
-Methods: Artificial Neural Networks-

• ANN can be trained by MC generated events

• A trained ANN provides multidimensional cuts for 
data that are difficult to deduce in the usual manner 
from 1-d or 2-d histogram plots.

• ANN has been used in HEP

• HEP Packages:

•JETNET

•SNNS

•MLP fit



-ANN BASICS-
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• Event sample characterized by two variables X and Y (left figure)

• A linear combination of cuts can separate “signal” from “background” (right fig.)

• Define “step function”  

• Separate “signal” from “background”  with the following function:
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“Signal (x, y)” OUT

⎩
⎨
⎧

=++
1
0

c)byS(ax

2))cybxS(a)cybxS(a)cybxS(S(ay)C(x, 333222111 −++++++++=



-ANN BASICS-
Visualization of function C(x,y)

• The diagram resembles a feed 
forward neural network with 
two input neurons, three 
neurons in the first hidden 
layer and one output neuron.

• Threshold produces the desired 
offset.

• Constants ai, bi are the
weights wi,j (i and j are the 
neuron indices). 

a1 a2

a3
b1

b2
b3

YX

1
-2

Thres.

Output

c1
c2 c3

1 1



-ANN basics : Schematic-

Biological 
Neuron

HIDDEN 
LAYER

OUTPUT LAYER
WEIGHTS

wkj

INPUT 
LAYER

Xi

X1

INPUT 
PARAMETERS

∑ ⋅+=
i

iij0jj )twS(wy

Bayesian 
Probability

neuron i

neuron j

neuron k

wik

∑ ⋅+=
j

jjk0kk ywwt

xe1
1S(x)
−+

=

. .
 . 

. .
 . 

. .
 . 

Bias



-ANN BASICS-
• Output of tj each neuron in the first hidden layer :

• Transfer function is the sigmoid function :

– For the standard backpropagation training procedure of neural 
networks, the derivative of the neuron transfer functions must 
exist in order to be able to minimize the network  error (cost) 
function E.

–– Theorem 1 : Any continuous function of any number of variables oTheorem 1 : Any continuous function of any number of variables on n 
a compact set can be approximated to any accuracy by a linear a compact set can be approximated to any accuracy by a linear 
combination of sigmoidscombination of sigmoids

–– Theorem 2 : Trained with desired output 1 for signal and 0 for Theorem 2 : Trained with desired output 1 for signal and 0 for 
background the neural network function (output function tbackground the neural network function (output function tjj) ) 
approximates the Bayesian  Probability  of an event being a signapproximates the Bayesian  Probability  of an event being a signal.al.
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-ANN BASICS-
• Error function :                                           , where

– p  :  runs over the events of the training set, 
– j   :  the index of an output neuron, 
– dpj :  the desired output of neuron j in event p, 
– tpj :  the network output.

• All minimization methods use the computation of first order 
derivatives:        

• The description of backpropagation is that in each iteration 
:  

– ∆pwji(n+1) : the change in wji in iteration n+1, 
– ε : the distance to move along the gradient (‘learning 

coefficient’) 
– α : a smoothing term  (“momentum ”)
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-ANN Probability (review)-
ANN analysis : Minimization of an Error (Cost) Function

The ANN output is the Bayes a posteriori probability & in the prThe ANN output is the Bayes a posteriori probability & in the proof oof 
no special assumption has been made on  the a priori P(S) and P(no special assumption has been made on  the a priori P(S) and P(B) B) 
probabilities (absolute normalization)…..probabilities (absolute normalization)…..TRUE BUT THEIR VALUES TRUE BUT THEIR VALUES 
DO MATTER ………(They should be what nature gave us)DO MATTER ………(They should be what nature gave us)
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-ANN probability (review)-
• Bayesian a posteriori probability :  

• ANN output : P(S/x) 
• ANN training examples : P(x/S) & P(x/B)
• ANN number of Signal Training Examples P(S)
• ANN number of Background Training Examples P(B)

The     MLP (ann) analysis 
and the Maximum Likelihood 
Method   ( Bayes  Classifier ) 
are equivalent. 
(c11 c22 = cost for making the 
correct decision &
c12 c21 = cost for making the 
wrong decision ) 0.5P(S/x)P(S/x))(1P(S/x)

P(B/x)P(S/x)
P(x)

P(B)*P(x/B)
P(x)

P(S)*P(x/S)

P(B)*P(x/B)P(S)*P(x/S)
P(S)
P(B)

P(x/B)
P(x/S)(x)

cc & 0cc  if
)cP(S)(c
)cP(B)(c&

P(x/B)
P(x/S)(x)

21122211

2221
1112

>⇔−>⇔

⇔>⇔>⇔

⇔>⇔>⇔>

⇒===

−
−

==

ξΛ

ξΛ

  function density probabilty BackgroundP(x/B)       probabilty background   priori aP(B)
function density probabilty SignalP(x/S)                probabilty signal   priori aP(S)

P(x/B)*P(B)P(x/S)*(P(S)
P(S)*P(x/S)P(S/x)

==

==
+

=



-ANN Probability cont.-

P(S/x)=0.5

P(S/x)=0.1

• Worse hypothetical case 1:
One variable characterizing the 
populations, which is  identical for 
S and B, therefore :

P(S)=0.1 & P(B)=0.9
• If we train with equal numbers 
for signal and background the 
ANN will wrongly compute
P(S/x)=0.5

• If we train with the correct 
ratio for signal and background 
the ANN  will correctly  compute
P(S/x)=0.1, which is exactly 
what Bayes a posteriori 
probability would give also.   

ANN 
output 



-ANN Probability cont.-

P(S/x) =1

• Best hypothetical case :
One variable characterizing the 
populations, which is  completely 
separated (different)  for S and B.

P(S)=0.1 & P(B)=0.9 

• If we train with equal numbers for 
signal and background the ANN will 
compute P(S/x)=1.

• If we train with the correct ratio 
for signal and background the ANN  
will again compute P(S/x)=1.

• In this case it does not matter 
if we use the correct a priori 
probabilities or not. 

ANN 
output 

P(S/x) =1



-Quantities that characterize an ANN-
Network output (selection) function for “background ”and “signal” events

S
Sefficiency C=

signal

0 1

background

cut

f(x) = P(S/x)

S = Total # Signal events

CC
C
BS

Spurity
+

=B = Total # Background events

SC = Signal events above Cut

B
Bioncontaminat C=BC = Background events above Cut



-Goals of the ANN analysis involving 
spectrometer information -

• Use Artificial Neural Network techniques to identify 
and classify Neutrino Interactions on “event-by-event”
basis using topological and physical characteristics of 
neutrino events derived from both experimental data as 
well as MC generated interactions: 

• CC  νµ νe ντ
• NC

• Requirement: MC should be capable of describing very 
well the neutrino data.



-ANN Input Variables-
• Scintillating Fiber System : 

– Total Number of SF hits ( and Total number of “interaction” SF hits 500 ) 
– Total Pulse height ( and Total  “interaction” Pulse Height, Pulse height cut @ 500 ) 
– % of hits in Stations 1 2 3 4 & % of  “Interaction hits “
– Number of SF lines (UZ,VZ)

• Vector Drift Chambers: 
– Total Number of VDC hits 

• Drift Chambers: 
– Total number of DC hits
– Number of DC tracks

• EMCAL :
– Total Energy Deposition & Total Energy Deposition along y = 0 and | x | > 100 cm
– Number of clusters
– Average cluster energy 
– Mean Cluster angle with respect to the z axis from the interaction point

• Muon Identification System :
– Total number of MID hits
– Total number of MID hits in the central tubes

• Other Variables :
– Number of 3D final Tracks & Number of 3D final tracks that have SF and DC hits.
– Trigger Timing Differences (T32,T21,T31)
– Reconstructed Vertex in the Emulsion Module



-ANN Output Function-

• The performance of the ANN is good and one can 
select events with high efficiency and high purity (low 
contamination).

• With a cut @ 0.2 :
efficiency  0.94 - purity  0.86 - contamination  0.15

sada

Neutrino 
Events

Background  
Events



-ANN Implementation & 
Results on a “raw” Data Sample-

• With a cut @ 0.2 2915 out of 12443 are 
selected as “neutrino” interactions.

• Initial      Signal/Background Ratio ~ 100/12443 = 0.008
• Obtained Signal/Background Ratio ~ 100/2915   = 0.034

cut @ 0.2



-Neutrino event Classification: Method-

• Method :
– Construct two sequential Neural Networks (ANN1 & ANN2) 

that will be applied in the whole data set :

a) The first will distinguish  vµ CC from ve & vτ CC + NC

b) The second will distinguish     NC  from           ve CC & vτ CC

All v’s



-Training Set & Input Variables-
• For every period we construct a separate set of (2) ANN’s since every 

period has different target configuration and thus different event 
characteristics.

• For every period  we use 5000  MC events as a training set.
INPUT VARIABLES

HITS Total number of DC hits
(Total number of MID hits in the  Central tubes) 

EMCAL  Total energy deposition
Number of clusters
Average Cluster energy
Mean value of the Clusters angle  from the vertex  with respect to the z - axis
Standard deviation  of the Clusters angle 
Mean Absolute deviation of the of the Clusters angle
Higher Moments of the Clusters angle :  a) Skewness b) Curtosis
(Percentage of tracks with E/P < 0.3 (Muons))

TRACKS Number of final tracks
Number of DC tracks
(Number of tracks that have more than 3 hits in the MID system (Muons)) 

OTHER Total Pulse Height in the SF system

*** Comparing the MC distributions of these variables with REAL data we 
found that with the  0.001 criterion they are considered compatible
according to the Kolmogorov Test 



-Output of ANN1 (vµCC - All the rest)-

• The performance of that network is satisfactory.

• With a cut @ 0.5 in the network output function we select “signal”
events and  on the same time “background” events with : 

All the rest      efficiency 96 % - purity 88 %
vµ CC          efficiency 73 % - purity 96 % 

vµ CC

cut 

All the 
rest



-ANN1 (vµCC - All the rest) performance on
MC & Real Data-

• The performance of the  output function of ANN1 in MC
events and in the experimental data set is very similar. 

• That indicates that the results from ANN1 implementation 
in the experimental data set  are quite reliable.

MC

DATA



-Output of ANN2 (NC - ve CC )-

NC
ve CC

cut 

• This network shows a quite good behavior and by choosing a cut @ 
0.5 we select  signal (NC ) and at the same time background 
events (ve CC) with :

NC    efficiency 68 % - purity 80 %
ve CC          efficiency 86 % - purity 76 % 



-ANN2 (NC - ve CC) performance on MC & 
experimental  Data-

• The performance of the output function of  ANN2 in MC 
and in the Experimental data set is very similar.

• That permits us to consider the results of ANN2 quite 
reliable.

MC

DATA
(scaled)



-Expected number of neutrino interactions per  
run period & per emulsion module-

ε⋅⋅⋅= int.
v

exp. PPOT
POT
NN

Expected number   964 ± 235 

Observed number 909

Difference             55 ± 235

Good agreement 
(within ~ 1 σ)

Ratios (%) νµ CC νe CC ντ CC    NC
Expected 40.9±4.2     32.9±4.0       3.2 ±1.0       22.9±0.1
ANN ‘expected’    32.3±2.4     36.3±3.9        ------ 31.4±2.0

ANN observed     34.3±1.6     36.0±1.6        ------ 29.7±1.5

Difference         2.0 ±2.9      0.3 ±4.0                       1.7 ±2.5

Numbers νµ CC      νe CC ντ CC          NC

Expected  395 ±118      317 ±72         31±11         222 ±37

ANN ‘expected’    312 ± 92      350 ±79        ------ 303 ± 75

ANN observed     312 ± 15      327 ±15         ------ 270 ± 15

Difference            0 ± 93       23 ± 80                      33 ± 76



- Signal & Background -

• Charm background

• Interactions (scattering)

• Tau signal 

D+

Lepton missed



-ANN for vτ CC - NC scattering-

• Goal : To separate vτ CC interactions from hadron 
scattering from NC interactions with the use of ANNs

• Input Variables :
– Daughter Momentum 
– Decay Length 
– Parent angle 
– Daughter angle
– ∆φ (between the parent and all the other primary tracks)

• Training Set  : 
– 20000 vτ CC interactions 
– 20000 hadron scattering NC interactions



-MC Distributions of vτ CC & 
hadron scattering events-

Daughter PT Parent  Angle 

ντ CC (black)

Hadron Scattering 
(red)



-ANN vτ CC - hadron scattering cont.-

Efficiency, Purity  and contamination
Output ANN function (in log scale) (momentum smeared by 30%)

•The performance of the ANN is quite satisfactory as far as its discriminating 
power is concerned. With the cut@ 0.5 we select tau decays with 

~99% efficiency & ~99% purity



-ANN vτ CC - hadron scattering results 
on the 37 recognized kinks-

EVENTS THAT EXCEED THE 0.5 CUT IN THE ANN OUTPUT FUNCTION
RUN  EVENT  Pd θd PT Ld θp ∆φ   Probabilities
3263 25102  1.900  0.1300  0.247 1890.1  0.1772  0.176   0.136***
3024 30175  2.900  0.0936  0.271 4504.8  0.0279  1.027   0.971   
3039  1910  4.600   0.0895  0.412  276.5  0.0653  2.684   1.000
3333 17665 21.400  0.0130  0.278  564.6  0.0154  2.806   1.000
3193  1361 20.000  0.0187  0.374 1863.6  0.0838  2.341 1.000 CHARM

• Considering  as “Signal” events (vτ CC) the ones with probabilities P > 0.5 we 
can  compute  the background to these events by adding 1-P. Therefore :

Bkg = 0.029

Data
MC

∆p/p=30%



- Characteristics of Selected ANN events-

PT of experimental kinks
PT of MC kinks for hadron 
scattering events (red) 
and tau decays (black)



- Characteristics of Selected ANN events cont.-

MC, Hadron scattering: Black  MC, Tau decays: Yellow Data, Selected candidates : Red

Decay Length

Daughter momentum Daughter PT Parent angle

Daughter angle ∆φ



-MC Distributions of vτ CC & 
Charm events-

Parent angle Daughter Momentum 

Charm one prong 
kink decays (red)
ντ CC (black)



-ANN vτ CC - charm one prong kink decay-

Efficiency, Purity  and contamination
Output ANN function (in log scale)  (momentum smeared by 30%)

• The  classification is poor (as expected), since all variables 
characterizing these two populations are almost identical. 

• However the event probabilities obtained from this ANN analysis can 
be used to compute the background from this second source (charm one 
prong kink decays where the lepton from the primary is missed)



-ANN vτ CC - charm one prong kink decay 
background estimation-

∆P/P=30%

RUN  EVENT  Pd         θd PT Ld θp             ∆φ        Prob. 
3024 30175 2.900 0.0936  0.271 4504.8 0.0279  1.027   0.710   
3039  1910 4.600 0.0895  0.412  276.5  0.0653  2.684   0.990   
3333 17665 21.400 0.0130  0.278  564.6  0.0154  2.806   0.990   
3193  1361 20.000 0.0187  0.374 1863.6  0.0838  2.341 0.990 CHARM
We compute the background to these events by adding 1-P. Therefore :

Bkg = 0.310
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