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Reactor/Accelerator Sector: {13}
CPT ⇒ invariant δ ↔ −δ
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Atmospheric Neutrino Mass Hierarchy:

Solar neutrino mass hierarchy (mass ordering of nu1 & nu2) 
was determined by SNO !  

Mena + SP
hep-ph/0312131

defn: |Ue1|2 > |Ue2|2 > |Ue3|2

Neutrino Survival Probability: νe Revisited

NH: |∆m2
31| > |∆m2

32| (|∆31| > |∆32|)

IH: |∆m2
31| < |∆m2

32| (|∆31| < |∆32|) ∆ij ≡ ∆m2
ijL/4h̄cE

Using ∆ij ≡ ∆m2
ijL/4E (∆m2

ij ≡ m2
i−m2

j) and P! ≡ c4
13 sin2 2θ12 sin2 ∆21

P (νe → νe) = 1− P! − sin2 2θ13

[
c2
12 sin2 ∆31 + s2

12 sin2 ∆32

]

= 1− P!

−1
2

sin2 2θ13

{
1 +

√
(1− sin2 2θ12 sin2 ∆21) cos(2∆̄ + φ̄)

}

where ∆̄ = 1
2(∆31 + ∆32) and φ̄ = arctan(cos 2θ12 tan∆21)

for small ∆21 ⇒ φ̄ = ∆21 cos 2θ12 + O(∆3
21)

Define φ ≡ arctan(cos 2θ12 tan∆21)−∆21 cos 2θ12

then dφ
dL|L=0 = 0

thus φ doesn’t effect the atmospheric oscillation frequency at least for small L.

Rewrite cos(2∆̄ + φ̄) = cos(2∆ee + φ) then

∆ee ≡ 1
2
(∆31 + ∆32 + ∆21 cos 2θ21) = c2

12∆31 + s2
12∆32
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{CC
NC = 0.34 < 0.5}
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Atmospheric neutrino mass hierarchy  ????
                                         (mass ordering of (nu1,nu2) and nu3)
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Figure 6: 99% CL expected ranges for the parameters mcosmo = m1 + m2 + m3 probed by cosmology
(fig. 6a) and mνe ≡ (m·m†)1/2

ee probed by β-decay (fig. 6b) as function of the lightest neutrino mass. The
darker lines show how the ranges would shrink if the present best-fit values of oscillation parameters
were confirmed with negligible error.

‘standard’ SK analysis). The statistically insignificant hint for a θ13 > 0 in fig. 1 is mainly due to a
small deficit of events in CHOOZ data at lowest energies.

Other effects? Data show no significant hint for new effects beyond three massive neutrinos. For
example fig. 3a shows a global fit performed without assuming that neutrinos and anti-neutrinos
have the same atmospheric mass splitting and mixing angle. We see that the best-fit lies close to
the CPT-conserving limit, and that the atmospheric mass splitting in anti-neutrinos is poorly deter-
mined. Nevertheless, this is enough to strongly disfavor a CPT-violating interpretation of the LSND
anomaly [19]. Near-future long-baseline experiments will probably study only ν rather than ν̄.

3 Non-oscillation experiments

In this section we discuss non-oscillation experiments and consider the 3 non-oscillation parameters
mentioned in the introduction. Making reference to experimental sensitivities, the 3 probes should
be ordered as follows: cosmology, 0ν2β and finally β decay. Ordering them according to reliability
would presumably result into the reverse list: cosmological results are based on untested assumptions,
and 0ν2β suffers from severe uncertainties in the nuclear matrix elements. Even more, there is an
interesting claim that the 0ν2β transition has been detected [12] (see section 3.3 for some remarks),
there is a persisting anomaly in TROITSK β decay, and even in cosmology, there is one (weak) claim
for a positive effect. None of these hints can be considered as a discovery of neutrino masses. Several
existing or planned experiments will lead to progress in a few years.

In this section, we assume three massive Majorana neutrinos and study the ranges of neutrino
mass signals expected on the basis of oscillation data, updating and extending the results of [30].
Our inferences are summarized in table 1 and obtained by marginalizing the full joint probability
distribution for the oscillation parameters, using the latest results discussed in the previous sections.
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were confirmed with negligible error.
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Cosmology:

Tritium Beta Decay:
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Figure 7: Predictions for |mee| assuming a hierarchical (fig. 7a) and inverted (fig. 7b) neutrino spec-
trum. In fig. 7c we update the upper bound on the mass of quasi-degenerate neutrinos implied by 0ν2β
searches. The factor h ≈ 1 parameterizes the uncertainty in the nuclear matrix element (see sect.
2.1). In fig. 7d we plot the 99% CL range for mee as function of the lightest neutrino mass, thereby
covering all spectra. The darker regions show how the mee range would shrink if the present best-fit
values of oscillation parameters were confirmed with negligible error.
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in the overlap region O. Mena + SP 
hep-ph/0408070

Neutrino v AntiNeutrino Channels in LBL:
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Neutrino v AntiNeutrino Channels in LBL:
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Leptonic CP and T Violation in Oscillations

CP
νµ ↔ νe ⇐⇒ ν̄µ ↔ ν̄e Super-Beams

T $ $ T

νe ↔ νµ ⇐⇒ ν̄e ↔ ν̄µ Nu-Factory
CP

CP Violation in Neutrino Oscillations

is related to Leptogensis
and hence Baryogenesis.
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Neutrino Factory:
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Two Neutrino Experiments different L same E/L  :

(a) Neutrino–Neutrino (b) Neutrino–CPT conjugated channel

FIG. 2: (a) The left panel is the bi–probability plot for P (νµ → νe) versus P (νµ → νe) with baselines

295 km and 810 km for the normal (blue) and the inverted (red) hierarchies. The smaller, lower

(larger, upper) ellipses are for sin2 2θ13 = 0.02 ( 0.10). The mean neutrino energies are chosen

such that the 〈E〉/L for the two experiments are approximately identical.

(b) The right panel is the bi–probability plot for P (νµ → νe) versus P (ν̄e → ν̄µ) for the normal (blue)

and the inverted (red) hierarchies. The baseline and mean neutrino energy for both experiments

are 810 km and ∼ 2 GeV, respectively. The smaller, lower (larger, upper) squashed ellipses are for

sin2 2θ13 = 0.02 ( 0.10).

where α+ and α− are the slopes of the center of the ellipses as one varies θ13 for normal

and inverted hierarchies, aF and aN are the matter parameters, and LF and LN are the

baselines for the two experiments. The separation between the center of the ellipses for the

two hierarchies increases as the difference in the matter parameter times the path length,

(aL), for the two experiments increases. Also, since (∆−1 − cot ∆) is a monotonically

increasing function of ∆, we conclude that the smaller the energy, the larger the ratio

of slopes, assuming the same 〈E〉/L. However the width of the ellipses is crucial: even when

the separation between the central axes of the two regions is substantial, if the ellipses for

the normal and inverted hierarchy overlap, the hierarchy cannot be resolved for values of

the CP phase, δ, for which there is overlap. The width of the ellipses is determined by the

difference in the 〈E〉/L of the two experiments.
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of slopes, assuming the same 〈E〉/L. However the width of the ellipses is crucial: even when

the separation between the central axes of the two regions is substantial, if the ellipses for

the normal and inverted hierarchy overlap, the hierarchy cannot be resolved for values of

the CP phase, δ, for which there is overlap. The width of the ellipses is determined by the

difference in the 〈E〉/L of the two experiments.
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Hierarchy via CPT conjugate pairs:

(a) Neutrino–Neutrino (b) Neutrino–CPT conjugated channel

FIG. 2: (a) The left panel is the bi–probability plot for P (νµ → νe) versus P (νµ → νe) with baselines

295 km and 810 km for the normal (blue) and the inverted (red) hierarchies. The smaller, lower

(larger, upper) ellipses are for sin2 2θ13 = 0.02 ( 0.10). The mean neutrino energies are chosen

such that the 〈E〉/L for the two experiments are approximately identical.

(b) The right panel is the bi–probability plot for P (νµ → νe) versus P (ν̄e → ν̄µ) for the normal (blue)

and the inverted (red) hierarchies. The baseline and mean neutrino energy for both experiments

are 810 km and ∼ 2 GeV, respectively. The smaller, lower (larger, upper) squashed ellipses are for

sin2 2θ13 = 0.02 ( 0.10).
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two hierarchies increases as the difference in the matter parameter times the path length,

(aL), for the two experiments increases. Also, since (∆−1 − cot ∆) is a monotonically

increasing function of ∆, we conclude that the smaller the energy, the larger the ratio

of slopes, assuming the same 〈E〉/L. However the width of the ellipses is crucial: even when

the separation between the central axes of the two regions is substantial, if the ellipses for
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sign(∆m2
31)). In the presence of matter effects, the neutrino (antineutrino) oscillation prob-

ability gets enhanced [17, 18] for the normal (inverted) hierarchy. Making use of the different

matter effects for neutrinos and antineutrinos seems, in principle, the most promising way

to distinguish among the two possibilities: normal versus inverted hierarchy. However, the

sensitivity to the mass hierarchy determination from the neutrino-antineutrino comparison

is highly dependent on the value of the CP violating phase. Thus, possible alternative

methods were first proposed in Ref. [19]. In this paper we concentrate on the extraction of

the neutrino mass hierarchy by combining a νµ → νe experiment with its CPT conjugated

channel ν̄e → ν̄µ, see Ref. [19]. More recently, it is primarily the CPT-conjugate channel

pairs that give the CERN-MEMPHYS proposal sensitivity to the hierarchy, see Ref. [20]. If

nature respects CPT symmetry, then, at the same E/L the only difference between the two

flavor transitions can come from matter effects and that near the first oscillation maximum

P (νµ → νe) > P (ν̄e → ν̄µ) for Normal Hierarchy

and P (νµ → νe) < P (ν̄e → ν̄µ) for Inverted Hierarchy,

i.e. for the normal hierarchy the neutrino channel is enhanced and the antineutrino CPT

conjugate channel suppressed and vice versa for the inverted hierarchy. This is the effect

that will be exploited in this paper to determine the neutrino mass hierarchy.

We will show that the combination of the Phase I (neutrino-data only) of the long-baseline

νe appearance experiment NOνA [21], exploiting the off-axis technique1 with a possible

future betabeam facility [23, 24, 25, 26, 27] at Fermilab exploiting a ν̄e neutrino beam

from radiative ion decays could help enormously in measuring the neutrino mass hierarchy.

For our analysis, unless otherwise stated, we will use a representative value of |∆m2
31| =

2.5× 10−3 eV2 and sin2 2θ23 = 1. For the solar oscillation parameters ∆m2
21 and θ12, we will

use the best fit values quoted earlier in this section. The structure of the paper is as follows.

In Section II we present the general physics strategy used to determine the neutrino mass

1 A neutrino beam with narrow energy spectrum can be produced by placing the detector off-axis, i. e.,

at some angle with respect to the forward direction. The resulting neutrino spectrum is very narrow in

energy (nearly monochromatic, ∆E/E ∼ 15 − 25%) and peaked at lower energies with respect to the

on-axis one. The off-axis technique allows a discrimination between the peaked νe oscillation signal and

the intrinsic νe background which has a broad energy spectrum [22].In addition, the off-axis technique

reduces significantly the background resulting from neutral current interactions of higher energy neutrinos

with a π0 in the final state.

3

The other related CPT conjugate pair of appearance probabilities, P (νe → νµ) and

P (ν̄µ → ν̄e), can be obtained from the above by changing the sign of δ, as follows

P (νe → νµ) = X±θ2 ± 2
√

X±

√

P! θ cos(±∆31 − δ) + P!

P (ν̄e → ν̄µ) = X∓θ2 ± 2
√

X∓

√

P! θ cos(±∆31 − δ) + P!. (A2)

The difference between the first two CPT conjugate appearance probabilities, is given by

P (νµ → νe) − P (ν̄e → ν̄µ) = ±θ (
√

X+ −
√

X−)
[

(
√

X+ +
√

X−)θ ± 2
√

P! cos(±∆13 + δ)
]

.

This quantity is positive for the normal hierarchy (NH) and negative for the inverted hier-

archy (IH), if

√

X+ >
√

X− and θ > 2
√

P!/(
√

X+ +
√

X−) ≈
√

P!/
√

X0, (A3)

for all values of the CP phase δ. The constraint on θ requires6

sin2 2θ13 >
sin2 2θ12∆2

21

tan2 θ23 sin2 ∆31

∼ 0.001 − 0.002, (A4)

whereas the constraint,
√

X+ >
√

X−, is satisfied near the first oscillation maximum pro-

vided (aL) & 1, i.e. L & 4000 km.

With these rather weak constraints then

P (νµ → νe) > P (ν̄e → ν̄µ) for NH (A5)

and P (νµ → νe) < P (ν̄e → ν̄µ) for IH (A6)

for all values of the CP phase δ. For the normal (inverted) hierarchy, the matter effect

enhances (suppresses) the P (νµ → νe) channel and suppresses (enhances) the P (ν̄e → ν̄µ)

channel, thus the matter effect in a sense is used twice. Of course, the difference between

these two appearance probabilities is larger at larger values of θ and at larger values of

the matter effect. This is the effect that is exploited here to determine the neutrino mass

hierarchy.

In the P (νµ → νe) versus P (ν̄e → ν̄µ) plane the trajectory for fixed value of θ as the CP

phase δ is varied from 0 to 2π is in general an ellipse which collapses to a line if the E/L of

both channels is the same. The centre of this ellipse is given by

(P (ν̄e → ν̄µ), P (νµ → νe)) = (X∓θ2 + P!, X±θ2 + P!). (A7)

6 This is the value of θ at which the atmospheric and solar amplitudes have the same magnitude in vacuum.
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The amplitudes for νµ → νe and ν̄e → ν̄µ consists of two terms, one associated with

the atmospheric δm2 scale and the other associated with the solar δm2 scale. Thus, the

probability for these the CPT-conjugate processes contain three terms; the square of each of

the amplitudes plus the interference term between the two amplitudes which depends on the

CP phase δ. For the normal (upper sign) and inverted (lower sign) hierarchy, the νµ → νe

and ν̄e → ν̄µ appearance probabilities are given by

P (νµ → νe) = X±θ2 ± 2
√

X±

√

P! θ cos(±∆31 + δ) + P!

P (ν̄e → ν̄µ) = X∓θ2 ± 2
√

X∓

√

P! θ cos(±∆31 + δ) + P!. (A1)

The coefficients P! and X± are simply

√

P! = cos θ23 sin 2θ12

sin(aL)

(aL)
∆21,

√

X± = 2 sin θ23

sin(±∆31 − aL)

(±∆31 − aL)
∆31,

where ∆ij = |δm2
ij|L/4E and a = GF Ne/

√
2 ≈ (4000 km)−1. The atmospheric amplitude

for νµ → νe is ±
√

X±θ whereas the solar amplitude is
√

P! and the relative phase between

these two amplitudes5 is (±∆31 + δ). In vacuum, X+ = X− ≡ X0 and the two probabilities

are identical, as they must since they are CPT conjugates.

5 The full amplitude for νµ → νe is (±
√

X±θ e−i(±∆31+δ) +
√

P").
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The other related CPT conjugate pair of appearance probabilities, P (νe → νµ) and

P (ν̄µ → ν̄e), can be obtained from the above by changing the sign of δ, as follows

P (νe → νµ) = X±θ2 ± 2
√

X±

√

P! θ cos(±∆31 − δ) + P!

P (ν̄e → ν̄µ) = X∓θ2 ± 2
√

X∓

√

P! θ cos(±∆31 − δ) + P!. (A2)

The difference between the first two CPT conjugate appearance probabilities, is given by

P (νµ → νe) − P (ν̄e → ν̄µ) = ±θ (
√

X+ −
√

X−)
[

(
√

X+ +
√

X−)θ ± 2
√

P! cos(±∆13 + δ)
]

.

This quantity is positive for the normal hierarchy (NH) and negative for the inverted hier-

archy (IH), if

√

X+ >
√

X− and θ > 2
√

P!/(
√

X+ +
√

X−) ≈
√

P!/
√

X0, (A3)

for all values of the CP phase δ. The constraint on θ requires6

sin2 2θ13 >
sin2 2θ12∆2

21

tan2 θ23 sin2 ∆31

∼ 0.001 − 0.002, (A4)

whereas the constraint,
√

X+ >
√

X−, is satisfied near the first oscillation maximum pro-

vided (aL) & 1, i.e. L & 4000 km.

With these rather weak constraints then

P (νµ → νe) > P (ν̄e → ν̄µ) for NH (A5)

and P (νµ → νe) < P (ν̄e → ν̄µ) for IH (A6)

for all values of the CP phase δ. For the normal (inverted) hierarchy, the matter effect

enhances (suppresses) the P (νµ → νe) channel and suppresses (enhances) the P (ν̄e → ν̄µ)

channel, thus the matter effect in a sense is used twice. Of course, the difference between

these two appearance probabilities is larger at larger values of θ and at larger values of

the matter effect. This is the effect that is exploited here to determine the neutrino mass

hierarchy.

In the P (νµ → νe) versus P (ν̄e → ν̄µ) plane the trajectory for fixed value of θ as the CP

phase δ is varied from 0 to 2π is in general an ellipse which collapses to a line if the E/L of

both channels is the same. The centre of this ellipse is given by

(P (ν̄e → ν̄µ), P (νµ → νe)) = (X∓θ2 + P!, X±θ2 + P!). (A7)

6 This is the value of θ at which the atmospheric and solar amplitudes have the same magnitude in vacuum.
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The other related CPT conjugate pair of appearance probabilities, P (νe → νµ) and

P (ν̄µ → ν̄e), can be obtained from the above by changing the sign of δ, as follows

P (νe → νµ) = X±θ2 ± 2
√

X±

√

P! θ cos(±∆31 − δ) + P!

P (ν̄e → ν̄µ) = X∓θ2 ± 2
√

X∓

√

P! θ cos(±∆31 − δ) + P!. (A2)

The difference between the first two CPT conjugate appearance probabilities, is given by

P (νµ → νe) − P (ν̄e → ν̄µ) = ±θ (
√

X+ −
√

X−)
[

(
√

X+ +
√

X−)θ ± 2
√

P! cos(±∆13 + δ)
]

.

This quantity is positive for the normal hierarchy (NH) and negative for the inverted hier-

archy (IH), if

√

X+ >
√

X− and θ > 2
√

P!/(
√

X+ +
√

X−) ≈
√

P!/
√

X0, (A3)

for all values of the CP phase δ. The constraint on θ requires6

sin2 2θ13 >
sin2 2θ12∆2

21

tan2 θ23 sin2 ∆31

∼ 0.001 − 0.002, (A4)

whereas the constraint,
√

X+ >
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X−, is satisfied near the first oscillation maximum pro-

vided (aL) & 1, i.e. L & 4000 km.
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channel, thus the matter effect in a sense is used twice. Of course, the difference between

these two appearance probabilities is larger at larger values of θ and at larger values of

the matter effect. This is the effect that is exploited here to determine the neutrino mass
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APPENDIX A: CPT CONJUGATE PROBABILITIES:

The amplitudes for νµ → νe and ν̄e → ν̄µ consists of two terms, one associated with

the atmospheric δm2 scale and the other associated with the solar δm2 scale. Thus, the

probability for these the CPT-conjugate processes contain three terms; the square of each of

the amplitudes plus the interference term between the two amplitudes which depends on the

CP phase δ. For the normal (upper sign) and inverted (lower sign) hierarchy, the νµ → νe

and ν̄e → ν̄µ appearance probabilities are given by

P (νµ → νe) = X±θ2 ± 2
√

X±

√

P! θ cos(±∆31 + δ) + P!

P (ν̄e → ν̄µ) = X∓θ2 ± 2
√

X∓

√

P! θ cos(±∆31 + δ) + P!. (A1)

The coefficients P! and X± are simply

√

P! = cos θ23 sin 2θ12

sin(aL)

(aL)
∆21,

√

X± = 2 sin θ23

sin(±∆31 − aL)

(±∆31 − aL)
∆31,

where ∆ij = |δm2
ij|L/4E and a = GF Ne/

√
2 ≈ (4000 km)−1. The atmospheric amplitude

for νµ → νe is ±
√

X±θ whereas the solar amplitude is
√

P! and the relative phase between

these two amplitudes5 is (±∆31 + δ). In vacuum, X+ = X− ≡ X0 and the two probabilities

are identical, as they must since they are CPT conjugates.

5 The full amplitude for νµ → νe is (±
√

X±θ e−i(±∆31+δ) +
√

P").

17

both neutrinos and antineutrinos.

Acknowledgments

We wish to thank A. Donini for useful comments on the manuscript. OM is supported

by the European Programme “The Quest for Unification” contract MRTN-CT-2004-503369.

Fermilab is operated by FRA under DOE contract DE-AC02-07CH11359. OM would like

to thank the Theoretical Physics Department at Fermilab for hospitality and support.

APPENDIX A: CPT CONJUGATE PROBABILITIES:

The amplitudes for νµ → νe and ν̄e → ν̄µ consists of two terms, one associated with

the atmospheric δm2 scale and the other associated with the solar δm2 scale. Thus, the

probability for these the CPT-conjugate processes contain three terms; the square of each of

the amplitudes plus the interference term between the two amplitudes which depends on the

CP phase δ. For the normal (upper sign) and inverted (lower sign) hierarchy, the νµ → νe

and ν̄e → ν̄µ appearance probabilities are given by

P (νµ → νe) = X±θ2 ± 2
√

X±

√

P! θ cos(±∆31 + δ) + P!

P (ν̄e → ν̄µ) = X∓θ2 ± 2
√

X∓

√

P! θ cos(±∆31 + δ) + P!. (A1)

The coefficients P! and X± are simply

√

P! = cos θ23 sin 2θ12

sin(aL)

(aL)
∆21,

√

X± = 2 sin θ23

sin(±∆31 − aL)

(±∆31 − aL)
∆31,

where ∆ij = |δm2
ij|L/4E and a = GF Ne/

√
2 ≈ (4000 km)−1. The atmospheric amplitude

for νµ → νe is ±
√

X±θ whereas the solar amplitude is
√

P! and the relative phase between

these two amplitudes5 is (±∆31 + δ). In vacuum, X+ = X− ≡ X0 and the two probabilities

are identical, as they must since they are CPT conjugates.

5 The full amplitude for νµ → νe is (±
√

X±θ e−i(±∆31+δ) +
√

P").

17

The other related CPT conjugate pair of appearance probabilities, P (νe → νµ) and

P (ν̄µ → ν̄e), can be obtained from the above by changing the sign of δ, as follows

P (νe → νµ) = X±θ2 ± 2
√

X±

√

P! θ cos(±∆31 − δ) + P!

P (ν̄e → ν̄µ) = X∓θ2 ± 2
√

X∓

√

P! θ cos(±∆31 − δ) + P!. (A2)

The difference between the first two CPT conjugate appearance probabilities, is given by

P (νµ → νe) − P (ν̄e → ν̄µ) = ±θ (
√

X+ −
√

X−)
[

(
√

X+ +
√

X−)θ ± 2
√

P! cos(±∆13 + δ)
]

.

This quantity is positive for the normal hierarchy (NH) and negative for the inverted hier-

archy (IH), if

√

X+ >
√

X− and θ > 2
√

P!/(
√

X+ +
√

X−) ≈
√

P!/
√

X0, (A3)

for all values of the CP phase δ. The constraint on θ requires6

sin2 2θ13 >
sin2 2θ12∆2

21

tan2 θ23 sin2 ∆31

∼ 0.001 − 0.002, (A4)

whereas the constraint,
√

X+ >
√

X−, is satisfied near the first oscillation maximum pro-

vided (aL) & 1, i.e. L & 4000 km.

With these rather weak constraints then

P (νµ → νe) > P (ν̄e → ν̄µ) for NH (A5)

and P (νµ → νe) < P (ν̄e → ν̄µ) for IH (A6)

for all values of the CP phase δ. For the normal (inverted) hierarchy, the matter effect

enhances (suppresses) the P (νµ → νe) channel and suppresses (enhances) the P (ν̄e → ν̄µ)

channel, thus the matter effect in a sense is used twice. Of course, the difference between

these two appearance probabilities is larger at larger values of θ and at larger values of

the matter effect. This is the effect that is exploited here to determine the neutrino mass

hierarchy.

In the P (νµ → νe) versus P (ν̄e → ν̄µ) plane the trajectory for fixed value of θ as the CP

phase δ is varied from 0 to 2π is in general an ellipse which collapses to a line if the E/L of

both channels is the same. The centre of this ellipse is given by

(P (ν̄e → ν̄µ), P (νµ → νe)) = (X∓θ2 + P!, X±θ2 + P!). (A7)

6 This is the value of θ at which the atmospheric and solar amplitudes have the same magnitude in vacuum.

18

(a) Neutrino–Neutrino (b) Neutrino–CPT conjugated channel

FIG. 2: (a) The left panel is the bi–probability plot for P (νµ → νe) versus P (νµ → νe) with baselines

295 km and 810 km for the normal (blue) and the inverted (red) hierarchies. The smaller, lower

(larger, upper) ellipses are for sin2 2θ13 = 0.02 ( 0.10). The mean neutrino energies are chosen

such that the 〈E〉/L for the two experiments are approximately identical.

(b) The right panel is the bi–probability plot for P (νµ → νe) versus P (ν̄e → ν̄µ) for the normal (blue)

and the inverted (red) hierarchies. The baseline and mean neutrino energy for both experiments

are 810 km and ∼ 2 GeV, respectively. The smaller, lower (larger, upper) squashed ellipses are for

sin2 2θ13 = 0.02 ( 0.10).

where α+ and α− are the slopes of the center of the ellipses as one varies θ13 for normal
and inverted hierarchies, aF and aN are the matter parameters, and LF and LN are the
baselines for the two experiments. The separation between the center of the ellipses for the
two hierarchies increases as the difference in the matter parameter times the path length,
(aL), for the two experiments increases. Also, since (∆−1 − cot ∆) is a monotonically
increasing function of ∆, we conclude that the smaller the energy, the larger the ratio
of slopes, assuming the same 〈E〉/L. However the width of the ellipses is crucial: even when
the separation between the central axes of the two regions is substantial, if the ellipses for
the normal and inverted hierarchy overlap, the hierarchy cannot be resolved for values of
the CP phase, δ, for which there is overlap. The width of the ellipses is determined by the
difference in the 〈E〉/L of the two experiments.

6



(a) NOνA–6He βeta-beam (b) NOνA–8Li βeta-beam

FIG. 3: (a) The allowed regions in the bi–event plot for N(νµ → νe) for NOνA versus N(ν̄e → ν̄µ)

for a betabeam experiment which exploits antineutrinos from 6He decays with γHe = 350, and a

detector of 40 kton located at a distance of L = 810 km. The blue (red) ellipses denote normal

(inverted) hierarchies. From bottom up, the ellipses correspond to sin2 2θ13 varying from 0.01 to

0.1. The solid (dashed) ellipses illustrate the third (second) energy bins of the betabeam spectrum.

(b) Same as (a) but with antineutrino fluxes resulting from 8Li decays, and a detector of 10 kton

at 300 km.

per year, ten years of data taking, and a 10 (50) kton detector located at 300 km.

Figure 3 (a) shows that, for the combination of NOνA off-axis neutrino events with the

antineutrino events from 6He decays, the separation between the bi–event contours for the

normal and inverted hierarchies is larger than in the case of 8Li generated antineutrino

events, as seen in Figure 3 (b). As previously explained, the difference in the slopes of the

two hierarchies is proportional to the sum of the size of matter effects times the baseline,

aNOνALNOνA +aCPT LCPT . The product aCPT LCPT is larger for the 6He betabeam ν̄e events

(with a baseline of 810 km), than for the 8Li betabeam ν̄e events (with a baseline of 300 km).

The solid (dashed) contours in Figure 3 show the number of betabeam antineutrino events

in the second (third) energy bin. When the 〈E〉/L of the νµ → νe and its CPT conjugated

channel are similar, the ellipses width is minimal (they collapse to a line) and therefore the

elliptical contours for the normal and inverted hierarchies will not overlap, regardless the

value of the CP violating phase δ. For the combination of NOνA off-axis neutrino events

12

6He

• Tevatron: γ = 350 and 〈Eν〉 ∼ 1.2 GeV with 1018 useful decays/yr

• Detector: NOνA site, L=810 km:
10 ktons of iron calorimeter or LAr TPC

• to suppress atmospheric backgrounds beam duty cycle < 10−4 !!!

(Alternative one could use the MINOS detector × 2,
here the beam duty cycle ∼ 1 %)

solid [1.5,2.4] GeV

dashed [1.0,1.5] GeV
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NOνA + 8Li

• Main Injector: γ = 50 and 〈Eν〉 ∼ 0.9 GeV with 5(1) × 1019 useful
decays/yr

• Detector: L=300 km:
10 (50) ktons of TASD, LAr TPC or Water Cerenkov

solid [1.0,1.5] GeV

dashed [0.75,1.0] GeV
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(a) (b)

FIG. 5: Same as Figs. 4 but including backgrounds in the betabeam electron antineutrino data, see

text for details.

erarchy, provided the two channels have similar 〈E〉/L. Future neutrino facilities at Fermilab

could provide these CPT neutrino–conjugated channels. The NOνA νe off-axis appearance

experiment could provide the νµ → νe channel. A future betabeam facility based at Fermilab

could provide the CPT-conjugated ν̄e → ν̄µ channel. A realistic estimate of the expected

electron antineutrino fluxes from boosted ion decays is presented. We propose two possible

accelerator scenarios for generating the betabeam electron antineutrino fluxes: the Tevatron,

which could accelerate 6He ions, and the Main Injector, which could accelerate 8Li ions. In

the case of the Tevatron, the decay ring would be very large and possibly prohibitively

expensive. The first scenario could benefit from the NOνA far detector at L = 810 km,

(but the decay ring needed would be very large) ; for the second scenario, an additional,

although smaller 2− 10 kton MINOS like detector at a shorter baseline, L = 300 km, would

be necessary (the decay ring needed in this case would be smaller, though). In the more

pessimistic case, with a modest beam duty cycle of 10−2 and including realistic atmospheric

neutrino backgrounds, the neutrino mass hierarchy could be determined for sin2 2θ13 > 0.01,

independently of the value of the CP violating phase δ, for both accelerator possibilities.

These two alternative choices could improved by an order of magnitude the sensitivity to

the neutrino mass hierarchy obtained by a future NOνA upgraded experiment exploiting

16

6He 8Li

solid 2× 1020 5× 1021 useful ion decays times ktons

dotted 5× 1019 1× 1021 useful ion decays times ktons

dashed 5 × NOνA 5 × NOνA 5 yrs ν + 5 yrs ν̄
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6He 8Li

solid 2× 1020 5× 1021 useful ion decays times ktons

dotted 5× 1019 1× 1021 useful ion decays times ktons

dashed 5 × NOνA 5 × NOνA 5 yrs ν + 5 yrs ν̄

Hierarchy Determined for sin2 2θ13 > 0.01 at 90 % C.L.

– Typeset by FoilTEX – 4

(large statistics!!!)



• Mossbauer Neutrinos
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Mossbauer Neutrinos Review:

Mossbauer effect with Neutrinos in the 3H −3 He system:

Source: 3H → (3He + e−B) + ν̄e

Detector: ν̄e + (3He + e−B)→3 H

Q = 18.6 keV and Γ3H = 1.2× 10−24 eV

Various line broadening effects which significantly increase Γeff

Serious technical difficulties exist but it is not impossible (Raghaven, Potzel)

For Γeff ∼ 10−11 eV (∆E/E ∼ 10−15) then σ ∼ 10−33cm2 !!!
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NH (+) and IH (-):

identify linear term in L/E as 2∆ee ≡ ∆m2
eeL/2E

∆m2
ee = c2

12|∆m2
31| + s2

12|∆m2
32| = |m2

3 − (c2
12m

2
1 + s2

12m
2
2)|

νe weighted average of m2
1 and m2

2

(What about MINOS?)

φ! ≡ arctan(cos 2θ12 tan∆21)−∆21 cos 2θ12

everything else:

then dφ
dL|L=0 = 0
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%
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• everything else ±φ!: and only depends on ∆21 and θ12.
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FIG. 2: (a) φ! as function of ∆21. φ! = π/2 when ∆21 ≈ 1.9.(b) φ! as function of L for various

choices of the solar parameters within the current allowed region. φ! ≈ π/2 at about 350 m
somewhat independent of the precise values for the solar parameters.

wave evolves, whereas for the inverted hierarchy there is a phase retardation2. It is easy to
show that

φ!(∆21 + π) = φ!(∆21) + 2π sin2 θ12, (8)

i.e. the phase advancement (normal) or retardation (inverted) is 2π sin2 θ12 for every π
increase of ∆21. Eqs. (5) and (6) are the foundations of our investigation.

Some important observations are worth emphasizing immediately:

• Only ∆ee varies at the atmospheric scale. Everything else, including phase φ!, varies
at the solar scale. This is a useful distinction because these two scales differ by a factor
of ∼ 30.

• The difference between probabilities corresponding to the two hierarchies (3) is given
by

∆P
√

P (θ13 = 0)
= sin2 2θ13 sin 2∆ee sin φ! , (9)

to leading order in θ13. ∆P becomes visible when the phase φ! develops to order unity.
From Fig. 2 this occurs at around the first solar oscillation maximum, (∆21 = π/2), in
agreement with the features exhibited in Fig. 1. From (9) we also see that the normal
and the inverted hierarchies are maximally out of phase when φ! = π/2. This occurs
when

cot∆21 cot(∆21 cos 2θ12) = − cos 2θ12 . (10)

2 Equivalently, one could interpret this phenomena as a change in the instantaneous effective ∆m2
atm. This

interpretation is explored in Appendix A.
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• 1
2 sin2 2θ13(1∓

√
1− sin2 2θ13 sin2 ∆21) gives the amplitude modulation.

• ± Hierarchy: + Normal and - Inverted.

• (2∆ee ± φ!):

• 2∆ee ≡ ∆m2
eeL/2E linear term:

∆m2
ee = c2

12|∆m2
31| + s2

12|∆m2
32|

= |m2
3 − (c2

12m
2
1 + s2

12m
2
2)|

νe weighted average of m2
1 and m2

2

• ±φ! everything else:

• φ! = arctan(cos 2θ12 tan∆21)−∆21 cos 2θ12

– Typeset by FoilTEX – 5

350 m

The Phase:
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√
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NH (+) and IH (-):

identify linear term in L/E as 2∆ee ≡ ∆m2
eeL/2E
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(What about MINOS?)

φ! ≡ arctan(cos 2θ12 tan∆21)−∆21 cos 2θ12

everything else:

then dφ
dL|L=0 = 0
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• φ! = arctan(cos 2θ12 tan∆21)−∆21 cos 2θ12

P! = 0

dφ!
d∆21

|nπ = 0 for n = 0, 1, 2, . . .
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• φ! = arctan(cos 2θ12 tan∆21)−∆21 cos 2θ12

P! = 0

dφ!
d∆21

|nπ = 0 for n = 0, 1, 2, . . .
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Strategy:

(I) Precision (<1%)
measurement of δm2

ee

at L around 10 m

(II) determination of phase at L=350 m

But this is after 20 or so oscillations !!!

What about smearing in L/E ? E ok, as ∆E/E ∼ 10−15

d < L/200 and L′ ≈ L(1 + 1
2

h2

L2) so h < L/10

(note: amplitude modulation, 40% at solar minimum!)
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FIG. 3: The averaged P (νe → νe) versus distance measured in number of oscillation lengths, L0.

To help with visualization P! = sin2 2θ12 cos4 θ13 sin2 ∆21 has been set to zero for these figures. (a)
0.1% Gaussian resolution on L/E. (b) 0.5% resolution on L/E. (c) 2% resolution on L/E. In (b)

the oscillations are reduced at 20 or so oscillations out, but still observable. Whereas in (c) the
oscillations are averaged out by 15 L0.

• The resolution on ∆m2
ee measured in a short baseline experiment (∼ L0/2 from the

source) must be #1% or less.

• The resolution on L/E for the long baseline experiment (∼ 20 L0 from the source)
must be #1% or less.

Usually, the neutrino energy cannot be determined experimentally with this accuracy, there-
fore, these preconditions are very difficult to meet, if not impossible.

C. Mass hierarchy reversal and comments on the reactor neutrino method

We have emphasized in the foregoing discussions importance of identifying the quantity
to be held fixed to define the mass hierarchy reversal, and proposed ∆m2

ee as the solution.
In this subsection we want to elaborate this point and clarify how the difference between
the normal and the inverted hierarchies can be made artificially larger by choosing different
variables to define the hierarchy reversal.

In Fig. 4, presented is the survival probability of electron anti-neutrinos at a baseline
of 50 km from a source which is averaged over the uncertainty of energy 3%/

√

E/MeV as
a function of neutrino energy E. It is shown in the left panel of Fig. 4 that if we hold
|∆m2

32| fixed in reversing the hierarchy from the normal to the inverted (as was done in [11])
the difference between the normal and the inverted hierarchies is clearly visible. However,
the obvious distinction seen in the left panel of Fig. 4 disappears if we use ∆m2

ee to hold
when switching between the hierarchies as shown in the middle panel of Fig. 4. A simple
explanation for such a marked difference is that by holding |∆m2

32| fixed in reversing the
hierarchy from the normal to the inverted one maps the neutrino mass spectrum into a
significantly different one, |∆m2

31|IH = |∆m2
31|NH−2∆m2

21. (See Appendix A for more about
it.) This artificially enhances the difference between the hierarchies, as demonstrated in
Fig. 4.

Despite that there exist some discrepancies at energies around 4 MeV, a peak energy of
signal events in reactor experiments, the two disappearance probabilities can be made very

8
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• φ! = arctan(cos 2θ12 tan∆21)−∆21 cos 2θ12

P! = 0
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Mossbauer effect with Neutrinos in the 3H −3 He system:

Source: 3H → (3He + e−B) + ν̄e

Detector: ν̄e + (3He + e−B)→3 H

Q = 18.6 keV and Γ3H = 1.2× 10−24 eV

Various line broadening effects which significantly increase Γeff

Serious technical difficulties exist but it is not impossible (Raghaven, Potzel)

For Γeff ∼ 10−11 eV (∆E/E ∼ 10−15) then σ ∼ 10−33cm2 !!!

Do Mossbauer Neutrinos Oscillate? YES

(Akhmedov, Kopp, Lindner 0802.2513, 0803.1424)

(see also Bilenky, Feilitzsch, Potzel )
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OK

(I) Precision (<1%) measurement of δm2
ee

at L around 10 m

(II) determination of phase at L=350 m

But this is after 20 or so oscillations !!!

What about smearing in L/E ? E ok, as ∆E/E ∼ 10−15

d < L/200 and L′ ≈ L(1 + 1
2

h2

L2) so h < L/10

(note: amplitude modulation, 40% at solar minimum!)
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• φ! = arctan(cos 2θ12 tan∆21)−∆21 cos 2θ12

P! = 0

– Typeset by FoilTEX – 6



Phase I: Measurement of δm2
ee

(the atm δm2 near the first osc. minima for a ν̄e disapp. exp.)

Rench = 3× 105

(
S

1MCi

) (
MT

100g

) (
L

10m

)−2
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Minakata and Uchinami: hep/0602046

• Run IIB = 10 point measurement at LOM/5, 3LOM/5, · · · 19LOM/5,

• each 106 events, σusys = 0.2%, σc = 10%

• sensitivity in δm2
ee ≈ 0.3
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%
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Minakata and Uchinami: hep/0602046

• Run IIB = 10 measurement points
at (1/5, 3/5, · · · 19/5)LOM

• 106 events each, σusys = 0.2%, σc = 10%
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Phase II: phase at 350 m
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The feature of the second-phase experiment presented in the middle panels of Fig. 6
requires some explanations. First of all, there exist many isolated island-like allowed regions.
Suppose that θ13 is given from some other experiments. Then, due to the cosine term in
Eq. 5 the measurement will give a periodic solution

∆m′2
ee ≈ ∆m2

ee +
4nπE

L
, (n = ±1,±2, ...) (15)

for both of the hierarchies. If we take approximation φ" = π/2, there is a shift 2πE/L
between the adjacent ∆m2

ee solutions for the normal and the inverted hierarchies. Hence, the
solutions of ∆m2

ee are alternating in the normal and the inverted hierarchies with a constant
shift 2πE/L between the adjacent solutions, the feature clearly visible in the middle panels
of Fig. 6. The contours are prolonged along the sin2 2θ13 direction because the second phase
measurement alone can determine θ13 only with a limited accuracy.

It’s clear that the second phase alone can not determine neither the value of ∆m2
ee nor the

mass hierarchy. However, once the results of the first and the second phases are combined
all the fake solutions are eliminated, as demonstrated in the lower panels of Fig. 6. It is
evident that ∆m2

ee must be determined in a high accuracy in the first phase measurement.

250
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400
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550

600

650

335 340 345 350 355 360 365

FIG. 5: Plotted are the expected number of events to be collected by detectors placed at the

distances 340, 345, 350, 355 and 360 m from the source for ∆m2
ee = 2.5× 10−3 eV2 and sin2 2θ13 =

0.1 for the normal hierarchy, indicated by solid circles with error bars. Here P" is included (solar
parameters are fixed to their best fit values). Expected number of events in the absence of oscillation

is assumed to be 2000 at each detector position. The blue (light gray) solid curve which passes
through the data points indicates a theoretical expectation assuming the normal hierarchy with

∆m2
ee = 2.5 × 10−3 eV2 and sin2 2θ13 = 0.1 whereas the red (dark gray) curve off the data points

is the one of inverted hierarchy with same values of ∆m2
ee and θ13. Assuming that ∆m2

ee is known
to ±0.5% precision, the thick-dotted (thin-dotted) lines above and below the solid lines are the

expectations with ∆m2
ee 0.5% above (below) that value.
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FIG. 6: The allowed regions in the sin2 2θ13−∆m2
ee plane obtained by the first phase alone (upper

panels), the second phase alone (middle panels) and the combined result of these two phases (lower
panels) for the case where the input parameters are sin2 2θ13 = 0.1, ∆m2

ee = 2.5 × 10−3 eV2

with the normal hierarchy, based on the χ2 analysis described in the next Sec. IIIB. The solar
parameters are fixed to their current best fit values. The first phase is assumed to be performed at
10 positions at around L ∼ 9 m following the run IIB in [17] whereas the second phase is assumed

to be performed at 5 locations at L = 350 ± (0, 5, 10) m from the source. The three closed curves
(red, blue, green) from inner to outer denote the ones obtained with 90% CL, 95% CL, and 99 %

CL.

B. Analysis method and definition of χ2

Now we give details of our analysis method. To calculate the sensitivity of the deter-
mination of the neutrino mass hierarchy by the first and second phases of the experiment
combined, we compute

∆χ2
min(sin

2 2θ13) = χ2
min(wrong hierarchy) − χ2

min(true hierarchy) , (16)

where χ2
min(true/wrong hierarchy) is the minimum of

χ2(true/wrong hierarchy) = χ2
1 + χ2

2(true/wrong hierarchy) , (17)
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FIG. 6: The allowed regions in the sin2 2θ13−∆m2
ee plane obtained by the first phase alone (upper

panels), the second phase alone (middle panels) and the combined result of these two phases (lower
panels) for the case where the input parameters are sin2 2θ13 = 0.1, ∆m2

ee = 2.5 × 10−3 eV2

with the normal hierarchy, based on the χ2 analysis described in the next Sec. IIIB. The solar
parameters are fixed to their current best fit values. The first phase is assumed to be performed at
10 positions at around L ∼ 9 m following the run IIB in [17] whereas the second phase is assumed

to be performed at 5 locations at L = 350 ± (0, 5, 10) m from the source. The three closed curves
(red, blue, green) from inner to outer denote the ones obtained with 90% CL, 95% CL, and 99 %

CL.

B. Analysis method and definition of χ2

Now we give details of our analysis method. To calculate the sensitivity of the deter-
mination of the neutrino mass hierarchy by the first and second phases of the experiment
combined, we compute

∆χ2
min(sin

2 2θ13) = χ2
min(wrong hierarchy) − χ2

min(true hierarchy) , (16)

where χ2
min(true/wrong hierarchy) is the minimum of

χ2(true/wrong hierarchy) = χ2
1 + χ2

2(true/wrong hierarchy) , (17)
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Phase I+II

FIG. 7: The region of sensitivity to resolving the mass hierarchy in sin2 2θ13−event number (per
detector) space. The black solid, the red dashed, and the blue dotted curves denote the region

boundary at 90%, 95%, and 99% CL, respectively. The left and right panel are for the case of
uncorrelated systematic uncertainties of 0.2% and 1%, respectively.

at 90 (99) % CL approximately independent of number of events larger than ∼ 1000. This
is caused by the fact that the precision on the determination of ∆m2

ee at the first phase is
highly dependent on this systematic uncertainty [17].

IV. DETERMINATION OF THE SOLAR PARAMETERS

In the second phase of the Mössbauer experiment, the detectors are placed just after the
first solar oscillation maximum in order to determine the mass hierarchy, as we discussed
in the previous section. In a possible third phase of the experiment, one could envisage
moving the detectors somewhat closer to the source in order to cover the region around this
maximum. It will allow us a precise determination of the solar-scale oscillation parameters,
∆m2

21 and θ12.
In order to optimize the determination of these parameters, we assume that the measure-

ments will be performed at the following 10 different detector locations,

Ln = [200 + 50 (n − 1)] m, (21a)

L′
n = Ln − L0/2, n = 1, 2, .., 5. (21b)

First, in order to observe the oscillation driven by the solar ∆m2
21, we consider the configu-

ration of 5 detector locations (Ln) separated by 50 m, ranging from 200 m to 400 m as in Eq.
(21a). In this way, we can cover the whole range of solar-scale oscillation before and after the
dip due to the oscillation maximum (see Fig. 1). Second, in order to minimize the unwanted
effect due to the rapid oscillations driven by the atmospheric ∆m2

ee, we have to place, for
each location Ln, another detector (or move detector to another location) at L′

n separated
from Ln by half the atmospheric oscillation length, L0/2. See Eq. (21b). The setting of five
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Reactor Neutrinos:



Patrick Decowski / UC Berkeley

• In practice, only 1.5 neutrinos/fission detectable

• Calculated spectrum has been verified to 2% 
accuracy in past reactor experiments

Detected Reactor Spectrum

1.8MeV threshold in Inverse Beta Decay

Reactor  
from neutron rich 
fission fragments

Detected 
Spectrum

Cross section

νe + p → e
+

+ n
νe

Zacek G. et al., Phys. Rev. D34, 2621 (1986). 

C
o
u
n
ts

 [
M

eV
-1
 h

-1
]

Gösgen

Ee+ (MeV)
5

Reactor Neutrinos:  Mass Hierarchy

Detected Spectrum

Petcov, Piai hep-ph/0112074
Choubey, Petcov and Piai hep-ph/0306017
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Learned, Dye, Pakvasa, and 
Svoboda, hep-ex/0612022

νe Disappearance

P (ν̄e → ν̄e) = 1− cos4 θ13 sin2 2θ12 sin2 ∆21

−sin2 2θ13

[
cos2 θ12 sin2 ∆31 + sin2 θ12 sin2 ∆32

]

where ∆ij ≡
∆m2

ijL

4E (kinematic phase).

= 1− c4
13 sin2 2θ12 sin2 ∆21

−1
2

sin2 2θ13

{
1 +

√
(1− sin2 2θ12 sin2 ∆21) cos(2∆̄ + φ̄)

}
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Fourier Transforms: Hanohano
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Fourier Transforms: Hanohano

dominant frequency

sub-dominant frequency
(1/5 the power)

NH:
shoulder at
smaller freq.

IH:
shoulder at
higher freq.

sin2 2θ13 > 0.05 for 10 Kton-yr

sin2 2θ13 > 0.02 for 100 Kton-yr

also L. Zhan, Y. Wang, J. Cao and L. Wen, arXiv:0807.3203
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Hanohano

argument of the atm cosine term is

2∆ee ± φ! ≡ 1
2

∫ L/E

0
dρ δm2

eff(ρ)

δm2
eff(L/E) = δm2

ee ±
1
2

δm2
21 cos 2θ12

sin2 2θ12 sin2 ∆21

(1− sin2 2θ12 sin2 ∆21)
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argument of the atm cosine term is

the “instantaneous” δm2
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argument of the atm cosine term is

the “instantaneous” δm2

2∆ee ± φ! ≡ 1
2
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0
dρ δm2

eff(ρ)

δm2
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ee ±
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(1− sin2 2θ12 sin2 ∆21)

derivative
of φ!
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Uncertainty in E scale ???
between 2 and 8 MeV !!!

+/-0.6%+/-2%

Eobs = Etrue + 0.015× (Etrue − 4.5)

Eobs = Etrue − 0.015× (Etrue − 4.5)

PIH(Eobs)− PNH(Etrue)
PNH(Etrue)

% (1)

– Typeset by FoilTEX – 10

IH -> NHNH -> IH



Uncertainty in E scale ???
between 2 and 8 MeV !!!

+/-0.6%+/-2%

Eobs = Etrue + 0.015× (Etrue − 4.5)

Eobs = Etrue − 0.015× (Etrue − 4.5)

PIH(Eobs)− PNH(Etrue)
PNH(Etrue)

% (1)

– Typeset by FoilTEX – 10

IH -> NHNH -> IH

PIH(Eobs)− PNH(Etrue)
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% (1)
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< 0.5%



Summary & Conclusions

The phase advancement or retardation of the atmospheric oscillation allows
for the possibly determination of the neutrino mass hierarchy in ν̄e disappearance
experiments: but it’s quite a challenge:

• Even for monochromatic ν̄e beams (Mossbauer) this would require a high
precision measurement of δm2

atm around the first oscillation minimum as well
as a determination of the phase 20 or so oscillations out !

Challenging, but the high event rate that maybe possible with Mossbauer
neutrinos could make this possible with modest size detectors.

• Reactor neutrinos using multi-cycle analyses (Fourier) requires high precision
relative determination of the neutrino energy from 2 to 8 MeV.

E.g. what you call a “6 MeV neutrino” must have twice the energy of what
you call a “3 MeV neutrino” to about 1%, otherwise the hierarchies can be
confused. This requirement is very challenging for reactor neutrinos.
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Mossbauer Neutrinos:


