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QCD Studies at the LHC

E.g. Jet Physics

Huge cross sections:
Eg for 1 fb' ~ 10000 events with E;> 1 TeV

100 events with E;> 2 TeV

dzc/dndETIq L (nbTeV)

* PDFs
e Jet shape >
* Underlying event
° as
* low-x
* New physics?

* Understanding QCD at 14 TeV

will be one of the first topics
at LHC
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Motivation
Y

Jets are experimental signatures of quarks and gluons from hard collisions.
Jet Shapes measure the average distribution of energy flow within jets:

** Test showering models in Monte Carlo generators
** Discriminate between different underlying event models
** Provide insight into performance of jet clustering algorithms (AN 2008/001 PAS JME-07-003)

** Possible application in searches for new physics

Previous measurements have been done in pp, ep and ee colliders

outgoing parton

\J/
** References:
S.D.Ellis, Z. Kunszt and D. E. Soper, Phys. Rev. Lett. 69, 3615(1992)

CDF Collab. F. Abe at al., Phys. Rev. Lett. 70, 713 (1993) proton proton

DO Collab. S. Abachi et al., Phys. Lett. B 357, 500 (1995) >
underlying event

<

D. Acosta et al., The CDF Collaboration, Phys. Rev. D71, 112002 (2005). underlying event

ZEUS Collab., J. Breitweg et al., The Eur. Phys. Journal C 8, 3 367-380 (1999)
initial-state radition

H1 Collab., C. Adlof et al., Nucl. Phys. B 545, 3-20 (1999)

outgoing parton

OPAL Collab., R. Akers et al., Zeit. f. Phys. C 63, 197 (1994) final-state radition

OPAL Collab., K. Ackerstaff et al., Eur. Phys. J. C1 479 (1998)

CDF Collaboration A. Abulencia et al., Phys. Rev. D78:072005 (2008) Pelin Kurt January 14. 2008



Tevatron and HERA results
s

CDF Il Preliminary

CDF Il Preliminary

Recaps for CDF :
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Jet Shape Definitions
ﬂ_

Definition : Integrated jet shape is defined

as the average fraction of jet transverse
momentum inside a cone of radius r concentric

to the jet axis.

1
W(r)= > —
N jets P;,et(O’R)

P,(0,r)

jets

Differential Jet Shape

Definition: The average fraction of the jet
transverse momentum inside an annulus in the y-®
plane of inner (outer) radius r-Ar/2 (r+Ar/2)
concentric to the jet axis.

11 p,(r—8r/2,r+dr/2) Integrated Jet Shape
P = N P P_(O.R)

Jjets

Pelin Kurt, January 14, 2008



Data Sets and Selections
I

Procedure:
> QCD dijet samples (PYTHIA, ALPGEN, HERWIG++)

“* Assume integrated luminosity 10 pb' at 14 TeV
o Analysis based primarily on calorimeter jets & towers for

maximum reach in P;. Track jets provide a cross check for calo jet

shapes and help to estimate systematics.

Data Selections:

¢ Two leading jets, |y|<1.0
¢ Jet kinematics from SISCone R=0.7

% Calorimeter towers & tracks satisfy E;>0.5 GeV
(no such cut for MC particles).

%* Use particles/towers/tracks within R=0.7 of jet axis

Corrections:

“* MC-based Jet Energy Scale corrections
<« Jet shape corrections determined from PYTHIA

HCAL towers and y cut

y=1 ‘?1.
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Calorimeter Jet Shapes in 2D

04l 60 < Py™ < 80 GeV

02—

S
T

(p 0.4

et
03 1000 < P;** < 1400 GeV

0.2

0.1

Jet shape in ¢ direction is wider due to bending of charged particles in B field.
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Jet Shape Corrections
L9

“* The jet energy flow measured in the calorimeter

[~ calorimeter jets
7
3
1
| Calorimeter shower

is different than the true (particle) energy flow
due to:

bending of low p; particles in the magnetic field

particle jets

'\'.TE,K

'-' Decays, interactions in
;' material & magnetic field

# hadronization

non linear response of the calorimeter to hadrons
dead material in the detector

showering effects in the calorimeter
zero-suppression...

parton jets %

O OO

proton

Method: Full detector simulation of PYTHIA dijet events is used
to determine the energy corrections as function of distance r from
the jet axis. Mean ratio of Particle P/Calo P, is calculated vs r.

Then measured calorimeter data is corrected in each bin of rand P;.

- 'PARTICLE

l-p[.r]|mc|

|CAL
)[MCI

=1_[r]-wlr

Correction factors from PYTHIA DWT (default)

y .

out of cone
partons

<“— ©
underlying event
proton

Hadronic Shower in Calorimeter

14C

I(r)
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Integrated Jet Shapes
N
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Jet Shapes with ALPGEN
N

“* Independent samples generated with ALPGEN were used to test correction factors
[l Parton-level events with 2,3,4,5 and 6 final state partons.
[l Parton showering done by PYTHIA.
[l Samples were combined using a matching prescription to avoid double counting.

“* We applied PYTHIA jet shape corrections to ALPGEN samples
[J Good agreement of jet shapes from PYTHIA and ALPGEN.
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Comparison of MC Generators
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Particle level jet shapes in PYTHIA DWT and HERWIG++ are shown.

The observed difference is less than 5%.
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Jet Shapes with Different Underlying Event Tunes

T

Well tuned MC’s are essential for precise measurements at LHC and for proper
comparisons with theoretical predictions.
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“Transverse” < “Transverse”

Jet #2 Direction

**Pythia Tune DWT
predicts more UE
energy at the LHC
than Tune DW
(see CMS Note
2006/067)

**These tunes are
two different Vs
extrapolations
from the same
tune at Tevatron
energy.
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Quark & Gluon Jets
40

Quarks & Gluons radiate proportionally to their color factors

4

L (4

Jet shapes are sensitive to quark/gluon jet mixture

L)

<

L)

* Could separate quark and gluon jets in a statistical way
2

&
Z q| ~ Cr=4/3

L)

Ug

q

g_/ng ~C,=

C. ~ strength of gluon coupling to quarks

“* In QCD, quark jets are predicted to be narrower
than gluon jets.

C, ~ strength of the gluon self coupling

At Leading Order: “*Jets initiated by quarks and gluons are also
C,. o expected to have different average multiplicities
C, =, T2 and P; spectra of constituents.
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Quark and Gluon Jet Contributions
s

** Monte Carlo predicts that jet shapes are dominated by contributions from gluon initiated
jets at low jet P; while contributions from quark initiated jets become important at high jet P,
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Quark/gluon jet ID based on parton-jet matching within AR<0.5
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Systematic Uncertainties

Tracker
Particles | —s| Material —+ | Calorimeter | —of JetShapes
Magnetic field

Correction Factors

Major sources of systematics: from PYTHIA

4

)

*

Jet Energy Scale

Jet Fragmentation
Transverse shower shape
Calorimeter response

How good are
these corrections?

e

*

e

*

4

L)

*
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Uncertainty Due to Jet Energy Scale

- /1]
Current expectation of the JES uncertainty at start up is £10% (JME-07-002).

Changing JES affects jet shapes as jets migrate between P; bins.
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08"
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£l
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JES-related uncertainties on jet shapes are ~10% (5%) at r =0.1 (0.2) for P.<100 GeV and
become smaller with increasing radius, ~2% at r =0.1 for P.>260 GeV, and negligible at r>0.1.
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Uncertainty Due to Fragmentation Model
8.

Calorimeter response simulation, and hence jet shape corrections,
depend on the fragmentation model.

- 1'5: ™ 1'5:
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0.8 0.8F
3 60<P;<80 GeV 07 140<P;'<180 GeV
0.61 0.6
05=1 "0z 03 04 05 06 07 057704~ 0z 03 04 05 06 07

radius radius

To determine systematic uncertainty due to the fragmentation model we
compared the jet shape correction factors for PYTHIA DWT and HERWIG++.
They agree within 5% - 10% at r = 0.1.
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Uncertainty Due to Underlying Event Model
04 |

The uncertainty of jet shape correction factors due to UE was estimated
comparing results for tunes DW and DWT.

— 15¢
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14f
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The difference is less than 20% (10%) atr = 0.1 (0.2) at P.= 60-80 GeV, and
becomes smaller as a function of r. The difference is not visible at the high P-.
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Uncertainty Due to Calorimeter Response &
Transverse Showering

24

The measured jet shapes depend on the calorimeter response to hadrons and on the
transverse showering. There is uncertainty due to simulation of these effects.

Track/Calo Jet Shape Ratios

In data :

Data-driven approach will be used to test the rMc _ TrackjetShape

correction factors by comparing track jet and CaloJetShape pc

calorimeter jet shapes. gpara _ TrackjetShape
CaloJetShape ps7a

DATA
R

R MC

CorrCaloShapePA™ = (RawCaloShape)PAT4 * I (r) * SF

Scale Factor (SF)=

SF quantifies the difference between data and simulation.
-- If SF >> 1, we will have to trace the source of discrepancy.
-- If SF = 1, we can scale the correction derived from MC by SF and

and add the deviation of SF from 1 as systematics uncertainty.
Pelin Kurt, January 14, 2008



Track & Calorimeter Jet Shaﬁes in MC
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Transverse Showering
N I

“* Hadrons deposit energy in several neighboring towers.
This transverse showering affects the measured jet shapes
but may not be simulated exactly. There are no parameters
in the simulation to easily vary the transverse profile of a shower.

“* A simple approach: Neglect the transverse profile completely,

account for E/p response, and compare to full simulation.

“* This clearly gives an over-estimate of the systematic uncertainty. Hadronic shower in calo

calorimeter jets

0.85

)
(]
[}
]
[
.
[
[
.
]
[
.

particle jeis

Qo
Calorimeter shower ~—
1]

1. We propagated particles to the face
of calorimeter and used a fit to single
particle response E/p to scale P-:

: 0.8
+ Decays, interactions in
," material & magnetic field

A 0.75

0.7

hadronization

p Single pion E/p E/lp=1form,y, e
. out of cone 0.65 - * .
parton ets i trom Monte Carlo Scaled P; = E/p * P; of particles
; 0.6 .
'- 2. Scaled P; was used to calculate jet
. PR w0 w0 20 %0 a0 shapes w/o transverse showering.
underlying event Beam Momentum
proton proton
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Impact of Transverse Showering
023y
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Variation of Calorimeter Response
24

“* To estimate systematics due to response, jet shapes were derived for E/p
variations around the average. As before, E/p was used to scale P of particles

propagated to calorimeter surface.

“* We varied the response (E/p) by its assumed systematic uncertainty;
an “educated guess”: +10% at low P; and +5% at high P-.

o 0.85 central value :

u OBE +1U.\ central va Each hadron P; was weighted by E/p curve

+10:
Each hadron P; was weighted by 1.1*E/p for
P.< 50 GeV and 1.05"E/p for P; > 50 GeV

0.751

0.7F

0.65

. A -10:

fixi=
e 1+Be <X Each hadron P, was weighted by 0.9*E/p for
o-ss_l I : I5|0I = I1{|]0I : : I150I ‘ : I2{‘]0I = I2‘50I : : '3{']0| ‘ PT< 50 Gev and 0195*E/p for PT > 50 GeV

Beam Momentum
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Impact of Calorimeter Response Variation

24
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Quark and Gluon Jet Shapes

3
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Observations:

“* Quark jets are narrower than gluon jets.

¢ Fraction of gluon initiated jets decreases with increasing jet P-.

*$* Mixture of quark and gluon initiated jets changes with jet P+, contributing to
the jet shape dependence on Px.

** Jets become more collimated with increasing jet P-. Pelin Kurt, January 14. 2008



Theory Investigations
27! |

“* Comparison to Next-to-leading order (NLO) pQCD prediction
L Experimental measurement can not be compared directly to pQCD. The
comparison must be made at particle level.
1 Hadronization & UE Corrections are required in order to make this comparison
¢ PYTHIA tunings DWT QCD dijet events were generated without UE
MSTP(81)=0 ! multiple parton interactions 1 is PYTHIA default
¢ Particle level jet shapes are corrected with the hadronization & UE correction

factor.
0 NLOJet ++ and CTEQ6.6 PDFs have been used for NLO prediction (by K. Hatakeyama)
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LO-Parton Shower and NLO prediction
22! |
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Conclusions |: Results
290

+* Using PYTHIA and HERWIG++ MC simulations we have investigated
a technique to measure jet shapes in p-p collisions at 14 TeV.

+* Correction factors were determined from PYTHIA DWT.
= They work fine for ALPGEN samples.

*

Different Underlying Event tunes have been investigated.
= PYTHIA DW tends to produce narrower jets at low P-.

L)

*

In QCD it is expected that
0 Jets become narrower with increasing jet P-.
U Quark jets are narrower than the gluon jets.

Pelin Kurt, January 14, 2008



Conclusions Il: Systematics
3y

“* Several sources of systematics have been evaluated:

= JES-related systematics is 10% (5%) at r =0.1 (0.2) for jet P; > 100 GeV and
decreases as a function of radius at low P; while the effect is less than 5% at high Px.

= Sensitivity to the jet fragmentation was investigated by comparing results for
PYTHIA DWT and HERWIG++. The observed difference is less than 5% for
r < 0.3 for particle level jets. Correction factors for HERWIG++ and PYTHIA
DWT agree within 10% (5%) at r =0.1 (0.2) at the low P-.

= Transverse showering in calorimeter is a P and r dependent source of

systematics. Track shapes will be used in collider data to estimate it.
Using a simple model we estimated that this source of systematics is expected
to be <30% (10%) at r =0.1 (0.2) at low P;. At high P; we expect this

systematics to be <10% at r =0.1 and negligible for r >0.1.

= Variations of E/p response indicate that integrated jet shapes are stable
within 2%.

“* We conclude that systematic uncertainties are under control and allow an
early measurement of jet shapes.
Pelin Kurt, January 14, 2008



Summary: Theory related...
3y

* Made a first attempt to calculate the NLO pQCD predictions for the jet
shapes at CMS using NLOJet++ ...

= Partonic final state shapes with/wo multiple parton interactions were
studied. The parton level shapes are agree very well with the
hadronic final state shapes in default settings of MSTP(81) ...

= NLO pQCD predictions are avaliable from NLOJet++.
= The NLO comparison with the full simulated corrected shapes will be

done as a next step which requires the estimation of UE&Hadronization
corrections...

Pelin Kurt, January 14, 2008



