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Floquet Transformations
and Harmonic Resonances

Non-=linear Perturbations

® In our earlier lectures, we found the general equations of motion
2

, B x +Xx

, y (1 N ) P

T T (Bp) 0

0

o B (1)
Bo) o

@ We initially considered only the linear

fields, but now we will bundle all B, =B, + B'x + AB (x,s)
additional terms into AB .
non-linear plus linear field errors Bx = B y + ABx (y, S)
® We see that if we keep the lowest
order term in AB, we have This part gave us the

Hill’s equation

" 1
x +K(s)x=-7—=AB,(x,s)

(Bp)

y'+K(s)y = (Blp)ABx (7,9)
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Floquet Transformation

® Evaluating these perturbed equations can be very complicated, so
we will seek a transformation which will simplify things

® Our general equation of Motion is
x(s) = A B(s) cos(yp(s) + )

® This looks quite a bit like a harmonic oscillator, so not surprisingly
there is a transformation which looks exactly like harmonic

oscillations ( ) ¥
E(s)=—
JB

1.1 dp 1

_y Lo a1
REVY by it

¢
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Plugging back into the Equation
X = \/E(E

11 JdEdp 1 1

x=5ﬁﬁ§+ﬁ g ds——aﬁ§+ﬁf
1 /.
=)
//_L . 1 é_ ! _ié =
x _v/g’” (§+m’§)+v\/ﬁ(vﬂ a'v ﬁ)
_ g —vz(a2§+ ﬁa')§

2 n3/2
v

So our differential equation becomes

X+ K(s)x = E-v'(a’ + pa'e +K(s)B"2E

V2ﬁ3/2
_ .{.’,;—vz(az +/3’a’—ﬁ2K)§ __AB
T
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® We showed a few lectures back that
.k
w?(s)

4

w'(s) + K(s)w(s) - 3L =0
w’(s)
= KpB*-pa’ -a* =1
® So our rather messy equation simplifies

él-"—vz(a2 +/3’a’—/3’2K)§ __AB
AT

=& +viE=? —
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Understanding Floquet Coordinates

® In the absence of nonlinear terms, our equation of motion 5

is simply that of a harmonic oscillator v
E(@)+vE($) =0

and we write down the solution
E(@) =acos(v¢+5) wol £
E(¢) =-avsin(vg+5) _

® Thus, motion is a circle in the 5,% plane

® Using our standf’ard formalism, we can express this as

£@) -5 coslvp)+ sinlyg) sy [ co09) Bl

v =" = 1 . . |;where 8 =
. . (§(¢)) —Tsm(vqb) cos(v¢) (50)
£(p) = -&vsin(vp)+ & cos(vp) B

® A common mistake is to view ¢ as the phase angle of the oscillation.
vo the phase angle of the oscillation
@ advances by 2m in one revolution, so it’s related (but NOT equal to!) the angle around the
ring.
unnormalized!
) 2 2 2
Note: x> =Pe=pE. =pa*=a’*=¢ <
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Perturbations

@ In general, resonant growth will occur if the perturbation has a component
at the same frequency as the unperturbed oscillation; that is if

AB(E,¢) = ae™ +(...) = resonance!
@ We will expand our magnetic errors at one point in ¢ as
19"B

AB(x) = b, +b1x+b2x2 +b3x3...;b" =
n! ox"

x=y=0
_ VZ/))}/ZAB _ VZ
(Bp) (Bp

§+V§__(Bp) ﬂn+3/2b§

@ But in general, b, is a function of g, as is B, so we bundle all the
dependence into harmonics of 1
p ¢ /))(n+3 /Zb - EC e

(Bp) i,

@ So the equation associated with the nth driving term becomes

)(ﬂs/zbo +ﬁ4/2b1§+ﬁ5/2b2§2 +)

. o ' Remember!
E+viE=—? E Cm’ng-‘”e’"w’ €,8, and b,, are all
k=—00

functions of (only) ¢
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Calculating Driving Terms

® We can calculate the coefficients in the usual way with

1 27
- /))n+3/2b —1m¢d¢
~(Bp) 2 f
® But we generally know things as functions of s, so we use dg)—fdzp -l‘i;/’ ds =L ds
to get 1 s

Cm,n = (B—p)%fﬁ m /Z(S)bn (S)e_im¢dS

Where (for a change) we have explicitly shown the s dependent terms.

® We’re going to assume small perturbations, so we can approximate B with
the solution to the homogeneous equation

E(@)=a cos(v¢); (define starting point so 6 = 0)

1 & n ) i i
& =a"cos"(vp)=a"— Y| n-k " where| |=——
2 kZ—n .] '(l J)'

Ak=2 2’
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@ Plugging this in, we can write the nth driving term as
n n
a n
2 (_ D ER:
2 ) &~ ~,
Mo\ 2 )"

[o2]

i(m+vic)p
C,.e

® We see that a resonance will occur whenever

m+vk = xv —0<m<®
where
v(1Fk)=2m —n<sksn (Ak=2)
@ Since m and k can have either sign, we can cover all possible combinations
by writing
m
Vresonant = l—k

Floquet Transformations and Resonances

USPAS, Hampton, VA, Jan. 26-30, 2015 9

Types of Resonances

n k Order Resonant tunes Fractional Tune at
Magnet Type | 1-k| v=m/(1-k) Instability
Dipole 0 0 1 m 0,1

1 1 0 none (tune shift)
Quadrupole

1 -1 2 m/2 0,1/2,1

2 2 1 m 0,1
Sextupole 2 0 1 m 0,1

2 -2 3 m/3 0,1/3,2/3,1

3 3 2 m/2 0,1/2,1

3 1 0 None
Octupole

3 -1 2 m/2 0,1/2,1

3 -3 4 m/4 0,1/4,1/2,3/4,1
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USPAS, Hampton, VA, Jan. 26-30, 2015

1/28/15



1/28/15

Effect of Periodicity

® If our ring is perfectly periodic (never quite true), with a period N, then we
can express our driving term as

27 o % o 277 2 -im ¢+%‘f 27” 2r i
Com ={f(¢)€ ¢d¢={f(¢)€ “’d¢+{f(¢+ﬁ)e | )d¢+{f(¢+2y)e [

-| [F@)e g Ee'im('*"]

gz

N )d¢+...

. 2 .
@ Where we have invoked the periodicity as f(¢+yﬂ) - 7o)

@ Clearly, if m is any integer multiple of N, then all values are 1. Otherwise,
the sum describes a closed path in the complex plane, which adds to zero,

SO 2
N
Cop =N [f(@)e™™dp if m=xjN
0
=0 if m==jN
@ That is, we are only sensitive to terms where m is a multiple of the
periodicity.

This reduces the effect of the periodic non-linearities
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Resonant Behavior

® Remember that our unperturbed motion is just

E(p) = acos(v¢+ 5)
E(¢) =—-avsin(vg+5)

® Aresonance will modify the shape and size of

this trajectory, so we replace a with a variable r vg+0 5

and we can now express the postion in the ré plane
E(p) = rcos(v¢+ 6)= rcosé

5(@ =-rv Sin(V¢+ 6) =—rvsin@

< |uw.

6 =tan™ 5
vE
® We express r? in terms of our variables and we have
-2
P =E 4 § Plug in nt" driving term for this
v /—A—\

ir —2§§+2§é 52(§+V 5)

%
_ n im¢ _ n : n+l im¢
=28 ECm &'e"” =2vcos” Osinbr ECWe
m=—0 Mm=—w
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Evolution of Anhgular Variable

® We have
9=tan'1(—§):>
vE
do 1 5 &
dp” (¢ ( v v§2) ppag ) e
vE =
V2§n+1 EC eim¢ ,V2§n+l Ecm’neim¢
=v|1+ == =v|l+ e
V2E 4+ & vr

= v(l +cos" o' E c,.em )
=

® These are our general equations to evaluate the effects of particular types
of field errors. Remember that our sensitivity to these errors is actually
contained in the C,, , coefficients
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Example; Third Order Resonance
® Sextupole terms (n=2) can drive a third order resonance
C;—(/j =2v cos HstMZC 2e
40 _ v[1+rcos’ 6 S C e™
d¢ = E m,2

Mm=—0

® We will consider one value of |[m| at a time

) 1 b
Cm etm¢ — /))3/2 2 etm(¢—¢ )dS
5 P )
® We'll redefine things in terms of all real components by combining the
positive and negative m values

(m(p-¢')s

! cosm¢fﬁ”2 cosm¢ds+ smm¢fﬁ3/2 )smm¢ds

img —lm¢ 3/2
C,.e"+C_, e fﬁ

m,

(Am2 cosm@+ B, , sin m¢)

-3
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© So we have define real driving terms b,

A , = 3/2
= I7 p)

b, .
B,, =f/j’3/2 (B,zo)sm mgds

cosmeds

@® So we plug this into the formulas

2
ar” _ 2,5 cos? Bsin 0(4, ,cosmp+ B, ,sinmg)
dp =« ’ '
= %ﬁ (Amyz(sin(ﬁ +mg)+sin(30 + mep)+sin(0 — mg) +sin(36 - mg))
7

- Bm,z(cos(ﬁ + m¢)+ cos(3t9 + m¢)— cos(ﬁ - m¢)— cos(36 - m¢)))

® For unperturbed motion 0 =1 =v¢ and we’re interested in behavior near
the third order resonance, where v~ m/3, so

m
30—m¢z3(1—3)¢

® All other terms will oscillate rapidly and not lead to resonant behavior
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® So we’'re left with

2
a1 (4, sin(30 - mg)+ B, , cos(30 - mg))
dgp 4rx
@ The angular coordinate is given by

de 1 N .
—=v+—rcos’0(A, ,cosmp+ B ,sinm
i (4, cosmp+ B, , sinmp)

=v+ Sir(Am.2 cos(36 —mg)— B, ,sin(30 — mg))+(terms we don't care about)
p :

@ We perform yet another transformation to the (rotating) coordinate system

5 m Note: in an unperturbed 5 _(,_m
g = 6_§¢ system, this would just be =~ (V 3 )¢
49 _do _m
dgp d¢ 3
@ We then divide the two differentials to get the behavior of rZ in this plane
dr? 1, o .
d_rz_ % ~ Er (Am'2 sin360 +B,, ,cos 30)
5 a6 1 ~ g
6 do (v—ﬂ)+—r(Amzcos39—Bm,s1n30)
do 3) 8m ) .
Floquet Transformations and Resonances USPAS, Hampton, VA, Jan. 26-30, 2015 16
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@ This equation can be integrated to yield

A 36 - Bsin36 A 36 - B, ,sin360
PRI S COS S o2y g3 2 COS m,2 S

12”(V _%) 1270V

@ A and B are related to the angular distribution of the driving elements
around the ring. We can always define our starting point so B=0, so let’s
look at

cos36
"2 1228V

a=rr+r4

@ ais an integration constant which is equal to the emittance in the absence
of the resonance.

@ This is ugly, but let’s examine some general features

~ g m 5t Tm 37 1w 2 2
=222 22" »r-a
62 6 6 2 6
~ 27 4m
=0"— =2 =r
~ @ m St .
6= 3373 =7’ =72, nosolution for large A
Floquet Transformations and Resonances USPAS, Hampton, VA, Jan. 26-30, 2015 17

@ The separatrix is defined by a triangle. We’d like to solve for the
maximum a as a function of the driving term A. When a corresponds to the
maximum bounded by the separatrix, we have that at

V3

~ d V4
0 =—=r=a,=d, =asepcosg=—2 a,,

, Plug this in when the angle =0, and we have

2

oo 2 [\5) 2 (\6]33 cos36

a =4 g A ate m
o2 ]2 ] T sy
=_—= 1 + Am 2 \/g s
24x8v 7
8mov

B
In general = _£p2
g € max T—” A;,z +sz,2 A,, fﬂ 2(Bp)cos(31// )ds
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Behavior in Phase Space

® We convert back to our normal Floquet angle
m . m

4, 0033(0 - g(b) - B, ,sin 3(6' —;gb)

1276v

® So as we move around the ring, ¢ advances and
the shape will rotate by an amount (m/3)¢

a=r’+r

® Since m/3-~v is a non-integer, particles must always o
make three circuits (Agp=6m) before the shape completely

rotates at the origin.

Floquet Transformations and Resonances
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Application of Resonance

® If we increase the driving term (or move the tune closer to m/3), then the
area of the triangle will shrink, and particles which were inside the

separatrix will now find themselves outside

® These will stream out along the asymtotes
at the corners.
® These particles can be intercepted
by an extraction channel
=Slow extraction
Very common technique

Unstable beam motion :
in N(order) turns { Extraction Field

Lost beam
Septum
Floquet Transformations and Resonances USPAS, Hampton, VA, Jan. 26-30, 2015 20
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Extracted beam
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Hamiltonian Approach to Resonances

We now want to define a new coordinate which represents the “flutter” with

respect to the average phase advance.

K ds’ S
"flutter" _J.——z — J.—— —
c ) B "R
We define a new coordinate 6, such that
¢ =0+ "flutter" = —
R
We want to transform to new variables 6 and /. Try
s rds
0= ¢ + VE - ﬁ unperturbed Hamiltonian
1=J 1%
== g=—2
1ol) ol
s rds
—-FE=1¢+v—+
; [¢ il 5 j
Floquet Transformations and Resonances USPAS, Hampton, VA, Jan. 26-30, 2015
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Third Order Resohances Revisited

In the x plane + a sextupole

1 B, 1 eB’ 1 eB”
H=—pf+ﬂx+—e e e
2 Po 2 p, 16 Po

l SeXtUpO e moment
= H, +§S(s)‘x2/

We have

x=A\Bcosp=1/2JB cosd =421 cos¢

1
H=H,+ 55(s)(2[31)3/2 cosg
We expand this in a Fourier series

B*S(s)= ZWm cosm%

1 12 s
=—@B"S(s)cosm—
=P BS(s)cosm
The rest proceeds as before

Floquet Transformations and Resonances USPAS, Hampton, VA, Jan. 26-30, 2015
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Expand the cos? terms and just keep the cos terms.

H= —I+— 21 MZW cos( ) cos3¢+3cosg)
:%1_,_5 (21 WZW |:cos(3¢+ij+cos( 3¢+mR)+3cos(¢+mR)+3cos( ¢+m%ﬂ
Looking at Hamilton’s Equations, we have

dl __oH _ JH
ds 00 aq)

21 3/22 m|: Sm(3¢+mR]+sm( 3¢+m;)—sm(¢+mRJ+sm(—¢+m;ﬂ

. N
Examine near 3¢ ~ mE

Define a new variable g=g_v, 3

:é—6%+ %; S=v-v,
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The part of the Hamiltonian which drives the resonance is

5 1 3 s P
H=H,, + o I+2(2]) Wmcos[(m+35)E—39—3J

ds'J
B
We now have the equations of motion
dl aH 1 32 . s ~ ]
I'=—= 217 W, +30)—-30-3
o s msm[(m % I
< d6 OoH 1
= do 0 [

Yds']
B
49 08 _0 . 1y 38)2-36-3
Y R+16( )Wmcos[(m+ 5)R 0 f

T ds’]
B

the fixed points are when the two are zero so
-~ tds
(m+38)=-30-3[= |=nn
R B
The rest proceeds in a similar fashion as before...

Floquet Transformations and Resonances USPAS, Hampton, VA, Jan. 26-30, 2015 24

1/28/15

12



