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So far, we have not considered the effect that particles in a bunch might have 
on each other, or on particles in another bunch. 
 
Consider the effect off space charge on the transverse distribution of the 
beam. 

E
B
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radial charge 
density 

If we look at the field at a radius r, we have 
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Similarly, Ampere’s Law gives 
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
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Linear charge density 
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We can break this into components in x and y 
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Non-linear and coupled è ouch! but for x<<σx 
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′′x = Fx
vp

= Fx
β 2γ mc2

≈ e2

4πσ 20β
2γ 3 nx

= r0
β 2γ 3σ 2 nx;     r0 ≡

e2

4π0m0c
2

“classical radius” = 1.53×10−18  m for protons

This looks like a distributed defocusing quad of strength d 1
f

⎛
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⎞
⎠⎟

ds
≡ k = − nr0

β 2γ 3σ 2

so the total tuneshift is 
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= 1
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Maximum tuneshift for particles 
near core of beam 

“Bunching factor” 
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K = 400 MeV
N=5 ×1012

N = 2 π -mm-mr
B=1 (unbunched beam)

Δν = − Nr0
4πβγ 2N

= −.247 This is pretty large, but because this is a rapid 
cycling machine, it is less sensitive to resonances 

Because this affects individual particles, it’s referred to as an 
“incoherent tune shift”, which results in a tune spread.  There is also a 
“coherent tune shift”, caused by images charges in the walls of the 
beam pipe and/or magnets, which affects the entire bunch more or less 
equally.   
 
This is an important effect, but beyond the scope of this lecture. 
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If two oppositely charged bunches pass through each other… 

E
B

E
B

v v
Both E and B fields are attractive to 
the particles in the other bunch 

If two bunches with the same sign pass through each other… 

E
B

v

E
B

v
Both E and B fields are repulsive to the 
particles in the other bunch 

In either case, the forces add 

USPAS, Hampton, VA, Jan. 26-30, 2015 Collective Effects 8 

  


F = −r̂ e2

2π0r
N
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N
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′′x = Fx
vp

;   ′′y =
Fy
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Integrate… 

Δ ′x = Fx
vp

Δs;       Δ ′y =
Fy
vp

Δs

Effective Length 
L L

v

v v

L
2

v

Front of first bunch encounters 
front of second bunch 

Front of first bunch exits second bunch. 

“Effective length” 
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Small x and y 

Maximum tuneshift for particles near 
center of bunch 

“Tuneshift Parameter” 

normalized emittance 
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The total tuneshift will ultimately limit the performance of any collider, by driving the 
beam onto an unstable resonance.  Values of on the order ~.02 are typically the limit.  
However, we have seen the somewhat surprising result that the tuneshift 
 
 
 
does not depend on β*, but only on 
 
 
 
For a collider, we have 
 
 
 
 
 
 
We assume we will run the collider at the “tuneshift limit”, in which case we can 
increase luminosity by 

•  Making β* as small as possible 
•  Increasing Nb and ε proportionally. 

 
ξ = Nbr0

2πγ

 

Nb


≡    "brightness"
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