X pmax 1 4
ﬁ - NbeamXEtrigXECutsXthalXpn X n_t X 10 ! mb
Figure 177 shows the forward neutron production cross section vs variable xz using
p+p interactions at 20, 58 and 84 GeV/c. The geometrical acceptance corrections
were applied.
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Figure 177: The forward neutron production cross section vs variable xz using p+p
interactions at 20 (left), 58 (middle) and 84 GeV/c. The geometrical acceptance
corrections were applied.

Figure 178 shows the forward neutron production cross section vs variable xz using
p+Be and p+C interactions at 58 GeV/c. The geometrical acceptance corrections
were applied.
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Figure 178: The forward neutron production cross section vs variable xp using p+Be
(left) and p+C (right) interactions at 58 GeV/c. The geometrical acceptance correc-
tions were applied.

Figure 179 shows the forward neutron production cross section vs variable xz using
p+Bi and p+U interactions at 58 GeV/c. The geometrical acceptance corrections
were applied.

Figure 180 shows the forward neutron production cross section vs variable xp
using p+Be, p+C and p+Bi interactions at 120 GeV/c. The geometrical acceptance
corrections were applied.
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Figure 179: The forward neutron production cross section vs variable xz using p+Bi
(left) and p+U (right) interactions at 58 GeV/c. The geometrical acceptance correc-
tions were applied.
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Figure 180: The forward neutron production cross section vs variable xz using p+Be
(left), p+C (center) and p+Bi (right) interactions at 120 GeV/c. The geometrical
acceptance corrections were applied.
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21.5.3 Invariant cross section

The invariant inclusive neutron production cross section as the function of variable
xr was calculated as:

E do
p2Qdrp

_E
p2Q

X

[Ny (t—in)— Ny, (t—out)— Ny, (backgr)] X pmax

Npeam X€trig X€cuts XPn

X o % 10, mb/(GeV /c) /st

Figure 181 shows the forward neutron production cross section for p+p interac-
tions at 20, 58 and 84 GeV/c as the function of variable xp.

p+p — n+X, 20 GeV/c
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Figure 181: The neutron invariant cross section for p+p

p+p — n+X, 84 GeV/c

(middle) and 84 GeV/c as the function of variable xp.

interactions at 20 (left), 58

Figure 182 shows the forward neutron production cross section for p+Be and p+C
interactions at 58 GeV/c as the function of variable xp.
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Figure 182: The neutron invariant cross section for p+Be (left) and p+C (right)
interactions at 58 GeV/c as the function of variable xp.

Figure 183 shows the forward neutron production cross section for p+Bi and p+U
interactions at 58 GeV/c as the function of variable xp.

Figure 184 shows the forward neutron production cross section for p+Be, p+C
and p+Bi interactions at 120 GeV/c as the function of variable xp.
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Figure 183: The neutron invariant cross section for p+Bi (left) and p+U (right)
interactions at 58 GeV/c as the function of variable xp.
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Figure 184: The neutron invariant cross section for p+Be (left), p+C (middle) and
p+Bi(right) interactions at 120 GeV /c as the function of variable xp.
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22 Neutron Angular Distribution

22.1 Measurements with data

The neutron angular measurements using data is based on the unmatched shower
position at EMCAL. All events passed the neutron selection requirements.

The angular distributions of the neutrons from the Be and C targets at 58 GeV /c
are shown in Figure 185.
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Figure 185: The neutron angular distributions from the Be and C targets at 58
GeV/c. The neutron angular measurements using data is based on the unmatched
shower position at EMCAL. All events passed the neutron selection requirements.

The angular distributions of the neutrons from the Bi and U targets at 58 GeV/c
are shown in Figure 186.
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Figure 186: The neutron angular distributions from the Bi and U targets at 58
GeV/c. The neutron angular measurements using data is based on the unmatched
shower position at EMCAL. All events passed the neutron selection requirements.

The angular distributions for the liquid hydrogen, 58 and 84 GeV/c momenta (on
left), and thin targets at 120 GeV/c (on right) are shown in Figure 187.
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Figure 187: The neutron angular distributions for the liquid hydrogen target at 58
and 84 GeV/c (on left) and Be, C and Bi targets at 120 GeV/c (on right). The
neutron angular measurements using data is based on the unmatched shower position
at EMCAL. All events passed the neutron selection requirements. All distributions
are brought to the same area size.

22.2 Neutron angle: data vs Monte Carlo

Below we will compare the neutron angular distributions from data with Monte Carlo.
The angular distributions of the neutrons from Be, C and Bi targets at 120 GeV/c
proton beam momentum are shown in Figure 188.
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Figure 188: The neutron angular distributions for data and MC superimposed: from
p+Be (left), p+C (middle) and p+Bi (right) interactions, respectively. The proton
beam momentum is 120 GeV/c.

The neutron angular distributions, true vs reco MC comparison, from p+C and
p+Bi interactions at 120 GeV/c are shown in Figure 189.

Unmatched shower position distributions in X-view from p+C and p+Bi interac-
tions at 120 GeV/c are shown in Figure 190.

Unmatched shower position distributions in Y-view from p+C and p+Bi interac-
tions at 120 GeV/c are shown in Figure 191.

Unmatched shower width distributions in X-view from p+C and p+Bi interactions
at 120 GeV/c are shown in Figure 192.

Unmatched shower width distributions in Y-view from p+C and p+Bi interactions
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Figure 189: The neutron angular distributions, true vs reco MC comparison, from
p+C and p+Bi interactions at 120 GeV/c. Fraction of neutrons that have a shower
matched with projection = 23%.
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Figure 190: Unmatched shower position distributions in X-view from p+C and p+Bi
interactions at 120 GeV/c
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Figure 191: Unmatched shower position distributions in Y-view from p+C and p+Bi
interactions at 120 GeV/c
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Figure 192: Unmatched shower width distributions in X-view from p+C and p+Bi
interactions at 120 GeV/c

at 120 GeV/c are shown in Figure 193.
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Figure 193: Unmatched shower width distributions in Y-view from p+C and p+Bi
interactions at 120 GeV/c

Unmatched shower energy fractions, EMCAL/HCAL ratio, distributions from
p+C and p+Bi interactions at 120 GeV/c are shown in Figure 194.

Unmatched shower energy fractions, EMCAL/HCAL ratio, distributions from
p+C and p+Bi interactions at 120 GeV/c are shown in Figure 195.

Unmatched shower longitudinal profile in EMCal from p+C and p+Bi interactions
at 120 GeV/c are shown in Figure 196.

23 Conclusion

We have performed...
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Figure 194: Unmatched shower energy fractions, EMCAL/HCAL ratio, distributions
from p+C and p+Bi interactions at 120 GeV/c
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Figure 195: Unmatched shower energy fractions, EMCAL/HCAL ratio, distributions
from p+C and p+Bi interactions at 120 GeV/c
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Figure 196: Unmatched shower longitudinal profile in EMCal from p+C and p+Bi
interactions at 120 GeV/c
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Appendix

A Transverse position cut for the liquid hydrogen
data

Figure 197 shows the longitudinal vertex position distributions for the interactions
with the empty cryo target using 7, K and p beam and interaction triggers.
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Figure 197: The longitudinal vertex position distributions for the interactions with
the empty cryo target using 7, K and p beam and interaction triggers

Figure 198 shows the transverse vertex position distributions for the interactions
with the empty cryo target using 7, K and p beam and interaction triggers.
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Figure 198: The transverse vertex position distributions for the interactions with the
empty cryo target using 7, K and p beam and interaction triggers. Plots made with
different AZ,;, cuts: -8< AZ,;, <3 cm for the left plot which reflects the transverse
slice of the hydrogen flask and -80< AZ,;, <-60 cm for the right plot which represents
the transverse slice at region of where a most upstream location of the transport pipes
is appears to be close to the beam line.

Left plot on Figure 198 allow to see the interactions with the supporting alu-
minum(?) ring which holds the target flask. An ellipse (red circle) illustrates the
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area which can be account as a liquid hydrogen volume. Right plot indicates that the
liquid hydrogen transport pipes some how entering to the liquid hydrogen volume, see
an overlapped area by both ellipses. The beam track transverse position cut would
be: use those data points which is within the red ellipse and NOT within blue one.

The beam transverse positions at Z=Z;, shown in Figure 199 for 58 GeV /c liquid
hydrogen and empty cryo target data. The red lines show what was selected as
hydrogen flask center in horizontal and vertical plane, respectively. Their were defined
from the empty cryo studies.
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Figure 199: The beam track position distributions at Z of liquid hydrogen target
center using 58 GeV /c particles. The red lines on left and in middle plots illustrate
the horizontal and vertical centers of hydrogen flask. The right plot shows the distance
between target center and the position of the particle distribution. The red line there
shows the ellipse radius cut position.
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B Calorimeter’s Energy Scale in data

B.1 Projected neutron energy losses in EMCAL

The projected neutron energy losses in EMCAL was estimated with an assumption
that it is the same as proton losses. Figure 200 shows the proton energy losses in
calorimeters and momentum distribution of 20 GeV/c beam tracks.
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Figure 200: The proton energy losses in calorimeters and momentum distribution of
20 GeV/c beam tracks. Requirements: proton beam trigger, single track, LH2 target.
The track momentum plot (left) shows the pion (red) and kaon (blue) contamination
in proton beam which was identified by RICH detector.

Figure 201 shows the proton energy losses in calorimeters and momentum distri-
bution of 58 GeV/c beam tracks.
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Figure 201: The proton energy losses in calorimeters and momentum distribution of
58 GeV/c beam tracks. Requirements: proton beam trigger, single track, U target

Figure 202 shows the proton energy losses in calorimeters and momentum distri-
bution of 84 GeV/c beam tracks.

Figure 203 shows the proton energy losses in calorimeters and momentum distri-
bution of 120 GeV/c beam tracks.

Figure 204 shows the proton energy mean losses in EMCAL as the function of the
proton momentum.
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Figure 202: The proton energy losses in calorimeters and momentum distribution of
84 GeV/c beam tracks. Requirements: proton beam trigger, single track, LH2 target

Pyoam: 120 GeV/ic

Mean: 5.932 + 0.050

|
100

20 45 Gb 8b
EMCAL energy, GeV

120 140

2500;
2000?
1500;
10002—

5001~

[ Pyeam: 120 GeV/ic

%

2‘0 45 60 8b 160
HCAL energy, GeV

120 140

4500
4000
3500
3000
2500
2000
1500
1000

50

S

Pyoam: 120 GeV/ic

S

B }
20 40 60 80

100
track momentum, GeV/c

Figure 203: The proton energy losses in calorimeters and momentum distribution of
120 GeV/c beam tracks. Requirements: proton beam trigger, single track, Bi target
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Figure 204: The proton energy mean losses in EMCAL as the function of the pro-

ton momentum. Red curve is fit with 2-nd order polynomial.

Fit parameters: a

free parameter is 1.6040.08, linear term is 0.0554+0.003 and quadratic term is -
0.00015+0.00002.
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B.2 How well the Calorimeter’s energy scale?

How well the neutron/calorimeters energy scale was tuned can be viewed through
the E..p/pyr ratio. If tuning was done correctly, then this ratio would be equal to
1. Figure 205 shows the FE.,,/pu ratio distributions for 20 and 58 GeV/c proton
beams.
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Figure 205: The E.yj/p ratio distributions for 20 and 58 GeV/c proton beams.
The captions in plots indicates that the mean values of the E..j/pyk are equal to 1
within given uncertainties.

Figure 206 shows the F..j/py ratio distributions for 84 and 120 GeV/c proton
beams.
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Figure 206: The FE../pyr ratio distributions for 84 and 120 GeV/c proton beams.
The captions in plots indicates that the mean values of the E.,j/pr are equal to 1
within given uncertainties.

B.3 Pion contamination in proton beam triggers

The track momentum plot on 20 GeV /c data shows about 25% of pion contamination
in proton beam which was identified by RICH detector, see Figure 200. What the
beam Cerenkov detectors tells about the pions?

133



C Calorimeter’s energy scale in MC

C.1 Updated EMCal gas material

Figure 207 shows the EMCal and HCAL responses and E./E, ratio distribution for
the beam momentum protons both data and MC using pC interactions at 58 GeV /c.
EMCal gas material in MC has been updated.
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Figure 207: The EMCal and HCAL responses and E./E, ratio distribution for the
beam momentum protons both data and MC using pC interactions at 58 GeV/c.
EMCal gas material in MC has been updated.

Figure 208 shows the EMCal and HCAL responses and E,.,,/E, ratio distribution
for the beam momentum protons both data and MC using pC interactions at 120
GeV/c. EMCal gas material in MC has been updated.
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Figure 208: The EMCal and HCAL responses and E./E, ratio distribution for the
beam momentum protons both data and MC using pC interactions at 120 GeV/c.
EMCal gas material in MC has been updated.

C.2 With previous EMCal gas material assignment

Figure 209 shows the EMCal and HCAL responses and E./E, ratio distribution for
the beam momentum protons both data and MC using pC interactions at 58 GeV/c.
Previous EMCal gas material assignment.
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Figure 209: The EMCal and HCAL responses and E..;/E, ratio distribution for the
beam momentum protons both data and MC using pC interactions at 58 GeV/c.
Previous EMCal gas material assignment.

Figure 210 shows the EMCal and HCAL responses and E,.,/E, ratio distribution
for the beam momentum protons both data and MC using pC interactions at 120
GeV/c. Previous EMCal gas material assignment
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Figure 210: The EMCal and HCAL responses and E..;/E, ratio distribution for the
beam momentum protons both data and MC using pC interactions at 120 GeV/c.
Previous EMCal gas material assignment

Table 59 summarizes the calorimeter’s energy scale for previous and updated ver-
sions of Monte Carlo.

previous MC | updated MC
C-58 GeV/c | +0.025 +0.025
C-120 GeV/c | -0.018 -0.017

Table 59: Summary of the calorimeter’s energy scale offsets for previous and updated
versions of Monte Carlo.

Figure 211 shows the E..;/E, ratio distributions with MC HCAL energy scale
corrected. Updated EMCal gas material assignment.
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Figure 211: E..;/E, ratio distributions with MC HCAL energy scale corrected. Up-

dated EMCal gas material assignment.

C.3 Neutron fake rate variation due to EMCal gas update

Figure 212 shows the neutron fake rates as a function of the neutron momentum for
pC interactions at 58 and 120 GeV /c. EMCal gas material has been updated.
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Figure 212: The neutron fake rates as a function of the neutron momentum for pC
interactions at 58 (left) and 120 (right) GeV/c. EMCal gas material has been updated

Figure 213 shows the neutron fake rates as a function of the neutron momentum
for pBi interactions at 58 and 120 GeV/c. EMCal gas material has been updated.

Table 60 summarizes the neutron fake rate variation from the previous to updated
EMCal gas assognements in MC.
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Figure 213: The neutron fake rates as a function of the neutron momentum for
pBi interactions at 58 (left) and 120 (right) GeV/c. EMCal gas material has been

updated.

Table 60: Summary of the neutron fake rate variations from the previous to updated

previous MC | updated MC
C-58 GeV/c | 6.65+0.07 7.4940.15
Bi-58 GeV/c | 10.08+0.18 | 8.1740.36
C-120 GeV/c | 16.914£0.09 | 19.984+0.29
Bi-120 GeV/c | 21.76+0.19 20.24+0.47

EMCal gas assignments in Monte Carlo. Fake rates are in %.
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D Track Multiplicity for Data: proton interactions

The trigger efficiency is a function depending on the track multiplicity and the trigger
scintillator acceptance. Due to of that we will consider the multiplicity for those
tracks, which passed through the scintillator.

Below we present the charged track multiplicity for different targets and beam
momenta using the transverse momentum cut as Apy >0.15 GeV /c. Figure 214 shows
the charged track multiplicity for p+p interactions at 58 GeV /c for both target-in and
target-out (on left) and the case when target-out subtraction is applied (on right).
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Figure 214: The charged track multiplicity for p+p interactions at 58 GeV /c for both
target-in and target-out (on left) and the case when target-out subtraction is applied
(on right). Requirements: all events passed the neutron selection cuts.

Figure 215 shows the charged track multiplicity for p+Be interactions at 58 GeV /¢
for both target-in and target-out (on left) and the case when target-out subtraction
is applied (on right).
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Figure 215: The charged track multiplicity for p+Be interactions at 58 GeV/c for
both target-in and target-out (on left) and the case when target-out subtraction is
applied (on right). Requirements: all events passed the neutron selection cuts.

Figure 216 shows the charged track multiplicity for p+C interactions at 58 GeV /c
for both target-in and target-out (on left) and the case when target-out subtraction
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is applied (on right).
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Figure 216: The charged track multiplicity for p+C interactions at 58 GeV /c for both
target-in and target-out (on left) and the case when target-out subtraction is applied
(on right). Requirements: all events passed the neutron selection cuts.
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Figure 217 shows the charged track multiplicity for p+Bi interactions at 58 GeV /¢
for both target-in and target-out (on left) and the case when target-out subtraction
is applied (on right).
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Figure 217: The charged track multiplicity for p+Bi interactions at 58 GeV/c for
both target-in and target-out (on left) and the case when target-out subtraction is
applied (on right). Requirements: all events passed the neutron selection cuts.

Figure 218 shows the charged track multiplicity for p+U interactions at 58 GeV /c
for both target-in and target-out (on left) and the case when target-out subtraction
is applied (on right).

Figure 219 shows the charged track multiplicity for p+p interactions at 84 GeV/c
for both target-in and target-out (on left) and the case when target-out subtraction
is applied (on right).

Figure 220 shows the charged track multiplicity for p+Be interactions at 120
GeV/c for both target-in and target-out (on left) and the case when target-out sub-
traction is applied (on right).
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Figure 218: The charged track multiplicity for p+U interactions at 58 GeV/c for both
target-in and target-out (on left) and the case when target-out subtraction is applied
(on right). Requirements: all events passed the neutron selection cuts.
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Figure 219: The charged track multiplicity for p+p interactions at 84 GeV /c for both
target-in and target-out (on left) and the case when target-out subtraction is applied

(on right). Requirements: all events passed the neutron selection cuts.
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Figure 220: The charged track multiplicity for p+Be interactions at 120 GeV/c for

both target-in and target-out (on left) and the case when target-out subtraction is
applied (on right). Requirements: all events passed the neutron selection cuts.
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Figure 221 shows the charged track multiplicity for p+C interactions at 120 GeV/c
for both target-in and target-out (on left) and the case when target-out subtraction
is applied (on right).
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Figure 221: The charged track multiplicity for p+C interactions at 120 GeV/c for
both target-in and target-out (on left) and the case when target-out subtraction is
applied (on right). Requirements: all events passed the neutron selection cuts.

Figure 222 shows the charged track multiplicity for p+Bi interactions at 120
GeV /c for both target-in and target-out (on left) and the case when target-out sub-
traction is applied (on right).
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Figure 222: The charged track multiplicity for p+Bi interactions at 120 GeV/c for
both target-in and target-out (on left) and the case when target-out subtraction is
applied (on right). Requirements: all events passed the neutron selection cuts.

The charged track multiplicity for the proton interaction trigger data with SciHi

is on are summarized in Table 61.

E Non-neutron multiplicities

Figure 223 shows the multiplicities for p+C at 58 GeV/c and at 120 GeV /c.

141



target-in | target-out | Subtr. beamTrig
H,-58 GeV/c [ 4.81£0.04 | 5.20+0.17 | 4.6240.04 46(5 1)£0.4
Be-58 GeV/c | 6.03+0.08 | 5.7840.12 | 6.2340.32 [ 8.7(8.1)£3.0
C-58 GeV/c | 6.10+0.08 | 5.774+0.12 | 6.40+0.10 [5.0(5.4)+1.7
Bi-58 GeV/c | 6.96+0.10 | 5.78+0.12 | 8.87+0.20 | 7.6(6.8)+2.9
U-58 GeV/c | 6.65+0.05 | 5.78+0.12 | 7.29+0.07 | 5.2(5.7)+0.5
| Hy-84 GeV/c | 5.7840.03 | 7.10£0.12 | 5.37+0.03 | 3. 7(5 5)40.2 |
Be-120 GeV/c | 7.91+0.01 | 8.1140.04 | 7.80+0.02 [ 7.1(7.2)+0.3
C-120 GeV/c | 8.29+0.02 | 8.10+0.04 | 8.3540.02 | 7.2(7.4)+0.4
Bi-120 GeV/c | 9.61+0.02 | 8.1040.04 | 10.98+0.03 | 8.5(10.1)+0.4

Table 61: The charged track multiplicity passing through the trigger scintillator using
the proton interaction trigger data with SciHi is on. The multiplicities are shown for
target-in, target-out and subtraction applied cases using the transverse momentum
cut as Apr >0.15 GeV/c. Last column represents the multiplicities for the beam
trigger without SciHi requirements. All events passed the neutron selection cuts.
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Figure 223: The multiplicities for p+C at 58 GeV/c (left) and at 120 GeV/c (right),
respectively.
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Figure 224: The multiplicities for p+Bi at 58 GeV /c interactions with different track
momentum cut: 0 MeV/c (left), 100 MeV/c (middle) and 200 MeV /c (right), respec-
tively.

142



Figure 224 shows the multiplicities for p+Bi at 58 GeV/c with different track
momentum cut: 0 MeV/c, 100 MeV /c and 200 MeV /c.

Figure 225 shows the multiplicities for p+U at 58 GeV/c with different track
momentum cut: 0 MeV/c, 100 MeV/c and 200 MeV /c.
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Figure 225: The multiplicities for p4+U at 58 GeV /c interactions with different track
momentum cut: 0 MeV /c (left), 100 MeV /c (middle) and 200 MeV /c (right), respec-
tively.

Figure 226 shows the multiplicities for p+Bi at 120 GeV/c with different track
momentum cut: 0 MeV/c, 100 MeV/c and 200 MeV /c.
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Figure 226: The multiplicities for p+Bi at 120 GeV/c interactions with different
track momentum cut: 0 MeV /c (left), 100 MeV /c (middle) and 200 MeV /c (right),
respectively.

The charged track multiplicities for the non-neutron samples are summarized in
Table 62.

143



True(Reco), 0 GeV/c | 100 MeV/c | 200 MeV/c
C-58 GeV/c | 85 (7.7) - -
Bi58 GeV/c | 13.6 (11.6) 12.5 (11.1) | 11.8 (10.7)
U-58 GeV/c | 13.9 (11.9) 12.8 (11.4) | 12.0 (10.9)
C-120 GeV/c | 10.6 (9.7) - -
Bi-120 GeV/c | 16.9 (15.4) 16.1 (15.0) | 15.6 (14.4)

Table 62: The charged track multiplicities for the non-neutron samples with the
different track momentum cuts: 0 MeV/c, 100 MeV /c and 200 MeV /c, respectively
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F Neutral particles production positions and mo-
menta distributions

Figure 227 illustrates the production positions in Z and momenta distributions of the
neutrals in p+p interactions at 58 GeV/c.
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Figure 227: The production positions in Z and momenta distributions of the neutrals
in p+p interactions at 58 GeV/c. Requirements: non-neutron events with trigger
is on. Left plots illustrates the Z position distributions, where the neutrals were
produced: Z=-830 is the primary target position, Z=-300 is ToF, Z=330 is the RICH
front wall, Z=1330 is RICH end wall, Z=1650 is middle of EMCAL. Right plot: the
truth momenta distributions of each neutrals.

Figure 228 illustrates the production positions in Z and momenta distributions of
the neutrals in p+Be interactions at 58 GeV /c.
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Figure 228: The production positions in Z and momenta distributions of the neutrals
in p+Be interactions at 58 GeV/c. Requirements: non-neutron events with trigger
is on. Left plots illustrates the Z position distributions, where the neutrals were
produced. Right plot: the truth momentum distribution of each neutrals.

Figure 229 illustrates the production positions in Z and momenta distributions of
the neutrals in p+C interactions at 58 GeV/c.

Figure 230 illustrates the production positions in Z and momenta distributions of
the neutrals in p+Bi interactions at 58 GeV/c.

Figure 231 illustrates the production positions in Z and momenta distributions of
the neutrals in p+U interactions at 58 GeV /c.
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Figure 229: The production positions in Z and momenta distributions of the neutrals
in p+C interactions at 58 GeV/c. Requirements: non-neutron events with trigger
is on. Left plots illustrates the Z position distributions, where the neutrals were
produced. Right plot: the truth momentum distribution of each neutrals.
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Figure 230: The production positions in Z and momenta distributions of the neutrals
in p+Bi interactions at 58 GeV/c. Requirements: non-neutron events with trigger
is on. Left plots illustrates the Z position distributions, where the neutrals were
produced. Right plot: the truth momentum distribution of each neutrals.
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Figure 231: The production positions in Z and momenta distributions of the neutrals
in p+U interactions at 58 GeV/c. Requirements: non-neutron events with trigger
is on. Left plots illustrates the Z position distributions, where the neutrals were
produced. Right plot: the truth momentum distribution of each neutrals.
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Figure 232 illustrates the production positions in Z and momenta distributions of
the neutrals in p+Be interactions at 120 GeV /c.
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Figure 232: The production positions in Z and momenta distributions of the neutrals
in p+Be interactions at 120 GeV /c. Requirements: non-neutron events with trigger
is on. Left plots illustrates the Z position distributions, where the neutrals were
produced. Right plot: the truth momentum distribution of each neutrals.

Figure 233 illustrates the production positions in Z and momenta distributions of
the neutrals in p+C interactions at 120 GeV/c.
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Figure 233: The production positions in Z and momenta distributions of the neutrals
in p+C interactions at 120 GeV/c. Requirements: non-neutron events with trigger
is on. Left plots illustrates the Z position distributions, where the neutrals were
produced. Right plot: the truth momentum distribution of each neutrals.

Figure 234 illustrates the production positions in Z and momenta distributions of
the neutrals in p+Bi interactions at 120 GeV /c.
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Figure 234: The production positions in Z and momenta distributions of the neutrals
in p+Bi interactions at 120 GeV/c. Requirements: non-neutron events with trigger
is on. Left plots illustrates the Z position distributions, where the neutrals were
produced. Right plot: the truth momentum distribution of each neutrals.

148



G Neutron’s raw spectrum: data vs MC

Below we compare data vs MC raw spectrum - when no any correction were applied.
Figure 235 illustrates the comparison for p+A interactions at 58 GeV/c.
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Figure 235: Comparison of the raw neutron spectrum, when no any correction were
applied. Distributions are based on HCAL responses for p+A interactions at 58
GeV/ec.

Figure 236 illustrates the comparison for p+A interactions at 84 and at 120 GeV /c.
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Figure 236: Comparison of the raw neutron spectrum, when no any correction were
applied. Distributions are based on HCAL responses for p+A interactions at 84 and
at 120 GeV/c.

We do not know what the true spectrum look like in data. But we see that the raw
spectrum in MC is much differ from the true one. Why it so distorted? Because the
neutron cross section in MC is relatively small in compare with the total inelastic cross
section: Table 63 illustrates the comparison of the inelastic cross section fractions of
the neutrons and non-neutrons.

H MC HCAL’s responses for true neutrons

Figure 237 illustrates the set of neutron spectra: generated within calorimeter accep-
tance, reconstructed by HCAL using both: whole and only neutron MC samples for
p+A interactions at 58 GeV/c.
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Oinel o, MC

Hy-58 | 31.0 mb | 4.4 mb (0.14)
C-58 286 mb | 29.0 mb (0.10)
Bi-58 | 1875 mb | 123.7 mb (0.07)
H,-84 | 31.4 mb | 6.0 mb (0.19)
C-120 | 287 mb | 53.0 mb (0.18)
Bi-120 | 1880 mb | 273.5 mb (0.15)

Table 63: Comparison of the total inelastic and neutron cross sections. Major source
of the backgrounds are the neutrals from the total inelastic processes.

04; MC p+p — n+..., 58 GeV/c 25 MC p+C — n+..., 58 GeV/c = MC p+Bi— n+..., 58 GeV/c
E 0 Ngen SMeared, o, 4.4 mb r i 0- Ny, SMeared, 6,: 28.8 mb F . 0~ Nge Smeared, o,: 122.3 mb
0.35 0- HCAL, whole smpl, 6, 4.4 mb oF 0- HCAL, whole smpl, 6, : 32.3 mb 12 0- HCAL, whole smpl, o, : 156.2 mb
03F corrected, ,; 7.0 mb F o corrected, 6,; 41.6 mb L 13- €4 COMTECted, 6, 200.9 mb
= F tron smpl, o, 3.9 mb = F n smpl, o, 24.1 mb = "F 5~ HCAI on smpl, o, 107.3 mb
E % ; E 15 E E -
c 02 c F c £
o F [ S
015 [ C
[ 4
0.1 L C
0.5 £
0.05 E o, 2;
E L 1 1 1 = St L L 1 1 1 1 . | L 1 1 1
o 10 20 30 40 50 60 o 10 20 30 40 50 60 10 20 30 40
neutron momentum, GeV/c neutron momentum, GeV/c neutron momentum, GeV/c

Figure 237: The set of neutron spectra: generated within calorimeter acceptance,
reconstructed by HCAL using both: whole and only neutron MC samples for p+A
interactions at 58 GeV/c.
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Figure 238 illustrates the set of neutron spectra: generated within calorimeter
acceptance, reconstructed by HCAL using both: whole and only neutron MC samples
for p+A interactions at 58 and 120 GeV /c.
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Figure 238: The set of neutron spectra: generated within calorimeter acceptance,
reconstructed by HCAL using both: whole and only neutron MC samples for p+A
interactions at 58 and 120 GeV/c.

Perspective background level illustrated in Table 64

persp. backg. | prev. backgr.
Hy-58 | 0.37 0.08
C-58 | 0.31 0.07
Bi-58 | 0.39 0.10
H>-84 | 0.34 0.12
C-120 | 0.38 0.17
Bi-120 | 0.45 0.22

Table 64: Perspective background level

I Study of MC neutron losses in setup material

Figure 239 illustrates the primary neutron production and interaction Z positions
with the setup material and the resulting primary neutron spectrum in front face of
EMCAL. The primary neutrons are from p+C at 58 GeV/c.

Figure 240 illustrates the primary neutron production and interaction Z positions
with the setup material and the resulting primary neutron spectrum in front face of
EMCAL. The primary neutrons are from p+Bi at 58 GeV/c.

Figure 241 illustrates the primary neutron production and interaction Z positions
with the setup material and the resulting primary neutron spectrum in front face of
EMCAL. The primary neutrons are from p+C at 120 GeV/c.

Figure 242 illustrates the primary neutron production and interaction Z positions
with the setup material and the resulting primary neutron spectrum in front face of
EMCAL. The primary neutrons are from p+Bi at 120 GeV/c.
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Figure 239: The primary neutron production/interaction Z positions with the setup
material - left. Right plot illustrates the primary neutron spectrum from the target
and resulting spectrum in front face of EMCAL. The primary neutrons are from p+C
at 58 GeV/c.
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Figure 240: The primary neutron production/interaction Z positions with the setup
material - left. Right plot illustrates the primary neutron spectrum from the target
and resulting spectrum in front face of EMCAL. The primary neutrons are from p+C
at 58 GeV/c.
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Figure 241: The primary neutron production/interaction Z positions with the setup
material - left. Right plot illustrates the primary neutron spectrum from the target
and resulting spectrum in front face of EMCAL. The primary neutrons are from p+C
at 120 GeV/c.
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Figure 242: The primary neutron production/interaction Z positions with the setup
material - left. Right plot illustrates the primary neutron spectrum from the target
and resulting spectrum in front face of EMCAL. The primary neutrons are from p+C
at 120 GeV/c.
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Summary of the neutron losses due to interactions with the setup material illus-
trated in Table 65

MC true | HCAL response
Ho-58 | - 0.11
C-58 ]0.16 0.16
Bi-58 | 0.16 0.12
M,-84 | - 0.12
C-120 | 0.16 0.10
Bi-120 | 0.16 0.06

Table 65: An average neutron lost rate due to interactions with the setup material
prior front of EMCAL. The estimate made in two ways: using the true neutrons and
HCAL responses for the neutrons. Second estimate is bias to the trigger efficiency
and possible backgrounds.

J MC neutron’s true spectrum vs reconstructed
proton spectrum

Figure 243 illustrates neutrons and proton spectrum from p+C p+Bi interactions at
58 GeV/c.
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Figure 243: Neutrons and proton spectra from p+C (left) and p+Bi (right) interac-
tions at 58 GeV /c. Neutrons - true, protons - reconstructed, id is based on MC truth
info.
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K Are elastic events in FLUKA generator?

What was found in first 100 events of p+p and p4+C MC samples are summarized in
Table 66.

p+p,58 GeV/c | p+C 58 GeV/c
single proton exiting target | 0 26
quasi elastic 0 4
hadron production 100 70
Table 66:
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