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What is RooFit? 
The RooFit library provides a toolkit for modeling the expected distribution of events in a physics 
analysis. Models can be used to perform likelihood fits, produce plots, and generate "toy Monte Carlo" 
samples for various studies. The RooFit tools are integrated with the object-oriented and interactive 
ROOT graphical environment. 
  RooFit was originally developed for the BaBar collaboration, a particle physics experiment at the 
Stanford Linear Accelerator Center. This software is primarily designed as a particle physics data 
analysis tool, but its general nature and open architecture make it useful for other types of data 
analysis also. 
 

 
// --- Observable --- 
RooRealVar mes("mes","m_{ES} (GeV)",5.20,5.30) ; 
 
// --- Build Gaussian signal PDF --- 
RooRealVar sigmean("sigmean","B^{#pm} mass",5.28,5.20,5.30) ; 
RooRealVar sigwidth("sigwidth","B^{#pm} width",0.0027,0.001,1.) ; 
RooGaussian gauss("gauss","gaussian PDF",mes,sigmean,sigwidth) ; 
 
// --- Build Argus background PDF --- 
RooRealVar argpar("argpar","argus shape parameter",-20.0,-100.,-1.) ; 
RooArgusBG argus("argus","Argus PDF",mes,RooConst(5.291),argpar) ; 
 
// --- Construct signal+background PDF --- 
RooRealVar nsig("nsig","#signal events",200,0.,10000) ; 
RooRealVar nbkg("nbkg","#background events",800,0.,10000) ; 
RooAddPdf sum("sum","g+a",RooArgList(gauss,argus),RooArgList(nsig,nbkg)) ; 
 
// --- Generate a toyMC sample from composite PDF --- 
RooDataSet *data = sum.generate(mes,2000) ; 
 
// --- Perform extended ML fit of composite PDF to toy data --- 
sum.fitTo(*data,Extended()) ; 
 
// --- Plot toy data and composite PDF overlaid --- 
RooPlot* mesframe = mes.frame() ; 
data->plotOn(mesframe) ; 
sum.plotOn(mesframe) ; 
sum.plotOn(mesframe,Components(argus),LineStyle(kDashed)) ; 
 

 
Example 1 – A non-trivial code example: Using RooFit to perform an extended unbinned 
maximum likelihood fit of a Gaussian signal on top of a Argus shaped background to toy 

Monte Carlo data sampled from the same model. 
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1. Installing RooFit 
ROOT5 
RooFit is distributed as external package with ROOT and is integrated into its make system from 
ROOT version 5.02 onward.  Binary distributions of ROOT5 are shipped with pre-compiled RooFIt 
libraries and for those distributions you do not need to do anything special to obtain roofit. For source 
distributions of ROOT5, obtained either as source tarball, or from CVS you need to indicate in the 
makefile configuration that you wish to compile RooFit as well. To enable building of the RooFit library 
in ROOT5 add the —enable-roofit option to the configure command when you install ROOT.  
 

 
unix> ./configure <platform_id> --enable-roofit 
unix> make 
 

 
If you have a full-source installation of ROOT you can also at any moment upgrade RooFit to the 
latest version in your existing installation of ROOT5 by downloading a new source tarball from 
http://roofit.sourceforge.net/summary.php. Go to ‘File Releases’ and down the latest ‘RooFit 
(ROOT integrated)’ tarball file. Untar the tarball to your ROOT installation directory and remake 
ROOT. 
 

 
unix> cp roofit_vXYZ_root5kit.tar $ROOTSYS 
unix> cd $ROOTSYS 
unix> rm –rf roofit/ 
unix> tar –xvf roofit_vXYZ_root5kit.tar 
unix> make 
 

 

ROOT3 and ROOT4 
RooFit also works with ROOT versions 3 and 4, but you need a full-source version of ROOT, either 
from a tarball or CVS and a source tarball of RooFit that you can obtain from the RooFit home page, 
as explained above. Download the roofit_vXYZ_root4kit.tar file and untar it in your ROOTSYS 
directory and issue a make command to rebuild ROOT. The root4kit tarball contains some extra 
makefile fragments that configure ROOT3/4 to recognize RooFit as a module. 
 

Loading RooFit in ROOT 

Once the RooFit library is available in $ROOTSYS/lib, you can use it in ROOT by executing 
the following commands 
 

 
root> gSystem->Load(“libRooFit”) ; 
root> using namespace RooFit ; 
 

 
Be sure not to forget the second line, otherwise you will not see some of the helper functions that 
RooFit defines in the global namespace.
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2. Getting started  
In this section we will guide you through a simple exercise of building a model and fitting it to data. 
The aim is to familiarize you with several basic concepts and get you to a point where you can do 
something useful yourself quickly.  In subsequent sections we will explore several aspects of RooFit in 
more detail 
 

Building a model 
A key concept in RooFit is that models (i.e. functions) are built in a truly object-oriented fashion. Each 
RooFit class has a one-to-one correspondences to a mathematical object: there is a class to express 
a variable, RooRealVar, a base class to express a function, RooAbsReal, a base class to express a 
probability density function, RooAbsPdf, to name a few. As even the simplest mathematical functions 
consists of multiple objects – i.e. the function itself and its variables – all RooFit models also consist of 
multiple objects. The following example illustrates this 
 

 
RooRealVar x(“x”,”x”,-10,10) ; 
RooRealVar mean(“mean”,”Mean of Gaussian”,0,-10,10) ; 
RooRealVar sigma(“sigma”,”Width of Gaussian”,3,-10,10) ; 
 
RooGaussian gauss(“gauss”,”gauss(x,mean,sigma)”,x,mean,sigma) ; 
 

Example 2 – Construct a Gaussian probability density function 
 
Each variable used in gauss is initialized with several properties: a name, a title, a range and 
optionally an initial value. Variables described by RooRealVar have more properties that are not 
visible in this example, for example an (a)symmetric error associated with the variable and a flag that 
specifies if the variable is constant or floating in a fit. In essence class RooRealVar collects all 
properties that are usually associated with a variable 
 
The last line of code creates a Gaussian probability density function (PDF), as implemented in 
RooGaussian. Class RooGaussian is an implementation of the abstract base class RooAbsPdf, which 
described the common properties of all probability density functions. The PDF gauss has a name and 
a title, just like the variable objects, and is linked to the variables x, mean and sigma through the 
references passed in the constructor.  
 

Visualizing a model 
The first thing we usually want to do with a model is to see it. RooFit takes slightly more formal 
approach to visualization than plain ROOT. First you have to define a ‘view’, essentially an empty plot 
frame with one of the RooRealVar variables along the x-axis. Then, in OO style, you ask your model 
plot itself on the frame. Finally you draw the view on a ROOT TCanvas: 
 

 
RooPlot* xframe = x.frame() ; 
gauss.plotOn(frame) ; 
frame->Draw() 
 

 
The result of this example is shown in Figure 1. Note that in the creation of the view we do not have to 
specify a range, it is automatically taken from the range associated with the RooRealVar. It is of 
course possible to override this, we’ll return to this later. Note also that when gauss draws itself on the 
frame we don’t have to say that we want to plot gauss as function of x, this information is retrieved 
from the frame.  
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Figure 1 – Gaussian PDF 

 
A frame can contain multiple objects (curves, histograms) to visualize. We can for example draw 
gauss twice with a different value of parameter sigma. 
 

 
RooPlot* xframe = x.frame() ; 
gauss.plotOn(frame) ; 
sigma = 2 ; 
gauss.plotOn(frame,LineColor(kRed)) ; 
frame->Draw() 

 
 
In this example we change the value of RooRealVar sigma after the first plotOn() command using 
the assignment operator. The color of the second curve is made red through additional 
LineColor(kRed) argument passed to plotOn()1. LineColor is an example of a ‘named argument’. 
Named arguments are used throughout RooFit and provide a convenient and readable way to modify 
the default behavior of methods.Named arguments are covered in more detail in later sections. The 
output of the second code fragment in shown in Figure 2. 
 

 
Figure 2 – Gaussian PDF with different widths 

 

                                                     
1 If you get a ROOT error message at this point because LineColor is not defined, you have 
forgotten to include ‘using namespace RooFit’ in your ROOT setup as was explained in Section 1. 
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The example also demonstrates that method plotOn() make a ‘frozen’ snapshot of the PDF: if the 
PDF changes shape after it has been drawn, as happens in the last code fragment, the already drawn 
curve will not change. Figure 2 also demonstrates that RooGaussian is always normalized to unity, 
regardless of the parameter values. 

Importing data 
Data analysis revolves around, well... data, so the next step is to import some data. Data in general 
comes in two flavors: unbinned data, represented in ROOT by class TTree and binned data, 
represented in ROOT by classes TH1,TH2 and TH3. RooFit can work with both. 
 

Binned data (histograms) 
 
In RooFit, binned data is represented by the RooDataHist class. You can import the contents of any 
ROOT histogram into a RooDataHist object 
 

 
TH1* hh = (TH1*) gDirectory->Get(“ahisto”) ; 
RooRealVar x(“x”,”x”,-10,10) ; 
RooDataHist data(“data”,”dataset with x”,x,hh) ; 
 

Example 3 – Importing data from a TTree and drawing it on a TCanvas 
 
When you import a ROOT histogram the binning of the original histogram is imported as well.  A 
RooDataHist always associates the histogram with a RooFit variable object of type RooRealVar. In 
this way it always known what kind of data is stored in the histogram. 
 
A RooDataHist can be visualized in the same way as a function can be visualized: 
 

 
RooPlot* xframe = x.frame() ; 
data.plotOn(frame) ; 
frame->Draw() 

 
 
The result is shown in Figure 3. 
 

 
Figure 3 – Histogram visualized in RooFit 

 
If you look closely at Figure 3 you will see that the error bars for entries at low statistics are not 
symmetric. This is not a mistake but a feature: at low statistics symmetric Gaussian errors of 
magnitude √N are only an approximation of the actual statistical uncertainty on a bin with N entries. 
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RooFit by default shows the 68% confidence interval for Poisson statistics2, which is more difficult to 
calculate but also more accurate. Appendix C includes some basic statistics reading material that 
covers this and other issues. 

 

Unbinned data (trees) 
 
Unbinned data can be imported in RooFit much along the same lines and is store in class 
RooDataSet 
 

 
TTree* tree = (TTree*) gDirectory->Get(“atree”) ; 
RooRealVar x(“x”,”x”,-10,10) ; 
RooDataSet data(“data”,”dataset with x”,x,tree) ; 
 
 

 
In this example tree is assumed to have a branch named “x” as the RooDataSet constructor will 
import data from the tree branch that has the same name as the RooRealVar that is passed as 
argument. 
 
Plotting unbinned data is similar to plotting binned data with the exception that you can now show it in 
any binning you like. 
 

 
RooPlot* xframe = x.frame() ; 
data.plotOn(frame,Binning(25)) ; 
frame->Draw() 

 
 
In this example we have overridden the default setting of 100 bins using the Binning() named 
argument. 
 

Working with data 
 
In general working with binned and unbinned data is very similar in RooFit as both class RooDataSet 
(for unbinned data) and class RooDataHist (for binned data) inherit from a common base class, 
RooAbsData, which defines the interface for a generic abstract data sample. With few exceptions, all 
RooFit methods take abstract datasets as input arguments, making it easy to use binned and 
unbinned data interchangeably. 
 
The examples in this section have always dealt with one-dimensional datasets. Both RooDataSet and 
RooDataHist can however handle data with an arbitrary number of dimensions. In the next sections 
we will revisit datasets and explain how to work with multi-dimensional data. 
 

Fitting a model to data 
 
Fitting a model to data can be done in many ways. The most common methods are the χ2 fit and the –
log(L) fit. The default fitting method in ROOT is the χ2 method, the default method in RooFit is the –
log(L) method. We prefer the –log(L) method because it is more robust for low statistics fits and 
because it can also be performed on unbinned data. If you are unfamiliar with the basics of likelihood 

                                                     
2 To be more precise the intervals shown are ‘classic central ’ intervals as described in Table I of 
Cousins, Am. J. Phys. 63, 398 (1995) 
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fitting we suggest you read through appendix C, which contains an easy introduction to the statistical 
theory behind χ2 and –log(L) fitting  and compares their relative advantages and disadvantages. 
 
In practice both fitting techniques work very similar: first you construct the estimator quantity – either 
χ2 or –log(L) – and then you perform the fit by finding the minimum value of the estimator with respect 
to all the parameters of the model.  The errors on the fitted parameters are defined by the variation of 
the parameters that leads to a unit/half-unit increase of the χ2/-log(L) respectively. 
 
The standard tool in High Energy Physics to perform the minimization and error analysis since 
decades is MINUIT, and also RooFit delegates the minimization task to the ROOT implementation 
MINUIT in class TMinuit.  RooFit is therefore more of a data modeling package rather than a fitting 
package. 
 
The high-level interface to model fitting in RooFit packages all of the above in a very easy-to-use 
interface: 
 

 
gauss.fitTo(data) ; 
 

 
This command builds a –log(L) function from the gauss function and the given dataset, passes it to 
MINUIT, which minimizes it and estimate the errors on the parameters of gauss.  The output of the 
fitTo() method produces the familiar MINUIT output on the screen: 
 

 
 ********** 
 **   13 **MIGRAD        1000           1 
 ********** 
 FIRST CALL TO USER FUNCTION AT NEW START POINT, WITH IFLAG=4. 
 START MIGRAD MINIMIZATION.  STRATEGY  1.  CONVERGENCE WHEN EDM .LT. 1.00e-03 
 FCN=25139.4 FROM MIGRAD    STATUS=INITIATE       10 CALLS          11 TOTAL 
                     EDM= unknown      STRATEGY= 1      NO ERROR MATRIX 
  EXT PARAMETER               CURRENT GUESS       STEP         FIRST 
  NO.   NAME      VALUE            ERROR          SIZE      DERIVATIVE 
   1  mean        -1.00000e+00   1.00000e+00   1.00000e+00  -6.53357e+01 
   2  sigma        3.00000e+00   1.00000e+00   1.00000e+00  -3.60009e+01 
                               ERR DEF= 0.5 
 MIGRAD MINIMIZATION HAS CONVERGED. 
 MIGRAD WILL VERIFY CONVERGENCE AND ERROR MATRIX. 
 COVARIANCE MATRIX CALCULATED SUCCESSFULLY 
 FCN=25137.2 FROM MIGRAD    STATUS=CONVERGED      33 CALLS          34 TOTAL 
                     EDM=8.3048e-07    STRATEGY= 1      ERROR MATRIX ACCURATE 
  EXT PARAMETER                                   STEP         FIRST 
  NO.   NAME      VALUE            ERROR          SIZE      DERIVATIVE 
   1  mean        -9.40910e-01   3.03997e-02   3.32893e-03  -2.95416e-02 
   2  sigma        3.01575e+00   2.22446e-02   2.43807e-03   5.98751e-03 
                               ERR DEF= 0.5 
 EXTERNAL ERROR MATRIX.    NDIM=  25    NPAR=  2    ERR DEF=0.5 
  9.241e-04 -1.762e-05 
 -1.762e-05  4.948e-04 
 PARAMETER  CORRELATION COEFFICIENTS 
       NO.  GLOBAL      1      2 
        1  0.02606   1.000 -0.026 
        2  0.02606  -0.026  1.000 
 ********** 
 **   18 **HESSE        1000 
 ********** 
 COVARIANCE MATRIX CALCULATED SUCCESSFULLY 
 FCN=25137.2 FROM HESSE     STATUS=OK             10 CALLS          44 TOTAL 
                     EDM=8.30707e-07    STRATEGY= 1      ERROR MATRIX ACCURATE 
  EXT PARAMETER                                INTERNAL      INTERNAL 
  NO.   NAME      VALUE            ERROR       STEP SIZE       VALUE 
   1  mean        -9.40910e-01   3.04002e-02   6.65786e-04  -9.40910e-01 
   2  sigma        3.01575e+00   2.22449e-02   9.75228e-05   3.01575e+00 
                               ERR DEF= 0.5 
 EXTERNAL ERROR MATRIX.    NDIM=  25    NPAR=  2    ERR DEF=0.5 
  9.242e-04 -1.807e-05 
 -1.807e-05  4.948e-04 
 PARAMETER  CORRELATION COEFFICIENTS 
       NO.  GLOBAL      1      2 
        1  0.02672   1.000 -0.027 
        2  0.02672  -0.027  1.000 
 

 
The result of the fit – the new parameter values and their errors – is propagated back to the 
RooRealVar objects that represent the parameters of gauss, as is demonstrated in the code fragment 
below: 
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mean.Print() ; 
RooRealVar::mean: -0.940910 +/- 0.030400 
 
sigma.Print() ; 
RooRealVar::sigma:  3.0158 +/- 0.022245 
 

 
A subsequent drawing of gauss will therefore reflect the new shape of the function after the fit. We 
now draw both the data and the fitted function on a frame, 
 

 
RooPlot* xframe = x.frame() ; 
data.plotOn(xframe) ; 
model.plotOn(xframe) ; 
xframe->Draw() 
 

 
The result of this code fragment is shown in Figure 4. 
 

 
Figure 4 – Output of Example 3. 

 
Note that the normalization of the PDF, which has an intrinsic normalization to unity by definition, is 
automatically adjusted to the number of events in the plot. 
 
A powerful feature of RooFit and one of the main reasons for its inception is that the fit invocation of 
Example 3 works for both binned and unbinned data. In the latter case an unbinned maximum 
likelihood fit is performed. Unbinned –log(L) fits are statistically more powerful than binned fits (i.e. 
you will get smaller errors on averages) and avoid any arbitrariness that is introduced by a choice of 
bin width. These advantages are most visible when fitting small datasets and fitting multidimensional 
datasets. 
 
The fitting interface to RooFit is highly customizable and easily customizable. For example, if you 
want fix a parameter in the fit, you just specify that as a property of the RooRealVar parameter object 
so that this 
 

 
mean.setConstant(kTRUE) ; 
gauss.fitTo(data) ; 
 

 
Repeats the fit with parameter mean fixed to its present value. Similarly, you can choose to bound a 
floating parameter to range of allowed values: 
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sigma.setRange(0.1,3) ; 
gauss.fitTo(data) ; 
 

 
All such fit configuration information is automatically passed to MINUIT. Higher level aspects of 
MINUIT can be controlled through optional named arguments passed to the fitTo() command. This 
example enables the MINOS method to calculate asymmetric errors and changes the MINUIT 
verbosity level 
 
 

 
gauss.fitTo(data, Minos(kTRUE), PrintLevel(-1)) ; 
 

 
The way the likelihood function is constructed can be influenced the same way. To restrict the 
likelihood (and thus the fit) to a smaller range of x values do 
 
 

gauss.fitTo(data, Range(-5,5)) ; 
 
 
A subsequent plot of this fit will then only show a curve in the fitted range (Figure 5). 
 

 
Figure 5 – Fit to a subset of the data 

 
RooFit also supports extended maximum likelihood fits as well as χ2 fits. These will be covered in the 
next sections. The complete range of fitting options as well as ways to do interactive fitting are 
documented in Appendix A. 
 

Generating data from a model 
RooFit is not just a fitting tool, it is a full-fledged data modeling tool. This means that you can do more 
with your models that just fit them to data. An important piece of other functionality is the ability to 
generate ‘toy’ Monte Carlo data from your model. Generically this is done through sampling your PDF, 
but smarter techniques may be used behind the scenes for certain shapes, such as a Gaussian. The 
most efficient technique is automatically selected for you so you don’t have worry about this. In it 
simplest form you can generate a RooDataSet from a pdf as follows: 
 

 
RooDataSet* data = gauss.generate(x,10000) ; 
 

 
This example create a RooDataSet with 10000 events with observable x sampled from pdf gauss. 
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Sampling datasets from your PDF is often a useful technique to study the stability of your fit, which 
may become a concern if your are aiming to fit a small number of events or a large sample with a 
small number of signal events. Sampling allows you to quickly generate similar but statistically 
independent datasets on which you can exercise your fit. Section 11 has more details on fit stability 
studies and techniques to automate them in RooFit. 
 

Putting it all together 
At this point we have guided you through various basic procedures in RooFit: defining a model and its 
variables, importing data, fitting the model to data and generating data from sampling the model. The 
following macro puts all the knowledge together into a concise exercise that demonstrates all of these 
abilities and can serve as starting point for your first fitting exercise in RooFit. 
 

 
// Elementary operations on a gaussian PDF 
void example(const TH1* histo=0) 
{ 
  // Build Gaussian PDF 
  RooRealVar x("x","x",-10,10) ; 
  RooRealVar mean("mean","mean of gaussian",0,-100,100) ; 
  RooRealVar sigma("sigma","width of gaussian",3,0.,10.) ; 
  RooGaussian gauss("gauss","gaussian PDF",x,mean,sigma) ;   
 
  RooAbsData* data = 0 ; 
  if (histo) { 
    // If a histogram is given import it into a RooDataHist – Binned data 
    data = new RooDataHist("data","data",x,histo) ; 
  } else { 
    // If no histogram is given, generate some toy data – Unbinned data 
    data = gauss.generate(x,10000) ;   
  } 
   
  // Fit the model to the data 
  // Note here that fitTo accepts both binned and unbinned data 
  gauss.fitTo(*data) ; 
   
  // Plot PDF and toy data overlaid 
  RooPlot* xframe = x.frame() ; 
  data->plotOn(xframe) ; 
  gauss.plotOn(xframe) ; 
  xframe->Draw() ; 
 
  // Print final value of parameters 
  mean.Print() ; 
  sigma.Print() ; 
 
  // Delete the data 
  delete data ; 
} 
 

 
In the next section we’ll work towards more realistic models: we will explore composite models – 
multiple PDFs added together – for example a PDF representing your signal and a PDF representing 
your background. 
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3. Signal and Background – Composite models 
Introduction 
One of the most common data analysis scenarios is that you want to determine the amount of signal 
and background in a given data sample through a fit. The most straightforward approach to such an 
analysis is to define a composite p.d.f. M(x) as follows 
  

M(x) = f⋅S(x) + (1-f)⋅B(x) 
 
In this formula M(x) is your fit model, S(x) is your signal model, B(x) is your background model and f is 
the fraction of your event that are part of the signal. RooFit provide a special ‘addition operator’ p.d.f. 
in class RooAddPdf to simplify building and using such composite p.d.f.s. A elegant property of adding 
p.d.f.s in this way is that M(x) does not need to be explicitly normalized to one: if both S(x) and B(x) 
are normalized to one then M(x) is – by construction – also normalized. 
 

The extended likelihood formalism 
Often one is not interested in the fraction of signal events in your sample but in the number of signal 
events in your sample.  
 

ME(x) = NS⋅S(x) + NB⋅B(x) 
 
In this formula ME(x) is not normalized to 1 but to NS+NB = N, the number of events in the data 
sample. A model of this type can be fit with equal ease, but an extra piece of information has to be 
added to the fit (more specifically: to the likelihood function): the number of events in the data sample. 
With that extra piece of information the fit can relate the number of events expected by the model 
(Nexp=NS+NB), to the actual number of events in the data (Nobs). The technique that takes care of this 
extra constraint is called the extended maximum likelihood formalism and is described in more detail 
in Appendix C. All you need to know for now is that RooFit supports both forms of adding p.d.f.s. 

Building composite models  
Here is a simple example of a composite PDF constructed with RooAddPdf using fractional 
coefficients. 
 

 
RooRealVar x(“x”,”x”,-10,10) ; 
 
RooRealVar mean(“mean”,”mean”,0,-10,10) ; 
RooRealVar sigma(“sigma,”sigma”,2,0.,10.) ; 
RooGaussian sig(“sig”,”signal p.d.f.”,x,mean,sigma) ; 
 
RooRealVar c0(“c0”,”coefficient #0”, 1.0,-1.,1.) ; 
RooRealVar c1(“c1”,”coefficient #1”, 0.1,-1.,1.) ; 
RooRealVar c2(“c2”,”coefficient #2”,-0.1,-1.,1.) ; 
RooChebychev bkg(“bkg”,”background p.d.f.”,x,RooArgList(c0,c1,c2)) ; 
 
RooRealVar fsig(“fsig”,”signal fraction”,0.5,0.,1.) ; 
 
// model(x) = fsig*sig(x) + (1-fsig)*bkg(x) 
RooAddPdf model(“model”,”model”,RooArgList(sig,bkg),fsig) ;  
 

Example 4 – Adding two pdfs using a fraction coefficient 
 
In this example we first construct a Gaussian p.d.f sig and flat background p.d.f bkg and then add 
them together with a signal fraction fsig in model.  
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Note the use the container class RooArgList to pass a list of objects as a single argument in a 
function. RooFit has two container classes: RooArgList and RooArgSet. Each can contain any 
number RooFit value objects, i.e. any object that derives from RooAbsArg such a RooRealVar, 
RooAbsPdf etc. The distinction is that a list is ordered, you can access the elements through a 
positional reference (2nd, 3rd,…), and can may contain multiple objects with the same name, while a 
set has no order but requires instead each member to have a unique name.  You can read more 
about the properties of RooArgSet and RooArgList in Section 11. 
 
The number of components a RooAddPdf can sum together is not restricted to 2, you can add any 
arbitrary number of components. Here is an example that adds three p.d.f.s with two coefficients: 
 

 
// model2(x) = fsig*sig(x) + fbkg1*bkg1(x) + (1-fsig-fbkg)*bkg2(x) 
 
RooAddPdf model2(“model2”,”model2”,RooArgList(sig,bkg1,bkg2), 
                                   RooArgList(fsig,fbkg1)) ; 
 

 
When you build a ‘regular’ p.d.f, i.e. when you fit for fractions rather than numbers of events, the 
number of coefficients should always be one less than the number of p.d.f.s. 
 

The extended likelihood formalism 
Here is a revision of the first example that uses the extended likelihood formalism, i.e it implements 
formula (2) rather than formula (1): 
 

 
RooRealVar x(“x”,”x”,-10,10) ; 
 
RooRealVar mean(“mean”,”mean”,0,-10,10) ; 
RooRealVar sigma(“sigma”,”sigma”,2,0.,10.) ; 
RooGaussian sig(“sig”,”signal p.d.f.”,x,mean,sigma) ; 
 
RooRealVar c0(“c0”,”coefficient #0”, 1.0,-1.,1.) ; 
RooRealVar c1(“c1”,”coefficient #1”, 0.1,-1.,1.) ; 
RooRealVar c2(“c2”,”coefficient #2”,-0.1,-1.,1.) ; 
RooChebychev bkg(“bkg”,”background p.d.f.”,x,RooArgList(c0,c1,c2)) ; 
 
RooRealVar nsig(“nsig”,”signal fraction”,500,0.,10000.) ; 
RooRealVar nbkg(“nbkg”,”background fraction”,500,0.,10000.) ; 
 
RooAddPdf model(“model”,”model”,RooArgList(sig,bkg),RooArgList(nsig,nbkg)) ; 
 
// shape: model(x) = nsig/(nsig+nbkg)*sig(x) + nbkg/(nsig+nbkg)*bkg(x) 
// norm:  Nexpect  = nsig + nbkg 
 
// Combined: Nexpect*model(x) = nsig*sig(*x) + nbkg*bkg(x) 
 
 

Example 5 – Adding two pdfs using two event count coefficients 
 
The only difference between Example 4 and Example 5 is that you supply RooAddPdf with an equal 
number of models and coefficients. 
  
In practical terms the difference between the first and the second example is that in the second form 
the RooAbsPdf object model is capable of predicting the expected number of data events (i.e. 
nsig+nbkg) through its member function expectedEvents(), while model in the first form cannot. 
This extra functionality provides the information necessary to construct the extended likelihood. 
 
NB: When you fit extended likelihood models such as Example 5 you should explicitly invoke the 
construction of extended likelihood term in the fitTo() operation using the Extended() option as will 
explained shortly in the fitting section  
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Compose recursively 
Note that the input p.d.f.s of RooAddPdf do not need to be basic p.d.f.s, they can be composite p.d.f.s 
themselves. Take a look at this example that uses sig and bkg from Example 5 as input: 
 

 
RooRealVar mean_bkg(“mean_bkg”,”mean”,0,-10,10) ; 
RooRealVar sigma_bkg(“sigma_bkg,”sigma”,2,0.,10.) ; 
RooGaussian bkg_peak(“bkg_peak”,”peaking bkg p.d.f.”,x,mean_bkg,sigma_bkg) ; 
 
RooRealVar fpeak(“fpeak”,”peaking background fraction”,0.1,0.,1.) ; 
RooRealVar fbkg(”fbkg”,”background fraction”,0.5,0.,1.) ; 
 
RooAddPdf sigpeak(“sigpeak”,”sig + peak”,RooArgList(bkg_peak,sig),fpeak) ; 
RooAddPdf model(“model”,”bkg + sigpeak”,RooArgList(bkg,sigpeak),fbkg) ; 
 

Example 6 – Adding three p.d.f.s through recursive addition of two terms 
 
The code in this example corresponds to the following formula 
 

[ ]= − + − +
= − − + − +

1 1 2 2 2

1 2 1 2 1 2 2

( ) (1 ) ( ) ( ) (1 ) ( )
(1 )(1 ) ( ) (1 ) ( ) ( )

M x f S x f B x f f B x
f f S x f f B x f B x
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Why would you do something like this? First, it might be more intuitive to interpret the fraction parameters this way, but 
that depends on your specific problem. Second because your fit is more stable this way: If you add two components with 
a single fraction you can bound the fit to stay in the well defined region by bounding the fraction parameter between 0 
and 1. If you have three components and two fraction parameters, the ‘well defined’ region is the region where the sum 
of the fraction parameters is less than one. If you only require each fraction to be inside the range (0,1) you can still end 
up with a solution where sum is greater than one and consequently the coefficient of the 3rd component is negative. By 
defining the fractions recursively, as done above, all solutions are well defined as long as each fraction is inside the 
range (0,1). Another solution is to use the extended likelihood formalism, which sidesteps this problem all together. Also 
note that if you allow any of the fractions to be exactly zero, the likelihood becomes insensitive to the parameters of the 
model that is multiplied by this zero fractio. If any of these parameters is floating in the fit, the fit will not converge. 

 

Plotting composite models  
The modular structure of a composite p.d.f. allows you to address the individual components. One can 
for example plot the individual components of a composite model on top of that model to visualize its 
structure. 
 

 
RooPlot* frame = x.frame() ; 
model.plotOn(frame) ; 
model.plotOn(frame, Components(bkg),LineStyle(kDashed)) ; 
frame->Draw() ; 
 

 
The output of this code fragment is show in Figure 6. You can reference the components by object 
reference, as is done above, or by name: 
 
 

model.plotOn(frame, Components(“bkg”),LineStyle(kDashed)) ; 
 
 
The latter is convenient when your plotting code has no access to the component objects, for example 
if your model is built in a separate function that only returns the top-level RooAddPdf object. 
 
If you want to draw the sum of multiple components you can do that in two ways as well: 
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model.plotOn(frame, Components(RooArgSet(bkg1,bkg2)),LineStyle(kDashed)) ; 
 
model.plotOn(frame, Components(“bkg1,bkg2”),LineStyle(kDashed)) ; 

 
 
Note that in the latter form wildcards are allowed so that a well chosen component naming scheme 
allows you for example to do this: 
 
 

model.plotOn(frame, Components(“bkg*”),LineStyle(kDashed)) ; 
 
 
If required multiple wildcard expressions can be specified in a comma separated list. 
 
 

Figure 6 – Drawing of composite model and its components 

Fitting composite models 
Fitting composite models with fractional coefficients is no different from fitting any other model: 
 

 
model.fitTo(data) ; 
 

 
But fitting models with event count coefficients is essentially different: the ‘extended likelihood term’, 
the extra piece of the likelihood that constrains the number of events predicted by the model to be 
equal to the number of observed events in data must be added to the regular likelihood function for 
the fit to succeed. You do this with the Extended() named argument in fitTo(): 
 

 
model.fitTo(data,Extended(kTRUE)) ; 

 
 
If you forget to do this, no specific warning message will be issued, but the fit will not converge 
because there is one degree of freedom that cannot be constrained. This is one of the most common 
mistakes made in extended likelihood fitting.  
 

Generating data with composite models 
Just like you generate toy Monte Carlo data from a simple model you can generate toy data from a 
composite model: 
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// Generate 10000 events  
RooDataSet* x = model.generate(x,10000) ; 
 

 
Sampling data from a composite p.d.f. is often more efficient than sampling data from a monolithic 
p.d.f. with the same shape as RooFit makes effective use of the component structure of a composite 
p.d.f.  
 

The extended likelihood formalism 
Some extra features apply to composite models built for the extended likelihood formalism. Since 
these model predict a number events one can omit the requested number of events to be generated 
 
 

RooDataSet* x = model.generate(x) ; 
 
 
In this case the number of events predicted by the p.d.f. is generated. You can optionally request to 
introduce a Poisson fluctuation in the number of generated events trough the Extended() argument: 
 
 

RooDataSet* x = model.generate(x, Extended(kTRUE)) ; 
 
 
This is useful if you generate many samples as part of a study where you look at pull distributions. For 
pull distributions of event count parameters to be correct, a Poisson fluctuation on the total number of 
events generated should be present. Fit studies and pull distributions are covered in more detail in 
section 10. 
 

General tools for dealing with composite objects 
The logistics of creating all your p.d.f. components – and keeping tracking of them – become 
increasing difficult as your p.d.f. grows in complexity. This section describes some of the tools at your 
disposal to keep this task as easy possible. 
 
An important feature in the design of RooFit is that all important operations – fitting, generating and 
plotting – can be performed through the top level p.d.f. object. This means that you can delegate the 
building of a complex p.d.f. to a designated function that just returns a pointer to the top level p.d.f. 
component, as is illustrated below 
 

 
RooAbsPdf* buildPdf(const RooRealVar& x)  
{ 
  RooRealVar *mean = new RooRealVar (“mean”,”mean”,0,-10,10) ; 
  RooRealVar *sigma = new RooRealVar (“sigma,”sigma”,2,0.,10.) ; 
  RooGaussian sig = new RooGaussian(“sig”,”signal p.d.f.”,x,*mean,*sigma) ; 
 
  RooRealVar *c0 = new RooRealVar(“c0”,”coefficient #0”, 1.0,-1.,1.) ; 
  RooRealVar *c1 = new RooRealVar(“c1”,”coefficient #1”, 0.1,-1.,1.) ; 
  RooRealVar *c2 = new RooRealVar(“c2”,”coefficient #2”,-0.1,-1.,1.) ; 
  RooChebychev *bkg = new RooChebychev(“bkg”,”backgroundp.d.f.”,   

                                     x,RooArgList(*c0,*c1,*c2)) ; 
  RooRealVar *fsig = new RooRealVar (“fsig”,”signal fraction”,0.5,0.,1.) ; 
  RooAddPdf *model = new RooAddPdf(“model”,”model”, 

                                RooArgList(*sig,*bkg),*fsig); 
  return model ;  
} 
 
void doTheFit() 
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{ 
  RooRealVar x(“x”,”x”,-10,10) ; 
  RooAbsPdf* model = buildPdf(x) ; 
   
  RooDataSet* data = model->generate(x,1000) ; 
  model->fitTo(*data) ; 
   
  RooPlot* frame = x.frame() ; 
  data->plotOn(frame) ; 
  model->plotOn(frame) ; 
  model->plotOn(frame,Components(“bkg”)) ; 
  frame->Draw() ; 
} 
 

Example 7 – Building your model in a separate function.  
(Memory management issues ignored for the moment for clarity) 

 
While all the big operations clearly work fine this way, it is not obvious how one would for example 
adjust a parameter value in Example 7 in doTheFit(), or print out its value after the fit, so we need 
some extra tools. 

What are the variables of my model? 
Given any composite RooFit value object, the getVariables() method returns you a RooArgSet with 
all parameters of your model: 
 

 
RooArgSet* params = model->getVariables() ; 
params->Print(“v”) ; 

 
 
This code fragment will output 
 

 
RooArgSet::parameters: 
  1) RooRealVar::c0: "coefficient #0" 
  2) RooRealVar::c1: "coefficient #1" 
  3) RooRealVar::c2: "coefficient #2" 
  4) RooRealVar::mean: "mean" 
  5) RooRealVar::nbkg: "background fraction" 
  6) RooRealVar::nsig: "signal fraction" 
  7) RooRealVar::sigma: "sigma" 
  8) RooRealVar::x: "x" 
 

 
If you know the name of a variable, you can retrieve a pointer to the object through the find() 
method of RooArgSet: 
 

 
RooRealVar* c0 = (RooRealVar*) params->find(“c0”) ; 
c0->setVal(5.3) ; 
 

 
If no object is found in the set with the given name, find() returns a null pointer. 
 
Although sets can contain any RooFit value type (i.e. any class derived from RooAbsArg) one deals in 
practice usually with sets of all RooRealVars. Therefore class RooArgSet is equipped with some 
special member functions to simplify operations on such sets. The above example can be shortened 
to 
 

 
params->setRealValue(“c0”,5.3) ; 
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Similarly, there also exists a member function getRealValue(). 

What is the structure of my composite model? 
In addition to manipulation of the parameters one may also wonder what the structure of a given 
model is. For an easy visual inspection of the tree structure of a composite object use the method 
printCompactTree(): 
 

 
model.printCompactTree() ; 
 

 
The output will look like this: 
 

 
0x9a76d58 RooAddPdf::model (model)  [Auto] 
  0x9a6e698 RooGaussian::sig (signal p.d.f.)  [Auto] 
    0x9a190a8 RooRealVar::x (x) 
    0x9a20ca0 RooRealVar::mean (mean) 
    0x9a3ce10 RooRealVar::sigma (sigma) 
  0x9a713c8 RooRealVar::nsig (signal fraction) 
  0x9a26cb0 RooChebychev::bkg (background p.d.f.)  [Auto] 
    0x9a190a8 RooRealVar::x (x) 
    0x9a1c538 RooRealVar::c0 (coefficient #0) 
    0x9a774d8 RooRealVar::c1 (coefficient #1) 
    0x9a3b670 RooRealVar::c2 (coefficient #2) 
  0x9a66c00 RooRealVar::nbkg (background fraction) 
 

 
For each lists object you will see the pointer to the object, following by the class name and object 
name and finally the object title in parentheses.  
 
A composite object tree is traversed top-down using a depth-first algorithm. With each node traversal 
the indentation of the printout is increased. This traversal method implies that the same object may 
appear more than once in this printout if it is referenced in more than one place. See e.g. the multiple 
reference of observable x in the example above.   
 
Finally we mention the method getComponents(), which returns all the ‘branch’ nodes of a composite 
objects and is complementary to getVariables(), which returns the ‘leaf’ nodes. The example below 
illustrates the use of getComponents() to only print out the variables of model component “sig”: 
 

 
RooArgSet* comps = model.getComponents() ; 
RooAbsArg* sig = comps->find(“sig”) ; 
RooArgSet* sigVars = sig->getVariables() ; 
sigVars->Print() ; 
 
 

  
Note that the output of most operations is of type RooAbsArg, the abstract value type in RooFit. Since 
the tree structure inspection functions are not specific to real-valued positive-definite probability 
density functions, we can perform all operations with these RooAbsArg* abstract value type pointers. 
The output of this example is 
 

 
RooArgSet::parameters: 
  1) RooRealVar::mean: "mean" 
  2) RooRealVar::sigma: "sigma" 
  3) RooRealVar::x: "x" 

 
 
In section 10 will we go into more detail on this subject. 
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Putting it all together 
In this section you have learned how to add basic p.d.f.s together into a composite p.d.f.s. Adding 
p.d.f.s can be done in one of two ways: you can add N p.d.f.s with N-1 fractions, or your can N p.d.f.s 
together with N event counts. The latter form involves the extended likelihood formalism and implies 
that you fit for the number of events in data as well as the shape of the data. Generating, fitting and 
plotting composite p.d.f.s is identical to generating, fitting and plotting basic p.d.f.s., except for 
occasional extra functionality, such as the ability to plot components of a composite p.d.f. 
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4. Choosing & adjusting standard p.d.f. components 
We will now have a closer look at what p.d.f.s are provided with RooFit, how you can tailor them to 
your specific problem and how you can write a new p.d.f.s in case none of the stock p.d.f.s. have the 
shape you need. 

What p.d.f.s are provided? 
RooFit provides a library of about 20 probability density functions that can be used as building block 
for your model. These functions include basic functions, non-parametric functions, physics-inspired 
functions and specialized decay functions for B physics. 
 

Basic functions 
 
The most frequently used basic shapes, the Gaussian, exponential and polynomial functions are all 
implemented in RooFit. Their shapes are illustrated in Figure 7 
 
 
Name Functional form Class name 

Gaussian 
2

exp 0.5 x m
s

 − −     
 RooGaussian(name,title,x,m,s) 

Exponential exp( )a x⋅  RooExponential(name,title,x,a) 

Polynomial 
1,

1 i
i

i n

a x
=

+∑  RooPolynomial(name,title,x,alist) 

Chebychev 
polynomial 1,

1 ( )i i
i n

a T x
=

+∑  RooChebychev(name,title,x,alist) 

Table 1 – Basic functions implemented in RooFit 
 
 

 
Figure 7 – Basic p.d.f shapes: Gaussian, Exponential, Polynomial and Chebychev polynomial 

 
Note that each functional form in Table 1 has one parameter less than usual form because the degree 
of freedom that controls the vertical scale is eliminated by the constraint that the integral of the p.d.f. is 
exactly 1. The formula listed in the table are not normalized to unity for presentation clarity, but each 
RooAbsPdf-based p.d.f. is internally multiplied by the (analytical) integral of the listed expression to 
achieve unit normalization. 
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We recommend the use of Chebychev polynomials over regular polynomials because of their superior stability in fits. 
Chebychev polynomials and regular polynomials can describe the same shapes, but a clever reorganization of power 
terms in Chebychev polynomials results in much lower correlations between the coefficients ai in a fit, and thus to a 
more stable fit behavior. For a definition of the functions Ti and some background reading, look e.g. at 
http://mathworld.wolfram.com/ChebyshevPolynomialoftheFirstKind.html 
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Physics inspired functions 
In addition to the basic shapes RooFit also implements a series of shapes that are commonly used to 
model physical ‘signal’ distributions.  
 
The Landau function parameterizes energy loss in material and has no analytical form. RooFit uses 
the parameterized implementation in TMath::Landau.  
 
The Argus function is an empirical formula to model the phase space of multi-body decays near 
threshold and is frequently used in B physics.  
 
The non-relativistic Breit-Wigner shape models resonance shapes and its cousin the Voigtian – a 
Breit-Wigner convolved with a Gaussian --- are commonly used to describe the shape of a resonance 
in the present of finite detector resolution. 
 
The Crystal ball function is a Gaussian with a tail on the low side that is traditionally used to describe 
the effect of radiative energy loss in an invariant mass.  
 
The decay function differs from the exponential p.d.f in that it can also chosen to be symmetric around 
0 and can be convolved analytically with a selection of resolution models.  
 
Their shapes are illustrated in Figure 8. 
 
 
Name Functional form Class name 

Landau TMath::Landau(x,mean,sigma) RooLandau(name,title,x,mean,sigma) 
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x x
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Wigner 2 21

4

1
( )x m g− +

 RooBreigWigner(name,title,x,m,g) 
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RooCBShape(name,title,x,m,s,a,n) 

Decay exp( | | / ) ( )x R xτ− ⊗  RooDecay(name,title,x,tau,R) 

 
 

 
Figure 8 – Physics inspired p.d.f.s: Landau, Argus, Breit-Wigner (Voigtian) and Crystal Ball. 

Non-parametric functions  
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RooFit offers two solutions for modeling distributions that cannot easily be parametrized.  
 
Class RooHistPdf takes an input histogram in the form of a RooDataHist and represents its shape as 
a probability density. The histogram contents is explicitly scaled to obtain proper normalization. 
Optionally, the histogram is interpolated (up to 9th order). 
 
Class RooKeysPdf is a more elaborate approach to obtain best possible continuous probability density 
function that aims to describe the parent distribution of an unbinned RooDataSet. The idea behind the 
KEYS algorithm, documented here3, is that the p.d.f. is constructed as a superposition of Gaussians. 
Each of the events in the input data becomes a Gaussian contribution to the p.d.f. with total weight of 
1/N centered at the x value of the data point. The width of the Gaussian is adjusted the local density 
of events: regions with a low local density of events have a Gaussian with a large width to ensure a 
smooth function in sparsely populated regions. Areas with a high density of events have Gaussians 
with a narrow width to preserve details in the structure. Read the original article for further information. 
 
Both classes are shown in Figure 9. 
 
 
Name Functional form Class name 

Histogram Histogram, with optional 
interpolation RooHistPdf(name,title,x,hist,intorder) 

Empirical density 
estimate 

Superposition of many 
Gaussians RooKeysPdf(name,title,x,data) 

 
 

 
Figure 9 – Non-parametric p.d.f.s:  Left: histogram of unbinned input data, Middle: Histogram-

based p.d.f (2nd order interpolation), Right: KEYS p.d.f from original unbinned input data. 

Specialized functions for B physics 
RooFit was originally development for BaBar, the B-factory experiment at SLAC, therefore it also 
provides a series of specialized B physics p.d.f.s. We will list them here for completeness. A complete 
description is beyond the scope of this document. 
 

Class Name  Description 

RooBMixDecay B decay with mixing 

RooBCPEffDecay B decay with CP violation parameterized as sin(2b) and |l| 

RooBCPGenDecay B decay with CP violation parameterized S and C 

RooNonCPEigenDecay B decay to non-CP eigenstates with CP violation  

RooBDecay Generic B decay with mixing, CP violation, CPT violation 
 
 
                                                     
3 ‘Kernel Estimation in High-Energy Physics’, K. Cranmer,  Comput.Phys.Commun. 136 (2001) 198-
207, hep-ex/0011057 
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Plug and play with parameters 
You are not stuck with the parameterization of the stock p.d.f.s. that we have chosen. A key feature of 
the design of RooFit functions and p.d.f.s. is that there is no hard-wired assumption that the 
parameters of a function are variables (i.e. a RooRealVar), so you can modify the parameterization of 
any existing p.d.f. by substituting a function for a parameter. The following example illustrates this: 
 

 
RooRealVar x(“x”,”x”,-10,10) ; 
 
RooRealVar mean(“mean”,”mean”,0,-10,10) ; 
RooRealVar sigma(“sigma_core”,”sigma (core)”,1,0.,10.) ; 
RooGaussian sig_left(“sig_left”,”signal p.d.f.”,x,mean,sigma) ; 
 
RooRealVar shift(“shift”,”shift”,1.0) ; 
RooFormulaVar mean_shifted(“mean_shifte”,”mean+shift”,RooArgSet(mean,shift)); 
RooGaussian sig_right(“sig_right”,”signal p.d.f.”,x,mean_shifted,sigma) ; 
 
RooRealVar frac_left(“frac_left”,”fraction (left)”,0.7,0.,1.) ; 
RooAddPdf sig(“sig”,”signal”,RooArgList(sig_left,sig_right),frac_left) ; 
 

 
 
The p.d.f. sig is a sum of two Gaussians in which the position of one Gaussian is shifted by shift 
with respect to the other one.  The mean of the second Gaussian is not specified through a 
RooRealVar parameter however, but through a RooFormulaVar  function objects, which relates the 
position of the second Gaussian to that of the first Gaussian. 
 
The function that calculates the position of the rightmost Gaussian is an object of type 
RooFormulaVar, which is a real-valued function that evaluates itself by interpreting the formula 
expression mean+shift using ROOTs TFormula engine.  
 
While the functional form of the two-Gaussian p.d.f. sig is no different from one constructed of two 
ordinary Gaussian, each with their own mean, the ability to reparametrize the model like this is that 
one can now for example fit with a floating mean while keeping the distance between the Gaussians 
fixed. Figure 10 shows the sig p.d.f. of the above example for mean=-3, mean=3 and 
shift=3,shift=6 in red and blue respectively. 
 
 

 
Figure 10 – left: variation of mean variable, right: variation of shift variable 

 
Class RooFormulaVar can handle any C++ expression that ROOT class TFormula can. This includes 
most math operators (+,-,/,*,…), nested parentheses and some basic math and trigonometry functions 
like sin, cos, log, abs etc…Consult the ROOT TFormula documentation for a complete overview of 
the functionality. The names of the variables in the formula expression are those of the variables 



 25

given in the RooArgSet as 3rd parameter in the constructor. Alternatively, you can reference the 
variable through positional index if you pass the variables in a RooArgList: 
 

 
RooFormulaVar mean_shifted(“mean_shifte”,”@0+@1”,RooArgList(mean,shift)); 

 
 
This form is usually easier if you follow a ‘factory-style’ approach in your own code where you don’t 
know (or don’t care to know) the names of the variables you intend to add in code that declares the 
RooFormulaVar. 
 
Class RooFormulaVar is explicitly intended for trivial transformations like the one shown above. If you 
need a more complex transformation you should write a compiled class. The last paragraph of this 
section shows how you can easily write compilable classes. 

Revisiting the addition of three p.d.f.s. 
In the previous section we rewrote the addition of three p.d.f.s. with two fraction coefficients as a 
recursive addition of two terms to be able to define two fraction parameters that each have a valid 
range between 0 and 1. The example below accomplishes the same functional form using a single 
RooAddPdf and a customized coefficient implemented with a  RooFormulaVar: 
 

 
// M(x) = (1-fp)(1-fb)⋅S(x) + fp(1-fb)⋅B1(x) + fb⋅B2(x) 
 
RooFormulaVar fracPeak(”fracPeak”,”fpeak*(1-fbkg)”,RooArgSet(fpeak,fbkg)) ; 
RooAddPdf model(“model”,”bkg + sig + peak”, 
                RooArgList(bkg,bkg_peak,sig),RooArgList(fbkg,fracPeak)) ; 

 
 
Which form is better – recursive RooAddPdf or using a RooFormulaVar – depends on your specific 
application. The point here is to demonstrate that you can achieve flexibility in your p.d.f. in more than 
one way. 

Writing a new p.d.f. class 
If none of the existing p.d.f. classes suit your needs, and no one can be customized through use of 
RooFormulaVar, you can write your own RooFit p.d.f. class. If the formula expression of your model is 
relatively simple, and performance is not critical you, can use RooGenericPdf which interprets your 
C++ expression, just like RooFormulaVar: 
 

 
RooRealVar x(“x”,”x”,-10,10) ; 
RooRealVar alpha(“alpha”,”alpha”,1.0,0.,10.) ; 
RooGenericPdf g(“g”,”sqrt(abs(alpha*x))+0.1”,RooArgSet(x,alpha)) ; 
 
RooPlot* frame = x.frame() ; 
g.plotOn(frame) ; 
alpha=1e-4 ; 
g.plotOn(frame,LineColor(kRed)) ; 
frame->Draw() ; 

 
 
The formula expression entered into g is explicitly normalized through numeric integration before it is 
returned as the value of p.d.f g, so you never have to worry about normalization yourself.  The 
automatic normalization is nicely demonstrated in Figure 11, which shows p.d.f. g for two values of 
parameter alpha. If your formula expression becomes more complicated than the example shown 
above, you should write a compiled class that implements your function. 
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Figure 11 – Generic p.d.f g(“sqrt(abs(x*alpha))+0.1”) drawn for  

alpha=1 (blue) and alpha=0.0001 (red) 
 

Writing a new p.d.f class using RooClassFactory 
A special utility class RooClassFactory greatly simplifies the task of writing a RooFit p.d.f class that is 
an implementation of RooAbsPdf. The class factory writes a complete working skeleton class for you 
with the name you specify and with the variable names you specify. Here is an example: 
 

 
RooClassFactory::makePdf(“RooMyPdf”,”x,alpha”) ; 
 

 
This example invocation of makePdf creates two files: RooMyPdf.cxx and RooMyPdf.h.  The only 
piece that is missing is actual function expression in terms of the variables you defined. To do so edit 
the file RooMyPdf.cxx and insert the function expression as return value of the evaluate() method of 
your class.  
 

 
Double_t RooMyPdf::evaluate() const  
 {  
   // ENTER EXPRESSION IN TERMS OF VARIABLE ARGUMENTS HERE  
   return sqrt(abs(alpha*x))+1 ; 
 } 
 

 
You are now ready to use your new class: compile the class using ROOTs ACLiC facility 
 

 
root>.L RooMyPdf.cxx++ 
 

 
Here is the original example rewritten in terms of your new compiled class RooMyPdf: 
 

 
RooRealVar x(“x”,”x”,-10,10) ; 
RooRealVar alpha(“alpha”,”alpha”,1.0,0.,10.) ; 
RooMyPdf g(“g”,”compiled class g”,x,alpha) ; 

 
 
Classes that are created through RooClassFactory have an explicit (numeric) normalization step built 
in, i.e. the return value of evaluate() does not have to be a properly normalized expression. This is 
done for your convenience, but carries a (small) performance penalty. 
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If you know how to normalize your expression analytically, you can indicate that in your 
RooClassFactory invocation and a slightly different skeleton class is built for you that allows to 
implement the analytical normalization as well. You can find more details in the RooClassFactory 
HTML class documentation.  
 

Writing a new function class using RooClassFactory 
The code factory class RooClassFactory cannot only write skeleton p.d.f.s, but also skeletons for 
generic real-valued functions. Generic real-valued function are all classes in RooFit that inherit from 
RooAbsReal. Class RooFormulaVar is a good example of a generic real-valued function. Unlike 
p.d.f.s, RooAbsReal are not normalized to unity and can also take negative values.  
 
Compilable custom real-valued functions are a good replacement for RooFormulaVar in cases where 
the formula expression is less than trivial, or in cases where performance is critical. 
 
Creating a skeleton for a generic function object is done with the makeFunction() method of 
RooClassFactory 
 

 
RooClassFactory::makeFunction(“RooMyFunction”,”x,b”) ; 
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5. Convolving a p.d.f. or function with another p.d.f. 
Introduction 
If you are modeling distribution of an experimental observable you are sometimes faced with a 
situation where you should explicitly take into account the deformation of the expected signal 
distributed due to the finite detector resolution. This issue becomes particularly important when the 
detector resolution is comparable to the structure (width) of your expected signal. The technical 
aspects combining the effects of detector resolution and your physics model tend to be complicated, 
which is why we have a separate chapter on this subject. 
 
In general, the observed distribution is described by the convolution of your physics model T(x,a) and 
your detector response function R(x,b) 
 

( , , ) ( , ) ( , ) ( , ) ( ', ) 'M x a b T x a R x b T x a R x x b dx
+∞

−∞
= ⊗ = −∫   

 
In practice the detector response function R is often a Gaussian, or a superposition of Gaussians. 
Figure 12 Illustrates the effect of a Gaussian resolution model R with three different widths on a Breit-
Wigner function. 
 

 
Figure 12 – left: Breit-Wigner, middle Gaussian (σ=0.3, 1, 3) right: Breit-Wigner convolved with 

Gaussian 
 
You can see from Figure 12 that if R is narrow with respect to T (dotted line), the convolution T⊗R is 
well approximated by T. If R is wide with respect to T (dashed line), the convolution T⊗R is well 
approximated by R, therefore modeling your signal p.d.f. explicitly as T⊗R is usually only important if 
both are comparable width. This is a good thing, since calculation of integral that represents T⊗R is 
generically quite difficult. The normalization condition for p.d.f.s. adds one further difficulty as the final 
quantity acquires a double integral in the denominator. 
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You are best off if you don’t need to perform this calculation, but sometimes you just have to. In the 
remainder of this section we’ll explain how you can deal with convolved p.d.f.s in RooFit. 
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Analytical versus numeric convolution 
A precise and fast calculation of the convolution integral is essential as p.d.f.s are evaluated a large 
number of times in the course of a fit. Because of that an analytical expression for the convolution 
integral is therefore strongly preferred. Unfortunately this is not always possible, and a numeric 
calculation of the integral must sometimes be used as fallback solution.  
 

Analytical convolution 
RooFit does not find analytical expressions for convolution integrals for you, but helps you to 
implement them in a generic and reusable way.  It does this by defining two specialize sub-classes of 
p.d.f.s.: convolvable p.d.f.s, which implement T(x,a) and resolution models, which implement R(x,b).  
You can combine any R and T at runtime into a M(x,a,b)=T(x,a) ⊗ R(x,b) so you are quite flexible in 
your choice of convolutions when you build your model.  RooFit provides the following convolvable 
p.d.f.s out of the box: 
 

Class Name  Description 

RooDecay Decay function: exp(-|t|/τ), exp(-t/τ) or exp(t/τ) 

RooBMixDecay B decay with mixing 

RooBCPEffDecay B decay with CP violation parameterized as sin(2b) and |l| 

RooBCPGenDecay B decay with CP violation parameterized S and C 

RooNonCPEigenDecay B decay to non-CP eigenstates with CP violation  

RooBDecay Generic B decay with possible mixing, CP violation, CPT violation 
 
And it provides the following resolution models. 
 
Name Functional form Class name 

Gauss 
2

exp 0.5 x m
s

 − −     
 RooGaussModel(name,title,x,m,s) 

Gauss⊗Exp 
2

exp 0.5 exp( / )x m x
s

τ
 − − ⊗ −     

 RooGExpModel(name,title,x,m,s,tau) 

Truth ( )xδ  RooTruthModel(name,title,x) 

Composite 
1, 1 1, 1

( , ) 1 ( , )i i i n
i n i n

f R x f R xα α
= − = −

 
+ − 
 

∑ ∑  RooAddModel(name,title,Rlist,flist) 

 
 
To construct an analytically convolved p.d.f. pass one of the RooResolutionModel implementations 
to the construct of a convolvable p.d.f.  In the example below we construct a decay function convolved 
with a Gaussian resolution model: 
 

 
RooRealVar x(“x”,”x”,-10,10) ; 
 
RooRealVar mean(“mean”,”mean”,0) ; 
RooRealVar sigma(“sigma”,”sigma”,1) ; 
RooGaussModel gaussm(“gaussm”,x,mean,sigma) ; 
 
RooRealVar tau(“tau”,”lifetime”,1.54) ; 
RooDecay model(“model”,”decay (x) gauss”,x,tau,gaussm) ; 
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// --- Plot decay (x) gauss --- 
RooPlot* frame = x.frame() ; 
model.plotOn(frame) ; 
   
// --- Overlay with decay (x) truth --- 
RooTruthModel truthm("truthm","truth model",x) ; 
RooDecay modelt("modelt","decay (x) delta",x,tau,truthm) ; 
modelt.plotOn(frame,LineStyle(kDashed)) ; 
 
frame->Draw() ; 

 
 
Figure 133 shows the output of this example. 
 
 

 
Figure 13 – Decay p.d.f convolved with Gaussian and delta function (dashed) 

 
 
A realistic detector resolution is often more complex that a simple Gaussian. Class RooAddModel 
allows you to add multiple resolution models into a single composite resolution model that can be 
passed to any convolvable p.d.f.  Here is an example using RooAddModel to construct a decay 
function convolved with a double Gaussian resolution. 
 

 
RooRealVar x("x","x",-10,10) ; 
   
RooRealVar mean("mean","mean",0) ; 
RooRealVar sigma_core("sigma_core","sigma core",1) ; 
RooGaussModel gaussm_core("gaussm_core","core gauss",x,mean,sigma_core) ; 
   
RooRealVar sigma_tail("sigma_tail","sigma tail",5) ; 
RooGaussModel gaussm_tail("gaussm_tail","tail gauss",x,mean,sigma_tail) ; 
   
RooRealVar frac_core("frac_core","core fraction",0.9) ; 
RooAddModel gaussm("gaussm","core+tail gauss", 
       RooArgList(gaussm_core,gaussm_tail),frac_core) ; 
   
RooRealVar tau("tau","lifetime",1.54) ; 
RooDecay model("model","decay (x) gauss",x,tau,gaussm); 

 
 
Class RooAddModel works very similar to class RooAddPdf with the restriction that you can only 
specify fraction coefficients and not event yield coefficients as the extended likelihood formalism 
doesn’t apply to resolution models. 
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How do classes like RooDecay and RooGaussModel divide the work when it comes to performing the analytical 
integration? First thing to know is that RooAbsAnaConvPdf, the abstract base class for analytically convolvable p.d.f.s 
decomposes the p.d.f. as follows 

( , ) ( )i i
i

M x a c b x=∑  

In this formula bi(x) are so-called ‘basis functions’ and are the common language between a convolvable p.d.f and a 
resolution model. A resolution model like class RooGaussModel inherits from class RooResolutionModel and 
implements member functions that advertise if the resolution model can convolve itself with a given b(x). If the 
resolution model can convolve itself with all of the basis functions bi(x) of the p.d.f, the return value of the convolved 
p.d.f. can the calculated as: 

[ ]( , ) ( ) ( )i i
i

M x a c b x R x= ⊗∑  

The calculation of the part in the square bracket is delegated to the resolution model object. One of the advantages of 
this decomposition approach is speed: if parameter model M changes that only affects coefficients ci, the convolution 
integral does not need to be recalculated. Appendix C has additional technical details on the structure and inheritance 
of classes RooAbsAnaConvPdf and RooResolutionModel and their interaction. 

 

Numeric convolution 
 
If the convolution of your choice is not available in analytical form, we suggest you first try to calculate 
it yourself. If an analytical solution exists for your convolution there is a good chance that Wolframs 
Mathematica can calculate it for you. Try the free web interface on http://integrals.wolfram.com 
 
Numeric integration is computationally intensive as a precision of O(10-6) needs to be reached for the 
numeric noise not disturb MINUIT in its likelihood minimum finding. In practice this means O(100) 
evaluations of R and T to calculate M for each data point.  Numeric convolution is implemented in 
class RooNumConvPdf. This class follows the ‘operator’ formalism: you specify two input p.d.f.s in its 
construction and its own value is the convolution of the two. Here is an example on how to use 
RooNumConvPdf. 
 
 

 
RooRealVar x(“x”,”x”,-10,10) ; 
 
RooRealVar meanl(“meanl”,”mean of Landau”,2) ; 
RooRealVar sigmal(“sigmal”,”sigma of Landau”,1) ; 
RooLandau landau(“landau”,”landau”,x,meanl,sigmal) ; 
 
RooRealVar meang(“meang”,”mean of Gaussian”,0) ; 
RooRealVar sigmag(“sigmag”,”sigma of Gaussian”,2) ; 
RooGaussian gauss(“gauss”,”gauss”,x,meang,sigmag) ; 
 
RooNumConvPdf model(“model”,”model”,x,landau,gauss) ; 
 
RooPlot* frame = x.frame() ; 
model.plotOn(frame) ; 
landau.plotOn(frame,LineStyle(kDashed)) ; 
frame->Draw() ; 

 
Example 8 – Numeric convolution of a Landau with a Gaussian 

 
Figure 14 show the result of Example 8. 
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Figure 14 – Output of Example 8 – Numeric convolution of a Landau with a Gaussian, Landau 

convolved with a Gaussian and the original Landau (dashed line) 
 

Configuring the numeric convolution integration 
By default RooNumConvPdf performs the numeric convolution integral on the full domain of the 
convolution variable (i.e. from -∞ to +∞) using a x  1/x transformation to calculate the integrals of the 
tails extending to infinity. This calculation is difficult, can suffer from stability problems and may be 
avoided for certain choices of resolution models. For certain resolution models, e.g. a Gaussian, you 
know a priori that the integrand of the convolution integral is effectively zero when you are far from the 
core of the resolution model. For such cases one can restrict the domain of the convolution integral to 
e.g. [-5σ+µ,+5σ+µ], where µ and σ are the mean and width of the Gaussian resolution model 
respectively. RooNumConvPdf offers you the option restrict the convolution domain along these lines: 
 

 
landau.setConvolutionWindow(meang,sigmag,5) 
 

 
The optional 3rd parameter of setConvolutionWindow serves as a multiplier of the width parameter 
and exists for solely convenience as it saves you a RooFormulaVar: the above example restricts the 
integration domain to [ 5*sigmag+meang,-5*sigmag+meang ].  

Adjusting numeric integration precision and technique. 
If you are going to fit models based on numeric convolutions it is almost inevitable that you will need 
to fine tune the numeric integration parameters to obtain the right balance between speed and 
precision. You can access the numeric integration configuration object that is used for the convolution 
integral from member function convIntConfig().  You can read more about numeric integration 
configuration in section 11. 
 
Numeric convolution is an intrinsically difficult problem. You should expect to spend some time tuning 
the integration configuration before you obtain a workable configuration (if it is at all possible). 
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6. Using many observables – Multidimensional 
models 

Many data analysis problems deal with more than one observable. Devising a strategy on how to deal 
with all this information is a central aspect of such analysis. A common strategy is to make a 
preselection of your data sample using all but one of your observables. Such a preselection can 
anything ranging from a cut on each of the individual variables to a neural network consolidating the 
information of many variables into a single observable followed by a cut on that observable. A fit to the 
distribution of the remaining observable will then determine the number of signal and background 
events in your sample after preselection and determine the signal properties.  
 
Another – more ambitious – strategy is to use many (or all) of the observables directly in a fit. This has 
the advantage that the information that is contained in each observable and in the correlation between 
the observables are optimally exploited and are exploited in a sensible and understood way. This 
extra power comes at the cost of some additional complications you have to deal with and come in, 
roughly speaking, two categories: fundamental modeling issues and practicalities.  Practical issues 
usually revolve around your ability to manage the increased complexity of the model and how to 
visualize multi-dimensional models in an intuitive way.  Fundamental issues include your finite ability 
to truly correctly understand and describe a multidimensional signal and background distribution 
including all possible correlations between variables.  
 
RooFit has been designed to make working with multi-dimensional models as easy as working with 
one-dimensional models. Multi-dimensional models have a lot of extra functionality, but working with 
them is not more cumbersome than working with one-dimensional models. This enables you to design 
a more ambitious data analysis where you can get the most out of your data. Multidimensional 
modeling is not an all-or-nothing issue: you can for example combine the information of several 
variables into a neural network and feed the output of the network along with the remaining 
observables into a multi-dimensional fit. In this example approach you also let the events that are 
classified as less-probable by your neural net participate in your analysis and squeeze out some extra 
statistical power. 
 
This section focuses on the practical aspects of building and using multi-dimensional models  at any 
point in your analysis. 

Building and using multi-dimensional models 
 
A multi-dimensional p.d.f. is a model with more than one observable, but is in all other respects 
identical to the one-dimensional modes we have covered so far. The normalization condition for multi-
dimensional p.d.f.s is identical to that of one-dimensional p.d.f. except that the normalization integral 
is now performed over all observables: 
 

( ; ) 1F x p dx =∫
r r r

 

 
Here is a very simple example of a two-dimensional p.d.f. constructed with RooFit using 
RooGenericPdf: 
 

 
RooRealVar x(“x”,”x”,-10,10) ; 
RooRealVar y(“y”,”y”,-10,10) ; 
 
RooRealVar a(“a”,”a”,5) ; 
RooRealVar b(“b”,”b”,2) ; 
 
RooGenericPdf f(“f”,”a*x*x+b*y*y-0.3*y*y*y”,RooArgSet(x,y,a,b)) ; 

 
Example 9 – A simple two-dimensional p.d.f. 
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The model f of this example is a ‘monolithic’ two-dimensional p.d.f, it does cannot be factorized as  
product of two or more simpler p.d.f.s.  
 

Example 10 – A two-dimensional p.d.f. constructed with RooProdPdf 
 
There are several points worth noting about this example. First, generating data works exactly the 
same for multidimensional p.d.f.s as for one-dimensional datasets, simply supply a RooArgSet of 
observables instead of single observable as the first argument of generate. Second, fitting also works 
exactly the same. Lastly, plotting is essentially the same, but have more options now. In the example 
we created two one-dimensional views: a view in x (framex) and a view in y (framey). Once each 
view is defined all goes automatic: the two-dimensional dataset data(x,y) plots the appropriate 
observable in each frame and the two-dimensional p.d.f. fxy(x,y) plots the appropriate projection on 
the frame. The output of Example 10 is shown in Figure 16. 

Figure 15 – The x and y projection of p.d.f. f from Example 9. 
 
 

 
// Generate a 2-dimensional dataset data(x,y) from gaussxy 
RooDataSet* data = f.generate(RooArgSet(x,y),10000) ; 
 
// Fit the 2-dimensional model f(x,y) to data(x,y) 
f.fitTo(*data) ; 
 
// Plot the x distribution of data(x,y) and f(x,y) 
RooPlot* framex = x.frame() ; 
data->plotOn(framex) ; 
f.plotOn(framex) ; 
 
// Plot the y distribution of data(x,y) and f(x,y) 
RooPlot* framey = y.frame() ; 
data->plotOn(framey) ; 
f.plotOn(framey) ;  
 
// Draw the x and y frames on a canvas 
TCanvas *c = new TCanvas(“c”,”c”,800,400) ; 
c->Divide(2) ; 
c->cd(1) ; framex->Draw() ; 
c->cd(2) ; framey->Draw() ; 
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A bit more on plotting multi-dimensional p.d.f.s  
The fact that the two plots of Example 10 come out as expected is not entirely trivial and reflect some 
bookkeeping that RooFit does for you in the background. Plotting the data is easy: to obtain the x 
distribution of data(x,y) you should ignore the y values and fill a histogram with the x values. 
Plotting a p.d.f. involves a bit more thinking: the x distribution of gaussxy(x,y) is different for each 
value of y, so we cannot simply plot gauss(x,y) as function of x for a given value of y: we should 
plot something that matches the x distribution of the data for the given distribution of y values that are 
in the data. To obtain that shape you need to integrate the p.d.f. over y: 
 

( ; ) ( , ; )xF x p F x y p dy= ∫
r r r r

 

 
A nice feature of RooFit is that you almost never need to worry about performing such integrals as 
RooFit keeps track of all the ‘projected’ observables in any plot that you make. For example, when we 
plotted data on xframe (‘data->plotOn(framex)’) not only a histogram representing the distribution   
in x of data was added to xframe, but also a list of all observables that were stored in data, in this 
case (x,y). The subsequent call f.plotOn(framex) retrieves this complete list of data observables 
and compares it to the list of model observables and concludes that both fxy and data have a 
common observable – y – in addition to the plotted x observable. Therefore the 
RooAbsPdf::plotOn() call automatically integrates fxy over y before adding it to framex to ensure 
that both data and model represent the same ‘view’. Any such transformation in plotting is always 
announced: 
 

 
The integrals involved in the creation of p.d.f. projections can be quite cumbersome, e.g. for Example 
9 they are 
 

( , , , ) ( , , , )
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where f(x,y,a,b) is the unnormalized expression that was entered in the RooGenericPdf constructor.  
 

Constructing multi-dimensional p.d.f.s through multiplication 
 
Although it is straightforward to define monolithic multi-dimensional p.d.f.s such as f, they are actually 
not very common in practice. In many real-life situations you deal with observables that are (nearly) 
uncorrelated and you construct a multi-dimensional model for such cases by simply multiplying a 
number of one-dimensional p.d.f.s: 

 
( , ; , ) ( ; ) ( ; )F x y p q f x p g y q= ⋅  

 
The tradeoff between a monolithic p.d.f. and a factorizing product p.d.f is a classic tradeoff between 
performance and simplicity one side and maximum flexibility and accuracy on the other side.  Product 
p.d.f.s are very elegant in use: if the input p.d.f.s f(x;p) and g(y,q) are both properly normalized than 
F(x,y;q,p) is automatically normalized too. The interpretation is also straightforward: f(x;p) defines the 
distribution of the model in x and f(y,q) defines the distribution of the model in y. 
 
The biggest drawback of the product construction is that you cannot introduce correlations between 
the observables because the product terms are by construction uncorrelated. They can however be 
introduced in an elegant way through a variant of the product construction: the conditional product. 
We will come back to this in the next section. 
 

 
RooAbsReal::plotOn(fxy) plot on x integrates over variables (y) 
RooAbsReal::plotOn(fxy) plot on y integrates over variables (x) 
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Class RooProdPdf 
In RooFit the construction of any kind of product p.d.f. is done through class RooProdPdf. Here is a 
simple example: 
 

 
RooRealVar x(“x”,”x”,-10,10) ; 
RooRealVar meanx(“meanx”,”meanx”,0,-10,10) ; 
RooRealVar sigmax(“sigmax”,”sigmax”,3,0.,10.) ; 
RooGaussian gaussx(“gaussx”,”gaussx”,x,meanx,sigmax) ; 
   
RooRealVar y(“y”,”y”,-10,10) ; 
RooRealVar meany(“meany”,”meany”,0,-10,10) ; 
RooRealVar sigmay(“sigmay”,”sigmay”,2,0.,10.) ; 
RooGaussian gaussy(“gaussy”,”gaussy”,y,meany,sigmay) ; 
 
RooProdPdf gaussxy(“gaussxy”,”gaussxy”,RooArgSet(gaussx,gaussy)) ; 
 
RooDataSet* data = gaussxy.generate(RooArgSet(x,y),10000) ; 
gaussxy.fitTo(*data) ; 
 
RooPlot* framex = x.frame() ; 
data->plotOn(framex) ; 
gaussxy.plotOn(framex) ; 
 
RooPlot* framey = y.frame() ; 
data->plotOn(framey) ; 
gaussxy.plotOn(framey) ;  
 

Example 11 – A 2-dimensional p.d.f. constructed as the product of two one-dimensional p.d.f.s 
 
The product p.d.f. gaussxy can be used for fitting and generating in exactly the same way as the 
monolithic p.d.f. f of Example 9. Note that RooProdPdf can multiply any number of components, in 
this example we multiply two one-dimensional p.d.f.s, but you can equally well multiply e.g. 7 one-
dimensional p.d.f.s or 2 five-dimensional p.d.f.s 
 
 

 
Figure 16 – Output from Example 11 

 
Projection integrals over generic multi-dimensional p.d.f.s such as f are by default created through 
the createIntegral() method of that p.d.f. and are calculated analytically or numerically depending 
on the availability of analytical integrals, as advertised by the p.d.f. For multi-dimensional p.d.f.s that 
are defined as a product of factorizing terms, i.e. RooProdPdf objects, the integral calculation is 
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automatically factorized as well and often results in a significant simplification of the calculation. For 
example the integration  of gaussxy over y is trivial: 
 

( ; ) ( ; ) ( ; ) ( ; ) ( ; ) ( ; ) 1xF x p f x p g y p dy f x p g y p dy f x p= = = ⋅∫ ∫
r r r r r r r r r r

 

 
and comes out to the intuitively expected answer: f(x,p).  
 
 
 

Two-dimensional views 
You can also make two-dimensional plots of multi-dimensional p.d.f.s, but he interface to do this is 
more rudimentary as two-dimensional views lends themselves less to manipulation and layering. It is 
difficult for example to overlay a two-dimensional view of data and a model and judge by eye if they 
agree.  
 
In RooFit you can create 2 or 3 dimensional view of datasets and model represented as ROOT TH2 or 
TH3 objects. The code below creates a two-dimensional histogram of the data and p.d.f. of Example 
10 and shows them side by side: 
 

 
  TH2* hd = data->createHistogram("hd",x,Binning(20),YVar(y,Binning(20)));   
  TH2* hf = gaussxy.createHistogram("hf",x,Binning(40),YVar(y,Binning(40))) ; 
   
  TCanvas *c = new TCanvas("c","c",800,400) ; 
  c->Divide(2) ; 
  c->cd(1) ; hdata->Draw("lego") ; 
  c->cd(2) ; hpdf->Draw("surf") ; 
 

Example 12 – Generating two-dimensional plots of data and p.d.f. 
 

 
Figure 17 – Output of Example 12 

 
The createHistogram() method of both RooAbsReal and RooAbsData can generate 1,2 and 3 
dimensional ROOT histograms depending on the arguments. The option y and z variable are 
specified through the YVar() and ZVar() named arguments. The binning in each variables can be 
specified through the Binning() named argument. You can also restrict the range to be 
histogrammed in each dimension through a Range() named argument. Appendix A documents all 
options of the createHistogram() method. 
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Showing your multi-dimensional signal – slices and projections 
Most of the new topics you encounter when going from one-dimensional to multi-dimensional models 
are in the area of visualization. Instead of a single ‘view’ of a model, you have multiple views: one for 
each observable. Alternatively you can make 2- or 3-dimensional views of models, but as mentioned 
before they are less easy to interpret. In this section we explore other ways to look at you N-
dimensional model through ‘slice’ views: e.g. show the distribution of x in the ‘signal region’ of y.  We 
will illustrate the concept using this simple two-dimensional model: 
 

 
//--- Observables --- 
RooRealVar x(“x”,”x”,-10,10) ; 
RooRealVar y(“y”,”y”,-10,10) ; 
 
//--- Signal p.d.f. --- 
RooRealVar meanx(“meanx”,”meanx”,0,-10,10) ; 
RooRealVar sigmax(“sigmax”,”sigmax”,3,0.,10.) ; 
RooGaussian gaussx(“gaussx”,”gaussx”,x,meanx,sigmax) ; 
   
RooRealVar meany(“meany”,”meany”,0,-10,10) ; 
RooRealVar sigmay(“sigmay”,”sigmay”,2,0.,10.) ; 
RooGaussian gaussy(“gaussy”,”gaussy”,y,meany,sigmay) ; 
 
RooProdPdf sig(“sig”,”gaussx*gaussy”,RooArgSet(gaussx,gaussy)) ; 
 
//--- Background p.d.f. --- 
RooPolynomial flatx(“flatx”,”flatx”,x) ; 
RooPolynomial flaty(“flaty”,”flaty”,y) ; 
 
RooProdPdf bkg(“bkg”,”flatx*flaty”,RooArgSet(flatx,flaty)) ; 
 
//--- Composite model --- 
RooRealVar nsig(“nsig”,”nsig”,1000,0,10000) ; 
RooRealVar nbkg(“nbkg”,”nbkg”,10000,0,1000000) ; 
RooAddPdf model(“model”,”sig+bkg”,RooArgList(sig,bkg),RooArgList(nsig,nbkg)); 

 
Example 13 – A composite two-dimensional p.d.f. 

 
We have a 2-dimensional signal and background, the signal is Gaussian in both observables, the 
background is flat in both observables. If we look at the two-dimensional distribution the signal is 
nicely visible, but as you can see in Figure 18 the one-dimensional projection and x and y do not do 
justice to the signal: 
 

 
RooDataSet* data = model.generate(RooArgSet(x,y),10000) ; 
 
TH2* hmodel2d = 

model.createHistogram(“hmodel2d”,x,Binning(40),YVar(y,Binning(40))) ; 
 
RooPlot* xframe = x.frame() ; 
data->plotOn(xframe) ; 
model.plotOn(xframe) ; 
 
RooPlot* yframe = y.frame() ; 
data->plotOn(yframe) ; 
model.plotOn(yframe) ; 
 
TCanvas* c = new TCanvas(“c”,”c”,1200,400) ; 
c->Divide(3) ; 
c->cd(1) ; hmodel2d->Draw() ; 
c->cd(2) ; xframe->Draw() ; 
c->cd(3) ; yframe->Draw() ; 
 

Example 14 – Plotting a 2-dimensional composite model 
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Figure 18 – Output of Example 14 

 
The reason is of course that when you make a projection in either x or y of model you indiscriminately 
include the regions with a lot of signal – around (0,0) – as well as regions where there is only 
background. The result is that the nice peak in the 2-dimensional plot is watered down a lot.  
 
You could choose to show the 2-D plot, but that has several disadvantages: it is difficult to overlay 
data and model for example. Another approach is to show only a slice of the data, i.e. when you show 
the projection in x, you for example only include data in the range -3<y<3.  
 
Show the data with this requirement on y is conceptually straightforward: you only include data points 
in the histogram that meet your selection criteria in y. The projection of the model with the same 
requirement is less trivial, but still conceptually easy: the integration limits of the projection integral 
over y show now be adjusted from the full range to the range that we have selected, i.e. 
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Here is how you do it: 
 

 
// Define a range in y named “selection” 
y.setRange(“selection”,-2,2) ; 
 
RooPlot* xframe2 = x.frame() ; 
 
// Plot data with requirement y named “selection” 
data->plotOn(frame,CutRange(“selection”)) ; 
 
// Plot model with requirement on y named “selection” 
model.plotOn(frame,ProjectionRange(“selection”)) ; 
model.plotOn(frame,ProjectionRange(“selection”), 

          Components(“bkg”),LineStyle(kDashed)) ; 
 
 

Example 15 – Projecting a slice of a two-dimensional p.d.f. 
 
Result: a much more pronounced signal is visible in the slice projection Figure 19 (right) than in the 
ordinary ‘full’ projection Figure 19 (left). Lets now look a bit better at the code fragment that produced 
this plot. The use of ranges in plotting is always a two-step process: first you define a range with a 
name in one (or more) variables and then you use that range by referencing it by its name. 
Though it requires you to write one extra line of code this approach has two advantages: 1) you define 
the requirement in a single location, eliminating the possibility of multiple inconsistent copies and 2) it 
allows you to refer to ranges in more than one variable through a single name. Also note that we have 
combined multiples options – to modify the projection range, the line style and the component 
selection – into a single call. 
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Figure 19 – Regular projection of p.d.f. from Example 13 (left) versus slice projection of same 

p.d.f (right, |y|<2) 
 
A convenient feature of CutRange() and ProjectionRange() is that they automatically ignore any 
requirements imposed on the plot variable itself, which allow you to effectively use the ‘named range ‘ 
concepts ability to refer to multiple range by the same name. This is illustrated in the following 
example: 
 

 
// Define a range in y named “selection” 
x.setRange(“selection”,-3,3) ; 
y.setRange(“selection”,-2,2) ; 
 
// Make plot of data and model in x with “selection” cut on y 
RooPlot* xframe2 = x.frame() ; 
data->plotOn(xframe2,CutRange(“selection”)) ; 
model.plotOn(xframe2,ProjectionRange(“selection”)) ; 
 
// Make plot of data and model in y with “selection” cut on x 
RooPlot* yframe2 = y.frame() ; 
data->plotOn(yframe2,CutRange(“selection”)) ; 
model.plotOn(yframe2,ProjectionRange(“selection”)) ; 
 
 

 
 

Dealing with more than 2 dimensions 
The technique of projecting slices is easily generalized to p.d.f.s with more than 2 dimensions. Take 
as an example a three dimensional p.d.f. of the same form as the p.d.f. defined in Example 13, just 
add a gaussz and a flatz. A projection plot in any dimension now integrates out 2 dimensions and a 
slice projection plot can, at your choice, make a slice cut in either or both observables that are 
projected out. You can choose the range that you wish to select in each observable by calling 
setRange() for each observable: 
 

 
// --- Construct three-dimensional p.d.f. --- 
RooRealVar z(“z”,”z”,-10,10) ; 
RooRealVar meany(“meanz”,”meanz”,0,-10,10) ; 
RooRealVar sigmay(“sigmaz”,”sigmaz”,1,0.,10.) ; 
RooGaussian gaussz(“gaussz”,”gaussz”,z,meanz,sigmaz) ; 
RooPolynomial flatz(“flatz”,”flatz”,z) ; 
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RooProdPdf sig3(“sig3”,”gx*gy*gz”,RooArgSet(gaussx,gaussy,gaussz)) ; 
RooProdPdf bkg3(“bkg3”,”fx*fy*fz”,RooArgSet(flatx,flaty,flatz)) ; 
RooAddPdf model3(“m3”,”s3+b3”,RooArgList(sig3,bkg3),RooArgList(nsig,nbkg)); 
 
RooDataSet* data3 = model3.generate(RooArgSet(x,y,z),100000) ; 
 
// --- Make straight and slice projection on z --- 
x.setRange(“selection”,-3,3) ; 
y.setRange(“selection”,-2,2) ; 
 
RooPlot* zframe = z.frame() ; 
data3->plotOn(zframe) ; 
model3.plotOn(zframe) ; 
model3.plotOn(zframe,Components(“bkg3”),LineStyle(kDashed)) ; 
 
RooPlot* zframe2 = z.frame() ; 
data3->plotOn(zframe2) ; 
model3.plotOn(zframe2,ProjectionRange(“selection”)) ; 
model3.plotOn(zframe2,ProjectionRange(“selection”), 

           Components(“bkg3”),LineStyle(kDashed)) ; 
 

Example 16 – Projecting a 2-dimensional slice of a 3-dimensional model 
 
The output is shown in Figure 20. 
 

 
Figure 20 – Projection of 3-dimensional model of Example 16 on z (left) and projection of 2-

dimensional slice “selection” in (x,y) on z axis. 
 

Plotting multiple or discontinuous ranges 
RooFit ranges are ‘simple’ ranges: each range is defined two parameters: the lower bound and the 
higher bound. Sometimes though there is good use for discontinuous ranges, for example a lower and 
higher sideband around a signal region. You effectively construct such discontinues ranges by 
simultaneously specifying multiple ranges in any command that accepts ranges e.g. 
 

 
x.setRange(“sb_lo”,-6,-3) ; 
x.setRange(“sb_hi”, 3, 6) ; 
 
RooPlot* xframe2 = x.frame() ; 
data->plotOn(xframe2,CutRange(“sb_lo,sb_hi”)) ; 
model.plotOn(xframe2,ProjectionRange(“sb_lo,sb_hi”)) ; 
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Note that when the ranges are active in more than one observable, ‘multiplication’ amongst 
observables takes precedence over ‘addition’ of ranges, i.e. given a range A and a range B defined in 
both x and y, the definition of (A,B) is  (A(x) && A(y)) || (B(x) && B(y)). 

Selecting arbitrarily shaped regions for plotting 
The ‘range’ techniques projects a slice, box or (hyper-)cube shaped region on a one-dimensional plot, 
but you can also project differently shaped regions. Such projection integrals can in general not be 
calculated analytically and have to be performed with Monte Carlo-style methods. Before we get into 
the technical details on how to do that, we will first look a bit better in why you may want to that.  
 
Generally speaking the goal of a ‘range’ plot is usually to visualize your capability to separate signal 
from background by showing the data distribution in one dimension but exploiting the discriminating 
information from all dimensions. In the standard range plot this is accomplished by cutting around the 
signal region in all dimensions that are projected out. When you try to generalize this concept two 
questions arise:  
 

• how to you find the cuts that leads to the ‘best’ plot, and  
• what is the optimal shape of the region to select  

(e.g. a (hyper)ellipsoid is probably better than a (hyper)cube).  
 
The question of what is best somewhat subjective as it revolves around the issue of how to present 
your data, but generally involves finding a way that fairly represents the signal/background separation 
that you achieve in a multi-dimensional model in a one-dimensional plot. One of the standard 
approaches that address both of these issues is the so-called ‘likelihood-ratio plot’. 
 

The likelihood ratio plot  
The idea behind this method is that likelihood of the signal and background component of your model 
– or rather ratio of these likelihoods – contains all the information you have on signal/background 
discrimination. A ‘constant-likelihood surface’ is the optimal cut shape under the assumption that your 
model is correct. A nice feature of this method is that it reduces the definition of your multi-
dimensional signal region to a definition with a single parameter: the likelihood ratio value on the cut 
surface. This parameter controls the purity versus efficiency balance in your plot. The likelihood ratio 
plot is not as easily produced as a hyper-cube slice plot because it involves numeric methods. 
 
In practice, a likelihood ratio plot is constructed as follows: for a composite model M(x,y,z) = fS(x,y,z) 
+ (1-f)B(x,y,z) and a dataset D(x,y,z) you  
 

• Formulate a likelihood ratio R(x,y,z) = S(x,y,z)/B(x,y,z) 
• Plot the subset of the data D(x,y,z) for which R(x,y,z,) > Rcut 
• Project model M using a Monte Carlo technique for the region of phase space in which it 

predicts R(x,y,z)>Rcut 
 
Most of the practical difficulties arise the calculation of the latter, as the over the region defined by 
R(x,y,z)>Rcut can in all but exceptional cases not be performed analytically. In the remainder of this 
section we will explain how to perform these steps in RooFit. 
 
Formulating the likelihood 
We illustrate the formulation of the likelihood ratio in RooFit using the model of Example 16 as a 
starting point: 
 

 
// ---  Create (x,y) projection of signal and background p.d.f.s ---  
RooAbsReal* sigProj = sig3.createProjection(RooArgSet(x,y),z) ; 
RooAbsReal* bkgProj = bkg3.createProjection(RooArgSet(x,y),z) ; 
 
// --- Construct log10 of ratio of S(x,y) and B(x,y) --- 
RooFormulaVar llRatio_func("llRatio","log10(Lsig/Lbkg)","log10(@0/@1)", 

                        RooArgList(*sigProj,*bkgProj)) ; 
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In this example we do not use the straight signal and background likelihoods as input for the ratio, but 
rather their integrals over z:  
 

 
You do this because you do not want use the information in the z observable in the likelihood ratio if 
you are plotting the distribution of z: that would be equivalent to showing a distribution on z after a cut 
on z.  The creation of the projection integrals that take out the information in z is facilitated by the 
createProjection() method of RooAbsReal. Its arguments are the observables over which the 
resulting integrals should be normalized, (x,y) in the above example, and the observables which 
should be integrated out, z in the above example. The actual ratio is calculated by a RooFormulaVar, 
which in the example above, also takes the 10log of the ratio as this compresses long tails in the 
distribution, and this thus easier to work with in practice. 
 
Plotting the data with a likelihood ratio cut 
Now we are ready to visualize the data. First we calculate the value of R for each data point and plots 
its distribution.  
 

 
// --- Calculate llRatio for each point in data3 and add as column to data3 - 
RooRealVar* llRatio = data3->addColumn(llRatio_func) ; 
 
// --- Plot distribution of llRatio values in data3 --- 
RooPlot* lframe = llRatio->frame(Range(-10,2)) ; 
data3->plotOn(lframe) ; 

 
 
 
The first step is accomplished by the addColumn() function of RooAbsData. This function takes one or 
more RooAbsReal function objects, evaluates their outcome for each data point and adds a column to 
the dataset with the name of the function object that stores the calculated value of that function. Now 
the values of llRatio can be simply treated as an observable and we can plot its distribution the 
usual way with one caveat: we have never associated a default range with llRatio, so give one 
explicitly here using the Range() argument. Here we have chosen a range bracketing 0 for llRatio 
as  the interesting region of signal-to-background ratios typically hovers around unity. You can also let 
RooFit do range determination for you using the AutoRange() or AutoSymRange() options: 
 
 

RooPlot* frame = llRatio->frame(AutoRange(*data3)) ; 
RooPlot* frame = llRatio->frame(AutoSymRange(*data3)) ; 

 
 
The AutoRange() option chooses a range for you that fits all data in a given dataset with some extra 
margin of each side. The AutoSymRange() option does the same, but it additionally adjusts the 
margins such that the mean value of the distribution is by construction in the center of the range. 
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Figure 21 – Distribution of S(x,y)/B(x,y) likelihood ratio, plotted in frames created with  

Range(-2,10), AutoRange()  and AutoSymRange() respectively. (Data is identical all plots) 
 
Figure 21 shows the distribution of llRatio as generated by the example code. Based on the 
distribution of llRatio choose a cut 0. Note that this cut value is arbitrary to a certain extent and you 
should experiment here to achieve the result you like the best. Now we select the subset of events in 
data3, for which llRatio is greater than zero and plot its distribution in z 
 

 
// --- Plot distribution of z values after cut S(x,y)/B(x,y) ratio --- 
RooDataSet* selData3 = data3->reduce("llRatio>0") ; 
 
RooPlot* frame = z.frame() ; 
selData3->plotOn(frame) ; 
 

 
For the selection step we use the reduce() method of RooAbsData, which takes any Boolean formula 
expression in terms of the dataset observables. Figure 22 shows the output of this code, as well as 
the output of a variation where we have required a cut value of -1 and +1 instead. 
 

 
Figure 22 – Distribution of events in z after llRatio cut at -1, 0 and +1 respectively 

 
Plotting the p.d.f. projection with a likelihood ratio cut 
To complete the plots of Figure 22 we should add a projection of the model with an identical 
requirement, which revolves around calculating the integral 
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As this integral can not be calculated analytically in all but exceptional cases we follow a Monte Carlo 
inspired numerical approach. The Monte Carlo theorem says that you can approximate any integral by 
a sum of values randomly sample from the distribution you are trying to integrate, i.e. 
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with the values xi randomly sample from M, such as is done for example by M.generate().  This 
theorem is valid for any region R to be integrated and provides an easy way to approximate the 
integral that you need to calculate for the model projection with a likelihood ratio cut. Here is the 
complete code for the projection of model3 with a likelihood ratio cut: 
 

 
// --- Generate toy MC events from model3, calculate llRatio for each 
//                           toy event and add it as column to toyData --- 
RooDataSet* toyModelData = model3.generate(RooArgSet(x,y,z),10000) ; 
toyModelData->addColumn(llRatio_func) ; 
 
// --- Select subset of toy events that S/B ratio cut --- 
RooDataSet* modelProjData = toyModelData->reduce("llRatio>0") ; 
 
// --- Draw model projection over z data in frame --- 
model3.plotOn(frame,ProjWData(*modelProjData)) ; 
model3.plotOn(frame,ProjWData(*modelProjData),Components("bkg3"), 

           LineStyle(kDashed)) ; 
 
 
This code example recycles the addColumn() and reduce() techniques that we used earlier to 
project the data, but differs in the final plotting call. The ProjWData() argument to 
RooAbsPdf:plotOn() instructs RooFit to perform the projection integral explicitly through a Monte 
Carlo approximation using the given dataset, rather than using the default numerical or analytical 
integration techniques. By giving a dataset with a preselection on llRatio we effectively perform the 
integral over the region defined by llRatio>0 and thus construct a p.d.f. projection that is consistent 
with the data. The final result is shown in Figure 23 with a likelihood ratio cut at -1, 0 and +1 
respectively. 
 

 
Figure 23 – Distribution of events in z after llRatio cut of -1, 0 and +1 respectively overlaid 

with p.d.f. projection with identical requirement. 
 
 
Likelihood ratio plot – Putting it all together 
Here is the complete code to make a likelihood ratio plot starting from the model defined in Example 
16.  
 

 
// ---  Create (x,y) projection of signal and background p.d.f.s ---  
RooAbsReal* sigProj = sig3.createProjection(RooArgSet(x,y),z) ; 
RooAbsReal* bkgProj = bkg3.createProjection(RooArgSet(x,y),z) ; 
 
// --- Construct log10 of ratio of S(x,y) and B(x,y) --- 
RooFormulaVar llRatio_func("llRatio","log10(Lsig/Lbkg)","log10(@0/@1)", 

                        RooArgList(*sigProj,*bkgProj)) ; 



 46 

   
// --- Calculate llRatio for each point in data3 and add as column to data3 - 
RooRealVar* llRatio = data3->addColumn(llRatio_func) ; 
 
// --- Plot distribution of llRatio values in data3 --- 
RooPlot* lframe = llRatio->frame(Range(-10,2)) ; 
data3->plotOn(lframe) ; 
 
// --- Plot distribution of z values after cut S(x,y)/B(x,y) ratio --- 
RooPlot* frame = z.frame() ; 
RooDataSet* selData3 = data3->reduce("llRatio>0") ; 
selData3->plotOn(frame) ; 
 
// --- Generate toy MC events from model3, calculate llRatio for each 
//                           toy event and add it as column to toyData --- 
RooDataSet* toyData = model3.generate(RooArgSet(x,y,z),10000) ; 
toyData->addColumn(llRatio_func) ; 
 
// --- Select subset of toy events that S/B ratio cut --- 
RooDataSet* projData = toyData->reduce("llRatio>0") ; 
 
// --- Draw model projection over z data in frame --- 
model3.plotOn(frame,ProjWData(*projData)) ; 
model3.plotOn(frame,ProjWData(*projData),Components("bkg3"), 

           LineStyle(kDashed)) ; 
 
TCanvas* c = new TCanvas("c","c",800,400) ; 
c->Divide(2) ; 
c->cd(1) ; lframe->Draw() ; 
c->cd(2) ; frame->Draw() ; 
 

Example 17 – Complete code to construct a likelihood ratio plot 
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7. Correlations in multi-dimensional models 
We now take the building of multi-dimensional models one step further by introducing explicit 
correlations between observables. A multi-dimensional model includes correlations if it can not be 
factorized into a  product of one-dimensional p.d.f.s. Dealing with correlations is a central issue in 
many multivariate analyses. Many standard techniques, for example a neural network, find and exploit 
correlations between observables automatically for you, but sometimes you may want to explicitly 
deal with correlations yourself: if you are a priori aware of these correlations and know how to 
describe them.  
 
In the introduction of the preceding section we looked at a 2-dimensional model with correlations 
through the construction of a 2-dimensional RooGenericPdf based on a non-factorizable formula 
involving observables x and y: 
 

 
RooGenericPdf f(“f”,”a*x*x+b*y*y-0.3*y*y*y”,RooArgSet(x,y,a,b)) ; 

 
 
While this approach explicitly describes the distribution in x, y and the correlation between x and y, it 
is not so easy to disentangle the three. If you want to modify the functional form such that the 
distribution in y changes, but the distribution in x and the correlation between x and y are preserved, it 
is not obvious how you should do that. The concept of a conditional probability density function makes 
it easier to achieve such a conceptual separation. Before we get into the details of conditional p.d.f.s, 
we introduce a realistic example of an analysis with known correlations that will serve as illustration 
and make clear why you want to be able to achieve this type of factorization in your model description. 

Example analysis with a known correlation between observables 
Suppose we want to measure the lifetime of the decay of a particle in a generic particle physics 
experiment. The first step in this measurement is to collect a data sample with observed decays. Each 
decay is described by a decay time, which is derived from a flight length measurement between the 
production vertex of the particle and the decay vertex of the particle. For an ideal detector the 
distribution of observed decay times is an exponential distribution with an exponent that is the inverse 
of the lifetime τ of the particle: 
 

FI(t) = exp(-t/τ) 
 

Figure 24 – Distribution of decay times measure with ideal detector (left) and realistic 
detector(right) 
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A real-life detector has a finite experimental resolution on each measurement t of the decay time. We 
adjust our model to incorporate a Gaussian measurement uncertainty on each t by convolving FI with 
a Gaussian: 
 

FR(t) = exp(-t/τ) ⊗ G(t,µ,σ) ≡ ∫ dt’ exp(-t’/τ) G(t-t’,µ,σ) 
 
In this expression G denotes a Gaussian with mean µ and width σ. The width σ expresses the 
experimental resolution on each measurement of t and the mean µ parameterizes the average bias in 
that measurement. We assume the latter to be zero for the sake of this examples simplicity. Figure 24 
shows the ideal and realistic model FI and FR fit to a sample of toy Monte Carlo events. You can see 
from the magnitude of error on the fitted value of τ  that the finite t resolution of the realistic model 
reduces the precision of the measurement of τ. 
  

Introducing a second correlated observable 
Each measurement of a decay time t in our example is the result of a measurement of the distance 
between two decay vertices that are each calculated from the intersection of a number of charged 
particle trajectories. These vertex positions have uncertainties associated to them that are derived 
from the uncertainties on the participating charged particle trajectories and can be used to assigned 
an experimental error dt to each measurement t. This means that the detector resolution on t is not 
really a fixed value, but rather varies from event to event.  
 
Our example of a decay time measurement has not been randomly chosen: it represents a large class 
of measurements where an observable x is accompanied by an error estimate dx that can be treated 
as a second correlated observable in the model that describes the experimental results. 
 
We modify the model such that each event is characterized by a pair of values (t,dt) rather than a 
single number t and thereby we acknowledge that certain events – those with small dt – carry more 
information then others, and use this information to achieve a better measurement of τ with the same 
data. Here is the enhanced p.d.f: 
 

FE(t,dt) = exp(-t/τ) ⊗ G(t,µ,dt) 
 
It is easy to see that this small modification  – replacing the resolution estimate σ by the per-event 
error dt – accomplishes what you want. Imagine to events A and B with identical observed decay 
times tA=tB=t and uncertainties that differ by a factor of two dtA= dtB/2, the contribution of event A to 
the total likelihood will differ from the contribution of event B because exponential shape of the model 
for event A is convolved with a Gaussian that is twice as small as that for event B. A refit of the data 
sample of Figure 24 to this enhanced model reflects the enhanced statistical power of this model, by 
reducing the measurement error of τ from 0.067 to 0.060, a 10% improvement of the measurement 
performed on the same data that is equivalent to having 20% more data available4. 
 
There is one major caveat in the enhance model FE: it assumes that the error estimates dt are correct. 
If these estimates are too small on average in reality, the error on the physics parameter τ will be too 
small as well. As this is highly undesirable, you should verify the correctness of the errors dt by 
looking at pull distributions, i.e. comparing the spread of the measured values (the external error) to 
the distribution of the given errors (the internal error). Fortunately this check an be trivially 
incorporated in the model FE through the following modification: 
 

FE(t,dt) = exp(-t/τ) ⊗ G(t,µ,s⋅dt) 
 
Now the model doesn’t make any absolute interpretation of the errors dt, it just assumes that the true 
uncertainty of each t measurement scales linearly with the provided error. The parameter s serves as 
a global scale factor applied to the per-event errors dt. If you fit this model to the data and the 
uncertainty estimates dt turn out the be correct on average you will find that σ=1. If the error estimates 

                                                     
4 The actual gain depends on the spread of the per-event errors. The chosen example is typical for 
BaBar experimental data.  
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are too high or too low on average, this is apparent from a mismatch in the distribution of values and 
errors in the data and the fit will steer σ to a value smaller or greater than 1. Effectively one could 
interpret G as a fit to the pull distribution associated with the vertexing procedure. Thanks to this built-
in correction of the per-event errors the improved model FE has gained an important quality: the error 
on the physics parameter τ is to first order independent of the correctness of the error estimates dt. (A 
second order dependency comes in when the pull distribution of the dt errors cannot be accurately 
described by a Gaussian. Also this can be mitigated, for example by replacing G by a sum of two or 
more Gaussians of different width and mean). 
 
In summary,  incorporating the errors dt on each decay t in your model in the form FE gives you 
enhanced statistical sensitivity to τ,  it gives you an estimate of the correctness of the provided errors, 
and dt cancels to first order the effects that arise from dt estimates that are too small or too large on 
average. 
 

Some practical caveats 
The enhanced decay time model is a great example of a p.d.f with an explicit correlation between 
observables, but it has some practical caveats that have not been discussed yet and that should be 
addressed before one can use it in practice: If you were to fit FE as written above to data you would 
effective use it as a two-dimensional model predicting the distribution of t, the correlation between t 
and dt, and the distribution of dt, as there is nothing in the description of FE that warrants a special 
treatment of dt. In the description of the example we’ve conveniently left in the middle what the 
distribution of dt is, but once you start actually using your model with data this becomes acutely 
relevant as your model must be able to describe the data’s dt distribution. 
 
Lets examine our example a bit further: the prediction of FE for the distribution of dt is obtained by 
integrating FE(t,dt) over t. You cannot do this analytically, but RooFit can do it numerically, and the 
result is a more or less flat distribution in dt  as shown in Figure 25. (NB: The slight drop-off in Figure 
25 towards high values of dt is caused by the finite range of t in the definition of FE) 
 
 

 
Figure 25 – Prediction of FE for the distribution of the per-event error dt 

 
Your actual distribution of dt in data is likely to be very different, so fitting FE to data would result in a 
bad fit. Even worse, you don’t have any knobs to turn to modify the shape of the dt distribution 
predicted by FE without altering its behavior in t and in the correlation between t and dt. So here were 
are back at the opening question of the chapter ‘If you want to modify the functional form such that the 
distribution in y changes, but the distribution in x and the correlation between x and y are preserved, it 
is not obvious how you should do that.’ We have now seen why you want that, next we will talk about 
how you do it. The key to this lies in the concept of conditional p.d.f.s 
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Conditional probability density functions 
The premise behind a conditional probability density function F(x|y) is that it describes the distribution 
of a set of observables x given the values of a set of other observable y. In effect F(x|y) describes the 
distribution of x, the correlation between x and y, but not the distribution of y. Conditional p.d.f.s differs 
in only one respect from ordinary p.d.f.s: the normalization condition. Whereas a regular two-
dimensional p.d.f F(x,y) meets the normalization condition 
 

( , ) 1F x y dxdy ≡∫  

 
A conditional p.d.f. F(x|y) meets the normalization condition 
 
 ( , ) 1F x y dx ≡∫  for all values of y (1) 

 
A conditional p.d.f F(x|y) has no predictive power in y, it just takes the distribution of y as a given and 
predicts the distribution of x for that value of y. This is precisely the way we want to use our enhanced 
life time model FE: rather than fitting FE(t,dt) to data we want to fit FE(t|dt) to data. How can we do this 
in RooFit? In RooFit you can perform both fits, regular and conditional, from the same RooAbsPdf 
object: each RooFit p.d.f is always constructed from a function expression that is explicitly normalized 
by dividing that expression by its integral 
 

( , ) ( , )( , ) , ( | )
( , ) ( , )
f x y f x yF x y F x y

f x y dxdy f x y dx
= =
∫ ∫

 

 
The only issue is that you have to indicate in the use context that you want a RooAbsPdf to represent 
the conditional form that than the regular form. The next section will explain how to do that. 
 

Using conditional p.d.f.s for fitting, plotting and generating 
We first code the enhanced life time p.d.f. of the opening section to be able to concretely illustrate the 
various uses of conditional p.d.f.s.: 
 

 
// Observables 
RooRealVar t(“t”,”decay time”,0,20) ; 
RooRealVar dt(“dt”,”error on decay time”,0,1) ; 
 
// Gaussian resolution model Gauss(t,0,s*dt) ; 
RooRealVar s(“s”,”resolution”,3,0,20) ; 
RooGaussModel res(“res”,”det. resol.”,t,RooConst(0),s,dt) ; 
 
// NB: Convenient special ctor of RooGaussModel with 4 arguments  
// defines gaussian width as product of 3rd and 4th argument and saves you 
// the effort of a separate RooFormulaVar object 
 
// Decay (x) res model 
RooRealVar tau(“tau”,”lifetime”,1.5,0,20) ; 
RooDecay decay(“decay”,”decay model”,t,tau,res,RooDecay::SingleSided) ; 
 

 
As was just explained, the definition of decay – like any other p.d.f – has not, and needs not, to have 
any clauses relating to possible use as a conditional p.d.f 
 
Given a dataset data with observables t and dt we now explicitly fit decay as conditional p.d.f using 
the ConditionalObservables() directive in the fitTo() command: 
 

 
// Fit decay(t|dt) as conditional p.d.f. to data(t,dt) 
decay.fitTo(data,ConditionalObservables(dt)) ; 
 



 51

 
The effect of the ConditionalObservables() argument is that the likelihood function that it is 
constructed using decay in its conditional form: 
 
 ( )( , ) log ( , ; , )reg i i

D
NLL decay t dtτ σ τ σ= −∑  

( )( , ) log ( ; , | )cond i i
D

NLL decay t dtτ σ τ σ= −∑  

 
It is an instructive exercise to compare the output of a regular fitTo() operation with the Verbose() 
argument with that of a fitTo() operation with both the Verbose() and the Conditional-
Observables() arguments: you will see that the absolute value of the likelihood printed by the 
Verbose() option is very different. This is a direct consequence of the different normalization 
conditions illustrated in Eq. 1. You will also notice that the performance differs: in the fit to the 
conditional form of decay the normalization integral needs to be evaluated for every event, as it has a 
different value for each event. The normalization term of decay when used as a regular fit on the other 
hand depends only on parameters, and is thus only evaluated when MINUIT changes those 
parameter values, a much less frequent occurrence. 
 
The visualization of conditional models is conceptually more complicated as the shape of a conditional 
p.d.f. is partly dictated by the data it is aiming to describe. Lets look concretely at our example 
analysis: there are two data plots you can make: the distribution of t and the distribution of dt. Since a 
conditional p.d.f. decay(t|dt) has by construction no predictive power in dt we cannot plot it as function 
of dt. That leaves us with a plot of the distribution of t that can be overlaid with a matching projection 
of decay over observable dt. As integration makes no sense here, again because decay(t|dt) has no 
predictive power in dt, we project out dt by summing the distribution of decay(t|dt) over each dt value 
in the data, i.e. 
 

1,

( | )1
( | )

i

i n i

d t dt
n d t dt dt=
∑
∫

 

 
This technique is identical to the Monte Carlo integration technique described in the preceding 
chapter, it is only applied with different data: for Monte Carlo integration we summed over the values 
of a simulated dataset sampled from the p.d.f. itself, whereas here we sum over the values of the 
experimental data: 
 
 

 
RooPlot* frame = t.frame() ; 
data.plotOn(frame) ; 
decay.plotOn(frame,ProjWData(dt,data)) ; 
 

 
In the ProjWData() we specify the dataset with dt values over which should be summed – here we 
use the actual data – and we also specify that we only wish to override the projection method for the 
observable dt. The latter is not strictly necessary in this example as dt is the only observable to be 
projected in data, but it is good practice to do spell that out explicitly. In cases where data contains 
additional observables that you still want to be projected out through integration, this specification is 
essential. Figure 26 shows the t and dt distributions of our example data and the properly projected t 
distribution of the conditional p.d.f decay(t|dt). Note that a projection of a conditional p.d.f. is always a 
‘hybrid’ object: it is not a pure model prediction, but a conditional prediction tailored to the data it is 
being compared to. 
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Figure 26 – Distribution of decay time errors (left) and distribution of decay times, overlaid 

with conditional p.d.f. decay(t|dt) projected with dt values of the data (right). 
 
 
Generating events using p.d.f. in conditional form requires external input on the conditional variables, 
just like in plotting conditional p.d.f.s. The simplest way to do this is to pass the generator an existing 
set of dt values and ask it to generate the corresponding t values according to the model 
 

 
RooDataSet* toyData = decay.generate(t,ProtoData(data)) ; 
 

 
The result of this operation is a two-dimensional dataset with values of t and dt. The dt values are 
identical to those of the input dataset passed through the ProtoData argument, the t values and their 
correlation with dt are generated from the decay p.d.f. You do not need to specify a number of events 
to be generated when you use ProtoData(), the number of events in the prototype dataset is the 
implicit default, but you still can change this through an explicit NumEvents() argument. Beware 
aware though that when you require more events to be generated then are available in data, certain 
data entries will be used more than once.  
 
If you wish to describe the distribution in dt with a p.d.f. rather than with a collection of values, the 
event generation becomes a two-step process: First you sample a dt distribution from a regular p.d.f, 
then you sample the t distribution from a conditional p.d.f. 
 

 
RooAbsPdf* dtModel ;  
RooDataSet* dtData = dtModel->generate(dt,1000) ; 
RooDataSet* allData = decay.generate(t,ProtoData(*dtData)) ; 
 

 

Multiplying conditional p.d.f.s with regular p.d.f.s. 
The ability to use any p.d.f. in conditional form in RooFit unlocks essential new ways to use a p.d.f in 
describing certain classes of problems, but their direct use is less elegant because information on the 
distribution of the conditional observables needs to be externally supplied in many operations. We will 
now look at another way to use conditional p.d.f.s that mitigates these practical problems: conditional 
products. The essence of the idea is that the final ‘high level’ p.d.f. is a p.d.f that can be used in 
regular mode even though it internally contains a conditional p.d.f. We can achieve this idea through a 
simple multiplication step: we multiply a conditional p.d.f.s with a supplemental p.d.f.s that describes 
the conditional observables to form a full p.d.f. For the initial example of this chapter this amounts to 
defining a new p.d.f as follows 
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F(t,dt) = decay(t|dt)⋅vtx(dt) 
 

It easy to convince yourself that F(t,dt) is regular p.d.f by explicitly proving that F is normalized over 
both t and dt, i.e. Int F(t,dt) dt ddt  = 1 
 

( )( | ) ( ) ( | ) ( ) 1 ( ) 1decay t dt vtx dt dtddt decay t dt dt vtx dt ddt vtx dt ddt= = =∫∫ ∫ ∫ ∫  

 
While F(t,dt) is now a regular p.d.f in all respects we have retained the advantage of the conditional 
p.d.f: we have separated the description of the ‘physics’ part of F, the decay model and its correlation 
with the vertex error from the description of the ‘empirical’ part of F, the description of the distribution 
of vertex errors. This leaves us with the task of describing the distribution of dt one way or another, 
but this could – worst case – be done with a non-parametric p.d.f such as a RooHistPdf or a 
RooKeysPdf. Here is the reworked example of the introduction that use an – arbitrarily chosen – 
bifurcated Gaussian as a toy model for the distribution of vertex errors 
 

 
// Bifurcated Gaussian p.d.g. as model for per-event vertex errors 
RooRealVar m(“m”,”mean of dt”,0.5,0,1) ; 
RooRealVar sl(“sl”,”low-side sigma of dt gauss”,0.1,0.,1.) ; 
RooRealVar sr(“sr”,”higth-side sigma of dt gauss”,1,0.,10.) ; 
RooBifurGauss vtx(“vtx”,”vtx error dist”,dt,m,sl,sr) ; 
 
// Full model: product of conditional decay model with vtx toy model 
RooProdPdf F(“F”,”decay(t|dt)*vtx(dt)”,Conditional(decay,t),vtx) ; 
 

 
The Conditional() modifier in the constructor instruct RooProdPdf to interpret decay as a 
conditional p.d.f that only describes the observable t. Any other observable referenced in decay – in 
this case dt – is treated as a conditional observable. The RooProdPdf constructor is in fact the only 
place in which we will make this declaration of conditional use.  
 
The net result is a p.d.f. F that has all the necessary information to describe the distribution of t and dt 
and we therefore can proceed as usual and work with F to generate events, fit it to data and plot it: 
 

 
// Generate events from F(t,dt) 
RooDataSet* data = F.generate(RooArgSet(t,dt),10000) ; 
 
// Fit F to data 
F.fitTo(*data) ; 
 
// Plot t and dt distributions of data with F overlaid 
RooPlot* tframe = t.frame() ; 
data->plotOn(tframe) ; 
F.plotOn(tframe) ; 
 
RooPlot* dtframe = dt.frame() ; 
data->plotOn(dtframe) ; 
F.plotOn(dtframe) ; 
 

 
The data samples shown in Figure 26 were in fact produced with this conditional product p.d.f. F. 
 
It is instructive to understand what happens behind scenes in F when you plot, fit or generate 
conditional product p.d.f.s.  
 

• Fitting is straightforward as the probability for each event is simply defined by F(d,dt) = 
decay(t|dt)vtx(dt), which we already proved is properly normalized.  

 
• Generating events from F is again a two-step process, as was the case for standalone use of 

conditional p.d.f.s, except that F now has all the information it needs to complete both 
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generation step in a single command: first a value of dt is generated from vtx, then a value 
of t is generated by decay given the value of dt.  

 
• Finally, for plotting the projection of F over dt is calculated as a standard numeric integral 

rather than as an implicit Monte Carlo approximation  
 

( ) ( | ) ( )tF t decay t dt vtx dt ddt= ∫  

 
Even though above projection integral can only be evaluated numerically, its evaluation is faster than 
a Monte Carlo approximation as specialized one-dimensional integration techniques such as the 
adaptive Gauss-Kronrod rule converge to a controllable precision in O(30) function evaluations. 
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8. Discrete variables 
This section is scheduled for the next version of the manual 

Representing discrete information – class RooCategory 

Representing selection criteria – real-to-discrete functions 

Tabulating discrete information 

9. Multiple datasets and simultaneous fitting 
This section is scheduled for the next version of the manual 

The problem 

The solution 

Automating the solution 

10. Organizational tools – Setting up a complex 
analysis 

This section is scheduled for the next version of the manual 

Using sets and list to manage user configuration 

Automated function building and customization 

11. Common issues, pitfalls and their solutions 
This section is scheduled for the next version of the manual 

Integrating PDFs 
How to use createIntegral() 

Tuning numeric integration parameters and methods 
How to use defaultIntegratorConfig() etc… 

Using weighted data 
Describe ways to use weighted data and problems that may arise in likelihood fits 

Adding penalty terms to a likelihood or χ2 
How to use RooFormulaVar to add penalty terms to a likelihood or χ2 
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Interactive fitting 
How to use class RooMinuit to do an interactive fit session 

Blinding parameters 
How to blind parameters in your fit 

Rearranging the contents of a RooPlot, adding arrows, boxes etc… 
How to rearrange the contents of a RooPlot and beautify it 

Merging and concatenating, reducing data 
How to merge and concatenate datasets 

Fit instability due to strongly correlated parameters 

Effects of bounding parameters 

Observables and parameters 

Distinguishing parameters from observables 
There are tools to distinguish the ‘parameter’ variables of a p.d.f. from the ‘observable’ variables of a 
p.d.f. Lets first start with the definition of these terms: 
 

• An observable is a variable of a p.d.f. that also occurs in the data. A p.d.f. is also normalized 
to unity with respect to all its observables. 

• A parameter is any remaining variable of a p.d.f.s. 
 
RooFit p.d.f.s have no intrinsic or static designation which variable is a observable and which variable 
is a parameter. This designation always arises dynamically in the context of data and is a fundamental 
design consideration. You can read more about this in appendix C. A consequence is that any routine 
that identifies a variable as either parameter or observable needs to be passed a dataset to be able to 
make the distinction: 
 

 
RooAbsData* data ; // A sample dataset containing ‘x’ 
RooArgSet* params = model.getParameters(data) ; 
RooArgSet* observables = model.getObservables(data) ; 
params->Print(“1”) ; 
observables->Print(“1”) ; 
 
RooArgSet::parameters: 
  1) RooRealVar::c0: "coefficient #0" 
  2) RooRealVar::c1: "coefficient #1" 
  3) RooRealVar::c2: "coefficient #2" 
  4) RooRealVar::mean: "mean" 
  5) RooRealVar::nbkg: "background fraction" 
  6) RooRealVar::nsig: "signal fraction" 
  7) RooRealVar::sigma: "sigma" 
 
RooArgSet::dependents: 
  1) RooRealVar::x: "x" 
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Appendix A – Quick reference guide 
This appendix summarizes the most core named argument methods of RooFit for plotting, fitting and 
data manipulation. The named argument formalism chief advantage is that it is a flexible and self-
documenting way to call methods that have a highly variable functionality. Here is the list of methods 
that is documented in this section 
 

Action Method Page# 

Make a plot frame RooAbsRealLValue::frame() 57 

Draw a PDF on a frame  RooAbsPdf::plotOn() 58 

Draw the parameters of a PDF on a frame RooAbsPdf::paramOn() 60 

Draw data on a frame RooAbsData::plotOn() 60 

Draw data statistics on a frame RooAbsData::statOn() 61 

Fill a 2D or 3D root histogram from a dataset    RooAbsData::createHistogram() 62 

Fill a 2D or 3D root histogram from a pdf           RooAbsReal::createHistogram() 63 

Fit a PDF to data RooAbsPdf::fitTo() 64 

Print fit results as a LaTeX table                        RooAbsCollection::printLatex() 65 

Generate toy Monte Carlo datasets RooAbsPdf::generate() 66 

Create integrals of functions RooAbsReal::createIntegral() 66 

Automate fit studies RooMCStudy 67 

Reduce a dataset RooAbsData::reduce() 68 

 

  Plotting  
 

Make a plot frame – RooAbsRealLValue::frame() 
 
Usage example: RooPlot* frame = x.frame(…) 
 
Create a new RooPlot on the heap with a drawing frame initialized for this object, but no plot 
contents. Use x.frame() as the first argument to the y.plotOn(...) method, for example. The caller 
is responsible for deleting the returned object. 
 
This function supports the following optional named arguments 
  

Range(double lo, double hi) Restrict plot frame to the specified range 

Range(const char* name) Restrict plot frame to range with the specified name 
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Bins(Int_t nbins) Set default binning for datasets to specified number of bins 

AutoRange(const RooAbsData& 
data, double margin=0.1) 

Choose plot range such that all points in given data set fit 
inside the range with given fractional margin. 

AutoSymRange(const RooAbsData 
data, double margin=0.1) 

Choose plot range such that all points in given data set fit 
inside the range and such that center of range coincides 
with mean of distribution in given dataset. 

Name(const char* name) Give specified name to RooPlot object 

Title(const char* title) Give specified title to RooPlot object 

   

Some examples: 
 

 
// Create frame with name “foo” and title “bar” 
x.frame(Name(“foo”),Title(“bar”)) ;  
 
// Create frame with range (-10,10) and default binning of 25 bins 
x.frame(Range(-10,10),Bins(25)) ; 
 
// Create frame with range that fits all events in data with 10% margin that 
// is centered around mean of data 
x.frame(AutoSymRange(data)) ; 
 

 
 

Draw a PDF on a frame – RooAbsPdf::plotOn() 
 
Usage example: RooPlot* frame = pdf.plotOn(frame,…) ; 
 
Plots (projects) the PDF on a specified frame. If a PDF is plotted in an empty frame, it will show a unit 
normalized curve in the frame variable, taken at the present value of other observables defined for 
this PDF. 
 
If a PDF is plotted in a frame in which a dataset has already been plotted, it will show a projected 
curve integrated over all variables that were present in the shown dataset except for the one on the x-
axis. The normalization of the curve will also be adjusted to the event count of the plotted dataset. An 
informational message will be printed for each projection step that is performed 
 
This function takes the following named arguments 
 

Projection control 

Slice(const RooArgSet& set) Override default projection behavior by omitting 
observables listed in set from the projection, resulting a 
'slice' plot. Slicing is usually only sensible in discrete 
observables 

 Project(const RooArgSet& set) Override default projection behavior by projecting over 
observables given in set and complete ignoring the default 
projection behavior. Advanced use only. 
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 ProjWData(const RooAbsData& d) Override default projection technique (integration by 
default). For observables present in given dataset projection 
of PDF is achieved by constructing a Monte-Carlo 
summation of the curve for all observable values in given 
set. Consult manual sections ‘Selecting arbitrarily shaped 
regions for plotting’ (p.42) and ‘Using conditional p.d.f.s for 
fitting, plotting and generating’ (p.50) for details 

 ProjWData(const RooArgSet& s, 
const RooAbsData& d)

As above but only consider subset 's' of observables in 
dataset 'd' for projection through data averaging 

 ProjectionRange(const char* rn) Override default range of projection integrals to a different 
range specified by given range name. This technique allows 
you to project a finite width slice in a real-valued observable 

   
Miscellaneous content control 

Normalization(Double_t scale, 
ScaleType code) 

Adjust normalization by given scale factor. Interpretation of 
number depends on code: Relative: relative adjustment 
factor, NumEvent: scale to match given number of events. 

 Name(const chat* name) Give curve specified name in frame. Useful if curve is to be 
referenced later 

 Asymmetry(const RooCategory& c) Show the asymmetry of the PDF in given two-state category 
(A+-A-) / (A++A-) rather than the PDF projection. Category 
must have two states with indices -1 and +1 or three states 
with indices -1,0 and +1. 

 ShiftToZero(Bool_t flag) Shift entire curve such that lowest visible point is at exactly 
zero. Mostly useful when plotting -log(L) or χ2 distributions 

 AddTo(const char* name,Double_t 
wgtSelf, double_t wgtOther)

Add constructed projection to already existing curve with 
given name and relative weight factors 

 
Plotting control 

LineStyle(Int_t style) Select line style by ROOT line style code, default is solid 

 LineColor(Int_t color) Select line color by ROOT color code, default is blue 

 LineWidth(Int_t width) Select line with in pixels, default is 3 

 FillStyle(Int_t style) Select fill style, default is not filled. If a filled style is 
selected, also use VLines() to add vertical downward lines 
at end of curve to ensure proper closure 

 FillColor(Int_t color) Select fill color by ROOT color code 

 Range(const char* name) Only draw curve in range defined by given name 

 Range(double lo, double hi) Only draw curve in specified range 

 VLines() Add vertical lines to y=0 at end points of curve 

 Precision(Double_t eps) -- Control precision of drawn curve w.r.t to scale of plot, 
default is 1e-3. Higher precision will result in more and more 
densely spaced curve points 
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 Invisble(Bool_t flag) Add curve to frame, but do not display. Useful in 
combination AddTo() 

Draw parameters of a PDF on a frame – RooAbsPdf::paramOn() 
 
Usage example: pdf.paramOn(frame,…) 
 
Add a box with parameter values (and errors) to the specified frame 
 
The following named arguments are supported 
 

   Parameters(const RooArgSet& 
param)

Only the specified subset of parameters will be shown. By 
default all non-constant parameters are shown 

   ShowConstant(Bool_t flag) Also display constant parameters 

   Format(const char* optStr) Classic parameter formatting options, provided for 
backward compatibility 

   Format(const char* what,...) Parameter formatting options, details are given below 

   Label(const chat* label) Add header line with given label to parameter box 

   Layout(Double_t xmin, 
Double_t xmax, Double_t ymax)

Specify relative position of left, right side and top of box. 
Vertical size of box is calculated automatically from number 
lines in box 

                                   
 
 The Format(const char* what,...) has the following structure 
 

   const char* what Controls what is shown. "N" adds name, "E" adds error, "A" 
shows asymmetric error, "U" shows unit, "H" hides the value 

   FixedPrecision(int n) Controls precision, set fixed number of digits 

   AutoPrecision(int n) Controls precision. Number of shown digits is calculated 
from error + n specified additional digits (1 is sensible 
default) 

 
Example use: pdf.paramOn(frame,Label("fit result"),Format("NEU",AutoPrecision(1))); 
 

Draw data on a frame – RooAbsData::plotOn() 
 
Usage example: data.plotOn(frame,…) 
 
Plots the dataset on the specified frame. By default an unbinned dataset will use the default binning of 
the target frame. A binned dataset will by default retain its intrinsic binning. 
 
The following optional named arguments can be used to modify the default behavior 
 

Data representation options 

Asymmetry(const RooCategory& c) Show the asymmetry of the data in given two-state category 
(A+-A-) / (A++A-). Category must have two states with 
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indices -1 and +1 or three states with indices -1, 0 and +1. 

 ErrorType(RooAbsData::EType) Select the type of error drawn: Poisson (default) draws 
asymmetric Poisson confidence intervals. SumW2 draws 
symmetric sum-of-weights error 

 Binning(double xlo, double xhi, 
int nbins)

Use specified binning to draw dataset 

 Binning(const RooAbsBinning&) Use specified binning to draw dataset 

 Binning(const char* name) Use binning with specified name to draw dataset 

 RefreshNorm(Bool_t flag) Force refreshing for PDF normalization information in 
frame. If set, any subsequent PDF will normalize to this 
dataset, even if it is not the first one added to the frame. By 
default only the 1st dataset added to a frame will update the 
normalization information 

 
Histogram drawing options 

DrawOption(const char* opt) Select ROOT draw option for resulting TGraph object 

 LineStyle(Int_t style) Select line style by ROOT line style code, default is solid 

 LineColor(Int_t color) Select line color by ROOT color code, default is black 

 LineWidth(Int_t width) Select line with in pixels, default is 3 

 MarkerStyle(Int_t style) Select the ROOT marker style, default is 21 

 MarkerColor(Int_t color) Select the ROOT marker color, default is black 

 MarkerSize(Double_t size) Select the ROOT marker size 

 XErrorSize(Double_t frac) Select size of X error bar as fraction of the bin width, default 
is 1 

 
 

Misc. other options 

Name(const chat* name) Give curve specified name in frame. Useful if curve is to be 
referenced later 

 Invisble(Bool_t flag) Add curve to frame, but do not display. Useful in 
combination AddTo() 

 AddTo(const char* name, 
Double_t wgtSelf, Double_t 

wgtOther)

Add constructed histogram to already existing histogram 
with given name and relative weight factors 

  
                                     

Draw data statistics on a frame – RooAbsData::statOn() 
 
Usage example: data.statOn(frame,…) 
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Add a box with statistics information to the specified frame. By default a box with the event count, 
mean and RMS of the plotted variable is added. 
 
The following optional named arguments are accepted 
 

   What(const char* whatstr) Controls what is printed: "N" = count, "M" is mean, "R" is 
RMS. 

   Format(const char* optStr) Classic parameter formatting options, provided for 
backward compatibility 

   Format(const char* what,...) Parameter formatting options, details given below 

   Label(const chat* label) Add header label to parameter box 

   Layout(Double_t xmin, 
Double_t xmax, Double_t ymax)

Specify relative position of left, right side of box and top of 
box. Vertical size of the box is calculated automatically from 
number lines in box 

   Cut(const char* expression) Apply given cut expression to data when calculating 
statistics. 

   CutRange(const char* 
rangeName)

Only consider events within given range when calculating 
statistics. Multiple CutRange() argument may be specified 
to combine ranges 

 
The Format(const char* what,...) has the following structure 
 

   const char* what

  

Controls what is shown. "N" adds name, "E" adds error, A" 
shows asymmetric error, "U" shows unit, "H" hides the value 

   FixedPrecision(int n) Controls precision, set fixed number of digits 

   AutoPrecision(int n) Controls precision. Number of shown digits is calculated 
from error + n specified additional digits (1 is sensible 
default) 

   VerbatimName(Bool_t flag) Put variable name in a \verb+   + clause. 

 

Fill a 2D or 3D root histogram from a dataset –  
                                                     RooAbsData::createHistogram() 
 
Usage example: TH1* hist = data.createHistogram(name,xvar,…) 
 
Create and fill a ROOT histogram TH1,TH2 or TH3 with the values of this dataset.  
 
This function accepts the following arguments 
 

const char* name Name of the ROOT histogram 

const RooAbsRealLValue& xvar Observable to be mapped on x axis of ROOT histogram 
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 Binning(const char* name) Apply binning with given name to x axis of histogram 

 Binning(RooAbsBinning& binning) Apply specified binning to x axis of histogram 

Binning(double lo, double hi, 
int nbins)

Apply specified binning to x axis of histogram 

 

 YVar(const RooAbsRealLValue& 
var,...)

Observable to be mapped on y axis of ROOT histogram 

 ZVar(const RooAbsRealLValue& 
var,...)

Observable to be mapped on z axis of ROOT histogram 

 
The YVar() and ZVar() arguments can be supplied with optional Binning() arguments to control the 
binning of the Y and Z axes, e.g. 
 
 createHistogram("histo",x,Binning(-1,1,20),  
                 YVar(y,Binning(-1,1,30)), ZVar(z,Binning("zbinning"))) 
 
The caller takes ownership of the returned histogram 

Fill a 2D or 3D root histogram from a PDF –  
                                                     RooAbsReal::createHistogram() 
 
Usage example: TH1* hist = pdf.createHistogram(name,xvar,…) 
 
Create and fill a ROOT histogram TH1, TH2 or TH3 with the values of this function.  
 
This function accepts the following arguments 
 
  

const char* name Name of the ROOT histogram 

const RooAbsRealLValue& xvar Observable to be mapped on x axis of ROOT histogram 

 

 Binning(const char* name) Apply binning with given name to x axis of histogram 

 Binning(RooAbsBinning& binning) Apply specified binning to x axis of histogram 

 Binning(double lo, double hi, 
int nbins)

Apply specified binning to x axis of histogram 

 ConditionalObservables(const 
RooArgSet& set) 

Do not normalized PDF over following observables when 
projecting PDF into histogram 

 

 YVar(const RooAbsRealLValue& 
var,...)

Observable to be mapped on y axis of ROOT histogram 

 ZVar(const RooAbsRealLValue& 
var,...)

Observable to be mapped on z axis of ROOT histogram 

 



 64 

The YVar() and ZVar() arguments can be supplied with optional Binning() arguments to control the 
binning of the Y and Z axes, e.g. 
 
 createHistogram("histo",x,Binning(-1,1,20),  
                 YVar(y,Binning(-1,1,30)), ZVar(z,Binning("zbinning"))) 
 
The caller takes ownership of the returned histogram. 

Fitting and generating 
 

Fit a PDF to data – RooAbsPdf::fitTo() 
 
Usage example: pdf.fitTo(data,…) 
 
Fit PDF to given dataset. If dataset is unbinned, an unbinned maximum likelihood is performed. If the 
dataset is binned, a binned maximum likelihood is performed. By default the fit is executed through 
the MINUIT commands MIGRAD, HESSE and MINOS in succession. 
 
The following named arguments are supported 
 

Options to control construction of -log(L) 

ConditionalObservables(const 
RooArgSet& set)

Do not normalize PDF over listed observables 

 Extended(Bool_t flag) Add extended likelihood term, off by default 

 Range(const char* name) Fit only data inside range with given name 

 Range(Double_t lo, Double_t hi) Fit only data inside given range. A range named "fit" is 
created on the fly on all observables. 

 NumCPU(int num)  Parallelize NLL calculation on num CPUs 

 Optimize(Bool_t flag) Activate constant term optimization (on by default) 

 SplitRange(Bool_t flag) Use separate fit ranges in a simultaneous fit. Actual range 
name for each subsample is assumed to by 
rangeName_{indexState} where indexState is the state 
of the master index category of the simultaneous fit 

                                     
 

Options to control flow of fit procedure 

 InitialHesse(Bool_t flag)  Flag controls if HESSE before MIGRAD as well, off by 
default 

 Hesse(Bool_t flag)  Flag controls if HESSE is run after MIGRAD, on by default 

 Minos(Bool_t flag)  Flag controls if MINOS is run after HESSE, on by default 

 Minos(const RooArgSet& set)  Only run MINOS on given subset of arguments 

 Save(Bool_t flag)  Flag controls if RooFitResult object is produced and 
returned, off by default 

 Strategy(Int_t flag)  Set MINUIT strategy (0 through 2, default is 1) 
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 FitOptions(const char* optStr)  Steer fit with classic options string (for backward 
compatibility). Use of this option excludes use of any of the 
new style steering options 

 
Options to control informational output 

 Verbose(Bool_t flag) Flag controls if verbose output is printed (NLL, parameter 
changes during fit 

 Timer(Bool_t flag) Time CPU and wall clock consumption of fit steps, off by 
default 

 PrintLevel(Int_t level) Set MINUIT print level (1 through 3, default is 1). At 1 all 
RooFit informational messages are suppressed as well. 

  
 

Print fit results as a LaTeX table –  
                                                   RooAbsCollection::printLatex()  
 
Usage example: paramList.printLatex(…) ; 
 
Output content of collection as LaTex table. By default a table with two columns is created: the left 
column contains the name of each variable, the right column the value. 
 
The following optional named arguments can be used to modify the default behavior 
 

   Columns(Int_t ncol) Fold table into multiple columns, i.e. ncol=3 will result in 3 x 
2 = 6 total columns 

   Sibling(const 
RooAbsCollection& other)

Define sibling list. The sibling list is assumed to have 
objects with the same name in the same order. If this is not 
the case warnings will be printed. If a single sibling list is 
specified, 3 columns will be output: the (common) name, 
the value of this list and the value in the sibling list. Multiple 
sibling lists can be specified by repeating the Sibling() 
command. 

   Format(const char* str) Classic format string, provided for backward compatibility 

   Format(...) Formatting arguments, details are given below 

   OutputFile(const char* fname) Send output to file with given name rather than standard 
output 

 
 The Format(const char* what,...) has the following structure 
 

   const char* what Controls what is shown. "N" adds name, "E" adds error, "A" 
shows asymmetric error, "U" shows unit, "H" hides the value 

   FixedPrecision(int n) Controls precision, set fixed number of digits 

   AutoPrecision(int n) Controls precision. Number of shown digits is calculated 
from error + n specified additional digits (1 is sensible 
default) 
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   VerbatimName(Bool_t flag) Put variable name in a \verb+   + clause. 

 
 Example use:  
 
list.printLatex(Columns(2), Format("NEU",AutoPrecision(1),VerbatimName()) ) ; 

Generate toy Monte Carlo datasets – RooAbsPdf::generate() 
 
Usage example: RooDataSet* data = pdf.generate(x,…) ; 
 
Generate a new dataset containing the specified variables with events sampled from our distribution. 
Generate the specified number of events or expectedEvents() if not specified. 
 
Any variables of this PDF that are not in whatVars will use their current values and be treated as fixed 
parameters. Returns zero in case of an error. The caller takes ownership of the returned dataset. 
 
The following named arguments are supported 
 

 Verbose(Bool_t flag) Print informational messages during event generation 

 NumEvent(int nevt) Generate specified number of events 

 Extended() The actual number of events generated will be sampled 
from a Poisson distribution with mu=nevt. For use with 
extended maximum likelihood fits 

 ProtoData(const RooDataSet& 
data,  Bool_t randOrder)

Use specified dataset as prototype dataset. If randOrder is 
set to true the order of the events in the dataset will be read 
in a random order the order of the events in the dataset will 
be read in a random order number of events in the 
prototype dataset 

                                         
If ProtoData() is used, the specified existing dataset as a prototype: the new dataset will contain the 
same number of events as the prototype (unless otherwise specified), and any prototype variables not 
in whatVars will be copied into the new dataset for each generated event and also used to set our 
PDF parameters.   
 
The user can specify a  number of events to generate that will override the default. The result is a 
copy of the prototype dataset with only variables in whatVars randomized. Variables in whatVars that 
are not in the prototype will be added as new columns to the generated dataset.   

Create integrals of functions– RooAbsReal::createIntegral() 
 
Usage example: RooAbsReal* intOfFunc = func.createIntegral(x,…) ; 
 
Create an object that represents the integral of the function over one or more observables listed in iset 
 
The actual integration calculation is only performed when the return object is evaluated. The name of 
the integral object is automatically constructed from the name of the input function, the variables it 
integrates and the range integrates over 
 
The following named arguments are accepted 
 

 NormSet(const RooArgSet&) Specify normalization set, mostly useful when working with 
PDFS 
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NumIntConfig(const 
RooNumIntConfig&)

Use given configuration for any numeric integration, if 
necessary 

 Range(const char* name) Integrate only over given range. Multiple ranges may be 
specified by passing multiple Range() arguments 

                                            

Automate fit studies – class RooMCStudy 
 
Usage example: RooMCStudy mgr(model,observables,…) ; 
 
Construct Monte Carlo Study Manager. This class automates generating data from a given PDF, 
fitting the PDF to that data and accumulating the fit statistics. 
 
The constructor accepts the following arguments 
 

const RooAbsPdf& model The PDF to be studied 

const RooArgSet& observables The variables of the PDF to be considered the observables 

 FitModel(const RooAbsPdf&) The PDF for fitting, if it is different from the PDF for 
generating 

 ConditionalObservables(const 
RooArgSet& set) 

The set of observables that the PDF should not be 
normalized over 

 Binned(Bool_t flag) Bin the dataset before fitting it. Speeds up fitting of large 
data samples 

 FitOptions(const char*) Classic fit options, provided for backward compatibility 

 FitOptions(....) Options to be used for fitting. All named arguments inside 
FitOptions()are passed to RooAbsPdf::fitTo(); 

 Verbose(Bool_t flag) Activate informational messages in event generation phase 

 Extended(Bool_t flag) Determine number of events for each sample anew from a 
Poisson distribution 

 ProtoData(const RooDataSet&, 
Bool_t randOrder)

Prototype data for the event generation. If the randOrder 
flag is set, the order of the dataset will be re-randomized for 
each generation cycle to protect against systematic biases 
if the number of generated events does not exactly match 
the number of events in the prototype dataset at the cost of 
reduced precision with mu equal to the specified number of 
events 

 
The plotParam() method plots the distribution of the fitted value of the given parameter on a newly 
created frame. This function accepts the following optional arguments 
 
  

FrameRange(double lo, double hi) Set range of frame to given specification 

FrameBins(int bins) Set default number of bins of frame to given number 

Frame(...) Pass supplied named arguments to 
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RooAbsRealLValue::frame() function. See frame() 
function for list of allowed arguments 

 
If no frame specifications are given, the AutoRange() feature will be used to set the range. Any other 
named argument is passed to the RooAbsData::plotOn() call. See that function for allowed options 
 
The plotPull() method plots the distribution of pull values for the specified parameter on a newly 
created frame. If asymmetric errors are calculated in the fit (by MINOS) those will be used in the pull 
calculation This function accepts the following optional arguments 
 

 FrameRange(double lo, double 
hi)

Set range of frame to given specification 

 FrameBins(int bins) Set default number of bins of frame to given number 

 Frame(...) Pass supplied named arguments to 
RooAbsRealLValue::frame() function. See frame() 
function for list of allowed arguments 

 FitGauss(Bool_t flag) Add a Gaussian fit to the frame 

 
 If no frame specifications are given, the AutoSymRange() feature will be used to set the range 
 Any other named argument is passed to the RooAbsData::plotOn() call. See that function for 
allowed options 

Data manipulation 
 

Reduce a dataset – RooAbsData::reduce() 
 
Usage example: RooAbsData* reducedData = data.reduce(…) ; 
 
Create a reduced copy of this dataset. The caller takes ownership of the returned dataset 
 
The following optional named arguments are accepted 
 

   SelectVars(const RooArgSet& 
vars)

Only retain the listed observables in the output dataset 

   Cut(const char* expression) Only retain event surviving the given cut expression 

   Cut(const RooFormulaVar& 
expr)

Only retain event surviving the given cut formula 

   CutRange(const char* name) Only retain events inside range with given name. Multiple 
CutRange arguments may be given to select multiple 
ranges 

   EventRange(int lo, int hi) Only retain events with given sequential event numbers 

   Name(const char* name) Give specified name to output dataset 

   Title(const char* name) Give specified title to output dataset 
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Appendix B – Selected statistical issues 
This section is scheduled for the next version of the manual 
 

Appendix C – RooFit class structure 
This section is scheduled for the next version of the manual 

General philosophy 

Generic value objects – RooAbsArg 

Real valued objects 

Discrete valued objects 

Datasets 

Collections 
 


