CODE GENERATION

rm When should we use it? rm

When should we avoid 1t?




- THE PROBLEM

« Many applications that use databases involve a
large amount of repetitious boilerplate code,
which users don't want to maintain and which
they'd prefer not to understand. To avoid this, we
have made use of code generators.

“ We also use code generators for other purposes...




. EXAMPLES WE USE -

4 D0 and CDF calibration database access

+ CDF writes a Java specification of database tables and
rows; code generator executes thisto produce C++
classes the users see and the back-end code which
Interacts with a variety of databases.

+ DO does a query to Oracle to generate Python, whichis
parsed to generate C++ structs and CORBA IDL for the
client, and Python access code for the server.

“ rootcint and dOcint for persistency
“ rootcint for dictionary for interactive use
+ Qt: GUI generator and MOC




- MORE EXAMPLES WE USE -

“ Java
+ GUI builders

+ RAD tools with servlet generators, beans generators,
elc.

+ SWIG and boost.python

+ Wrap existing C or C++ for use in another language
“ CORBA IDL
“ flex/bison generated parsers




- EXAMPLES WE DO NOT USE -

+ Rational Rosg, or any other UML --> C++
generation

4 C++ RAD tools with application builders
+ Why do we use them for Java, but not C++ or Python?




. QUESTIONS WE SHOULD &DDRESS .

“ What classes of problems do code generators
solve well? What features should we look for to
Know we should rule out code generation?

n a pure C++ environment, for what sort of
oroblem would code generation be clearly superior
to use of templates?

“ How can we design or choose code generation
systems to avoid the problems listed?

+ What additional benefits could we gain, that we
are not now enjoying?




/0 0 00000000 000000000000

B wavstocLassirYTooLs [

“ Input language

+ Output language

“ Developer interaction with output
“ User interaction with output

“ Levd of abstraction of output




- DESIGN PHILOSOPHIES e

“ Token merging into atemplate
* Thisis how the CDF code generation works

+ Jakarta struts does this, for generating dynamic web
content

4 Code generator with built-in mapping from input
specification to output code.

+ |nterface Definition Language (IDL)
- CORBA
- SWIG




- MORE DESIGN PHILOSOPHIES -

“ Genera purpose language as input
* Pboost.python
“ Mark-up of general purpose language as input
“ rootcint, dOcint
< QtMOC
“ Special-purpose language with embedded code
segments
+ flex/bison, lex/yacc




o AND MORE! -

“ Generation of code skeleton to befilled in by
developer
“ RAD tools




- FOCUSING THE DISCUSSION -

“ The applications in which code generation is used
cover a huge range.

+ We want to focus on a particular application
domain: persistency, including (and most
Importantly) database access.




. DIFFICULTIES ENCOUNTERED .

“ Tight coupling between database tables and client
code, and everything in between

4 Code bloat

“ Synchronization of development for multiple back
ends, e.g. Oracle and MySQL

“ Representation and maintenance of template
(boilerplate) code.
+ Having C++ code produced by C++ or python or Java

+ Comprehending the code (understanding its purpose
and design)




. QUESTIONS WE SHOULD &DDRESS .

“ What classes of problems do code generators
solve well? What features should we look for to
Know we should rule out code generation?

n a pure C++ environment, for what sort of
oroblem would code generation be clearly superior
to use of templates?

“ How can we design or choose code generation
systems to avoid the problems listed?

+ What additional benefits could we gain, that we
are not now enjoying?




