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Abstract

The prospects of QCD studies with multi-jet events at the CMSexperiment at the Large Hadron
Collider are presented in this note. The analysis targets the first 10 pb−1 of proton-proton collisions
at

√
s = 10 TeV. Various multijet kinematic and angular distributions are studied. Systematic effects

due to detector corrections and usage of different jet algorithms are looked into. Major sources of
systematic uncertainties for some of the variables are estimated. Comparisons are made between
the predictions from the leading order calculations insidethe PYTHIA event generator and matrix
element generators. The normalized multijet distributions are found to be robust under variations of
the jet energy scale and resolution effects, which make themsuitable for early data analysis and tuning
of Monte Carlo models.
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1 Introduction
In proton-proton collisions, interactions take place between the partons of the colliding protons. Due to the high
center-of-mass energy available, the partonic interactions can be in good approximation considered as2 → 2
scattering processes. In the cases where the scattering is hard (large momentum transfer), the scattered partons will
hadronize into highly collimated bunches of particles thatwill be measured in the calorimeter as high transverse
momentum jets. The study of the high pT jets is twofold: test the QCD predictions and look for physics beyond
the Standard Model. Since the parton scattering is practically an elementary QCD process, the jet distributions can
be calculated from first principles, provided that reasonable hadronization modeling is available. Therefore, the
high pT jets serve as a direct test of perturbative QCD (pQCD). Also,their production is sensitive to the strong
coupling constantαS and precise knowledge of the jet cross section can help reduce the uncertainties of the parton
distribution functions (PDFs) of the proton. High pT jets are furthermore sensitive to new Physics (e.g quark
compositeness, resonances) and given the high reach in pT at LHC current limits can be improved and discoveries
are possible even at startup.

Jet production is the dominant process in high pT hadron-hadron collisions. This process is well described by
perturbative QCD in terms of a point-like scattering cross sections convoluted with a pair of parton distribution
functions that express the momentum distribution of partons within the proton. The hard-scattering cross section
itself can be written as an expansion in the strong coupling constantαs(Q

2). The leading term in this expansion
corresponds to the emission of two partons. The next term includes diagrams where an additional parton is ob-
served in the final state due to hard gluon radiation (e.g.gg → ggg). Such diagrams, examples of which are seen
in Figure 1, diverge when any of the three partons become softor when two of the partons become collinear.

Figure 1:Feynman diagrams for 3 parton final state in hadron collisions.

Figure 2: Feynman diagrams for 4-parton final state.

Perturbative QCD predicts two c1asses of 4-jet events whichcorrespond to the processes:qq̄/gg → qq̄gg and
qq̄/gg → qq̄qq̄. The first diagram in the Figure2 contains athree gluon vertex, a consequence of the non-Abelian
nature of QCD.

In order to study the three and four parton final state we definea class of observables for QCD studies. They have
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been studied widely in earlier LEP (e+e−) and Tevtaron (pp̄) experiments. In this note we present a study of the
multi-jet observables based on simulation samples of hadronic events with the CMS detector. We compute the
kinematic and angular properties of these variables from the four-vectors of jets.

The goal of this study is to show the expected sensitivity of these observables to the choice of the jet algorithm, as
well as to the effect of jet energy corrections. We study the detector effect by smearing the jet energy and position
resolution. We try to present a first estimate of the expecteddominant systematic uncertainty at start up data taking,
resulting from limited knowledge of the jet energy scale andevent selection. Finally we show the sensitivity of the
chosen observables to distinguishing models of QCD multi-jet production.

2 Definition
2.1 3-parton variables

The topological variables used in this note are defined in theparton or jet centre-of-mass system (CM). The
topological properties of the three-parton final state in the centre-of-mass system can be described in terms of
six variables [1]. Three of the variables reflect partition of the CM energy among the three final-state partons. The
other three variables define the spatial orientation of the planes containing the three partons.

Figure 3:An Illustration of the three-jet angular variables -ψ∗ andθ∗3 . The angleψ∗ is the angle between the plane containing
the beam line and the highest-energy jet in the CM frame of the3-jet system, and the next two highest-energy jets. Asψ∗ → 0

◦

or 180
◦, the contribution of initial-state radiation from incoming partons increase the rate.

It is convenient to introduce the notation1+2 → 3+4+5 for the three-parton process. Here, numbers 1 and 2 refer
to incoming partons while the numbers 3, 4, and 5 label the outgoing partons, ordered in descending CM energies,
i.e.,E3 > E4 > E5 . The final state parton energy is an obvious choice for the topological variables for the three-
parton final state. For simplicity,Ei(i = 3, 4, 5) is often replaced by the scaled variablexi(i = 3, 4, 5), which
is defined byxi = 2E/

√
ŝ, whereŝ is the centre-of-mass energy of the hard scattering process. By definition,

x3 + x4 + x5 = 2. For massless jets the scaled parton energiesxi and the angles between partons (ωjk, with j, k
= 3, 4, 5) for the three parton final state have the relationship:

xi =
2 sinωjk

sinω34 + sinω45 + sinω53

wherei, j, k = 3, 4, 5 andi 6= j 6= k. Clearly, the internal structure of the three-parton final state is completely
determined by any two scaled parton energies. The angles that fix the event orientation can be chosen to be (1)
the cosine Of the polar angle with respect to the beam (cos θ∗3) of parton 3, (2) the azimuthal angle of parton 3
(φ3), and (3) the angle between the plane containing partons 1 and 3 and the plane containing partons 4 and 5 (ψ∗)
defined by

cosψ∗ =
(~p1 × ~p3) · (~p4 × ~p5)

|~p1 × ~p3||~p4 × ~p5|

where~pi is the parton momentum. Figure 3 illustrates the definition of the topological variables for the three-parton
final state . Singularities for configurations where two outgoing partons are collinear result in an increased prob-
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ability of unequal energy sharing between jets. Divergences resulting from an outgoing parton which is collinear
with the beam direction cause structure in the angle betweenthe plane containing the three-jet momenta and the
plane containing the beam the beam line and the leading jet,ψ∗ (Figure 3). For a dijet process the angle between
the planes would be 90 degrees. For unpolarized beams (as at the LHC), theφ∗3 distribution is uniform. Therefore,
only four independent kinematic variables are needed to describe the topological properties of the three-parton
final state. In this note, they are chosen to bex3 , x5 , cos θ∗3 , andψ∗.

Another set of interesting variables is the scaled invariant mass of jet pairs:

µij =
mij√
ŝ
≡

√

xixj(1 − cosωij)/2, i, j = 3, 4, 5 and i 6= j

wheremij is the invariant mass of partonsi andj andωij is the opening angle between the two partons. The scaled
invariant mass (µij) is sensitive to the scaled energies of the two partons, the angle between the two partons, and
the correlations between these variables. Using dimensionless variables and making comparisons of normalized
distributions minimizes the systematic uncertainties dueto detector resolution and jet energy scale and therefore
facilitates comparison between data and theoretical calculation.

Another set of variable, namely, the Ellis-Karliner angleλ [2] between the third and first jet, defined in the centre
of mass system of jets 2 and 3, allows a clear distinction between spin-1 and spin-0 gluons. For massless partons:

| cosλ| =
x2 − x3

x1

2.2 4-parton variables

Figure 4: Illustration of the Bengston-Zerwas angle (χBZ ) and the Nachtmann-Reiter angle (θNR) definitions for the four
jet events. The left cartoon shows the Bengston-Zerwas angle which is the angle between th plane containing the two leading
jets and the plane containing the two non-leading jets. The right cartoon shows the Nachtmann-Reiter angle which is the angle
between th momentum vector differences of th two leading jets and the two non-leading jets.

The four-parton final state is more complicated. Apart from the CM energy, eight independent parameters are
needed to completely define a four-parton final state in its centre-of-mass system. Two of these define the overall
event orientation while the other six fix the internal structure of the four-parton system. In contrast to the three-
parton final state, there is no simple relationship between the scaled parton energies and the opening angles between
partons. Consequently, the choice of topological variables is less obvious in this case. Variables are defined here in
a way similar to those investigated for the three-parton final state. The four partons are ordered in descending CM
energy and labeled from 3 to 6. The variables include the scaled energies (xi, with i = 3, · · · , 6), the cosines of
polar angles (cos θ∗i , with i = 3, · · · , 6) of the four jets, the cosines of the opening angles between partons (cosωij ,
with i, j = 3, · · · , andi 6= j),and the scaled masses (µij = mij/

√
ŝ, with i, j = 3, · · · , 6 andi 6= j) of parton

pairs. In addition, three variables characterizing the orientation of event planes are investigated. One of the three
variables is the Bengtsson-Zerwas angle (χBZ) [?] defined (Figure 4) as the angle between the plane containing
the two leading jets and the plane containing the two non-leading jets:

cosχBZ =
(~p3 × ~p4) · (~p5 × ~p6)

|~p3 × ~p4||~p5 × ~p6|
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The second variable is the cosine of the Nachtmann-Reiter angle [?] (cos θNR) defined as the angle between the
momentum vector differences of the two leading jets and the two non-leading jets:

cos θNR =
(~p3 − ~p4) · (~p5 − ~p6)

|~p3 − ~p4||~p5 − ~p6|

Figure 4 illustrates the definitions ofχBZ andθNR variables. Historically,χBZ andθNR were proposed fore+e−

collisions to study gluon self-coupling. Their interpretation in pp collisions is more complicated, but the variables
can be used as a tool for studying the internal structure of the four-jet events.

The variables proposed by Korner, Schierholz and Willrodt,φKSW , [?] is defined for events for which there are two
jets in both hemispheres defined by the thrust axis.φKSW is the angle between the normals to the plane containing
the jets in one hemisphere and to the plane defined by the othertwo jets. Gluon alignment in the splitting process
g → gg favoursφKSW ∼ π, whereasg → qq̄ prefers the planes to be orthogonal.

3 Monte Carlo Sample and Event Selection
The MC sample used for this analysis consists of simulated QCD dijet events at

√
s = 10 TeVpp collisions. They

are produced in the context of the Summer08 official CMS production with the PYTHIA 6.416 [?] event generator
using the DWT tune [?] in 21 p̂T bins. The PYTHIA event generation is based on leading order (LO) matrix
elements of2 → 2 processes matched with a parton shower to describe multi-jet emission due to initial and final
state radiation. In the analysis we make use of the QCD multi-jet events consisting of the Standard Model process
qq → qq, gq → gq, qq → gg, gg → qq andgg → gg (whereq stands for a quark andg for a gluon) within the
range 0< p̂T < 5000 GeV/c, wherêpT is defined as the momentum of the exchanged parton in the LO matrix
element. The events have been passed through a full GEANT4 [?] based simulation of the CMS detector. The
generation is done in the CMS software version 21 7 and the reconstruction using 21 8 assuming the IDEAL
V9 detector conditions. It should be noted that there are twoimportant new features in this version of the CMS
software which will affect the relative jet response: first the HF calorimeter response to jets has been lowered by a
constant factor of 0.7 and second the HO energy is not used forthe reconstruction of the jet pT. The exact string
defining the samples in DBS is /QCDDiJetPt*to*/Summer08 IDEAL V9 v*/GEN-SIM-RECO. The phase space
range of each sample as well as the corresponding cross-section and the number of events used, are summarized in
Table 2.

Sample p̂T (GeV) σ (pb) Events processed
QCDDijetPt0To15 0-15 5.156e10 101054
QCDDijetPt15To20 15-20 9.494e8 142560
QCDDijetPt20To30 20-30 4.010e8 87300
QCDDijetPt30To50 30-50 9.47e7 136800
QCDDijetPt50To80 50-80 1.22e7 103545
QCDDijetPt80To120 80-120 1.617e6 51300
QCDDijetPt120To170 120-170 2.56e5 50085
QCDDijetPt170To230 170-230 4.83e4 51840
QCDDijetPt230To300 230-300 1.06e4 54000
QCDDijetPt300To380 300-380 2.63e3 60048
QCDDijetPt380To470 380-470 7.22e2 51840
QCDDijetPt470To600 470-600 2.409e2 27648
QCDDijetPt600To800 600-800 62.492 28620
QCDDijetPt800To1000 800-1000 9.421 20880
QCDDijetPt1000To1400 1000-1400 2.343 24640
QCDDijetPt1400To1800 1400-1800 1.568e-1 27744
QCDDijetPt1800To2200 1800-2200 1.38e-2 22848
QCDDijetPt2200To2600 2200-2600 1.296e-3 22560
QCDDijetPt2600To3000 2600-3000 1.14e-4 22800
QCDDijetPt3000To3500 3000-3500 8.43e-6 20880
QCDDijetPt3500Toinf > 3500 1.81e-8 34320

Table 1:Details of the MC samples used in the present analysis.
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The distributions are obtained by summing the distributionfrom each bin with aprropriate weight (wt =σ
N

whereσ
andN are cross section and number of generated events for thep̂T bin). The combined distribution is then scaled
to give an integrated luminosity of 10 pb−1.

We use SisCone algorithm [4] for jet reconstruction in this analysis. SisCone is both infrared and collinear safe and
does not leave unclustered energy, and is preferred by theorists over traditional cone based clustering algorithm.
SisCone has been fully integrated into CMS software framework and is adopted as the default cone based algorithm
for CMS. Events are preselected by requiring at least two calorimeter jets with raw (uncorrected) transverse energy
ET > 30 GeV within a region of|η| < 3.0 (within the endcap region of the CMS calorimeter) which we consider
specially suitable for early data analysis. Events are selected by demanding the leading jet to be above pT threshold
of 110 GeV. Inclusive 3- or 4-jet events are selected where each jet has⁀above 50 GeV.

4 Trigger selection
The jet clustering algorithm used at the trigger level is theSisCone algorithm (with radius R = 0.5). Table 2 sum-
marizes the transverse energy thresholds and the expected prescale factors for the various triggers. The expected
prescale factors are given for two different luminosity conditions (L = 8 · 1029 cm−2s−1).

Sample HLT15 HLT30 HLT50 HLT80 HLT110
MC prescale 25 × 40 25 × 1 1 × 5 1 1

Table 2:Trigger table proposed forL = 8 · 1029 cm−2s−1.

We chose to perform the analysis with single jet trigger as itwill provide enough data for our measurement. We
choose our events based on HLT80 as a single jet trigger and decided the offline thresholds accordingly where we
have more than99% efficiency.
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Figure 5:Efficiency of the single jet trigger used in the analysis.
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After the primary event selection three jet events are selected by further demanding that there be at least three
jets. The separation∆R between jets is required to be greater than twice the cone size (∆R = 1 for SisCone 5 for
example), to avoid systematic uncertainty associated withthe merging or splitting of the cone jet algorithm. This
requirement removes events with overlapping jets and therefore ensures good jet energy and direction measure-
ments.

The surviving events are then transformed to the CM frame of the three leading jets. Any other jets in the event
are ignored. The jets are reordered in descending energy in their CM system. The topological variables (x3, x4,
cos θ3 andψ) are calculated.

Four jet events are selected in similar manner. Events are required to have at least four jets. The four leading jets
are boosted to their centre of mass frame and are ordered in decreasing energy.

The invariant mass distribution of the three(four) highestpT jets in case of 3(4)-jet events is shown in Figure 6.

5.1 Topologies of Three-Jet events
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Figure 7:Distribution of energy fractions of the three jets at
√
s = 10 TeV with integrated luminosity of 10 pb−1. In each plot

the red line corresponds to the corrected calorimetric jet and the black line corresponds to the generator level jets.
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Figure 8: The three jet topological distributions. In each plot the red line corresponds to the corrected calorimetric jet and
black line corresponds to the generator level jets. Left is the plot of Cosine of the polar angle of the hardest jet with respect to
the beam (cos θ3). Right is the plot of The angle between the plane containingpartons 1 and 3 and the plane containing partons
4 and 5 (ψ).

Figures 7 and 8 show the three jet topological distributions. In Figure 7 the jet fractional energy functions (x3, x4,
x5) are presented. The three jets are labelled in order of decreasing energy in the CM frame. The average values
of x3, x4 andx5 are 0.90, 0.70, 0.39 respectively. The energy distributions show a peak around 0.95 forx3 while
the peak position is shifted to 0.70 forx4 and to 0.45 forx5. This is characteristic of gluon radiation.

Thecos θ3 distribution is shown in the left plot of Figure 8. As in the angular distributions of two-jet events, an
angular dependence characteristic of Rutherford t-channel scattering is noticed. The large angular coverage of
CMS calorimeter allows to cover the entirecos θ3 range. The measuredψ distribution is shown in right hand side
plot of Fig. 8.
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Figure 9:Distribution of energy fractions of the four jets at
√
s = 10 TeV with integrated luminosity of 10 pb−1. In each plot

the red line corresponds to the corrected calorimetric jet and black line corresponds to the generator level jets.
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5.2 Topologies of Four-Jet events

The four measured energy fractions of four jet events are shown in Figure 9. The four jets are ordered in decreasing
energy in their centre-of-mass system. Out of the four scaled energy variables shown, only three distributions are
independent. The other is fixed by the conditionΣixi = 2. The mean values for four energy fractions for corrected
jets are 0.78, 0.59, 0.38 and 0.25.

Figures 10 and 11 show the measured Bengston-Zerwas and Nachtmann-Reiter angles. The Nachtmann Reiter
angle is plotted as a function of cosine of the angle whereas the Bengston-Zerwas angle is plotted in unit of degrees.
One sees no significant behaviour for the Bengston-Zerwas angle. Had it been a2 → 2 event the distribution would
have been more populated near 0 but the presence of at least 4 jets (as we assume an inclusive 4-jet process to start
with) we have deviation away from 0 for the angular distribution. For the Nachtmann=-Reiter angle we observe
more population near 1. This may be because the sample is primarily a dijet sample. So two non-leading jets are
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very less energetic compared to the two leading ones.

6 Sensitivity study
Here we check the influence of different jet clustering algorithm on the shape of the multi-jet distributions. We
study the sensitivity of the multi-jet variables to the choice of jet clustering algorithm and to the effect of jet energy
correction.
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Figure 12:Distribution of multi-jet distributions under variation of the jet algorithm with isolation criteria (∆R > 1.0 for
SisCone5 and∆R > 1.4 for SisCone7) . The lower histogram in each figure is the ratioof distributions obtained using
SisCone5 to that with SisCone7. The top left shows the hardest jet energy fraction in 3-jet case. The top right plot shows theψ
angle in 3-jet case. Bottom left plot shows the energy fraction of the 4th leading jet in 4-jet case. The Bengston-Zerwas angle
is shown in bottom right plot.

6.1 Sensitivity to jet clustering algorithms

We compare the normalized multi-jet distributions determined from jet four-vectors found with the following two
jet algorithms.

• the seedless infrared safe cone algorithm with radiusR = 0.5 (SisCone5) and an energy-sharing fraction of
f = 0.75.
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• the seedless infrared safe cone algorithm with radiusR = 0.7 (SisCone7) and an energy-sharing fraction of
f = 0.75.

Figure 12 shows some of the multi-jet variables for two different jet algorithms - SisCone5 and SisCone7. We
notice that the distributions depend on the cone size of the algorithm. The ratio plots shown in the bottom of each
plot gives a quantitative idea. The differences could be 10-20% depending on the variable.

6.2 Sensitivity due to jet energy corrections

The non-compensating and non-linear behaviour of the CMS calorimeter system is taken into account by the jet
energy corrections. The correction factors are obtained using a factorized approach by applying in a first step
corrections which flatten the jet energy distributions as a function of pseudo-rapidityη, using the barrel region
of |η| < 1.3 as the normalization region. In a subsequent step, the calorimeter jet energies are corrected back to
particle level. The corrections for the eta-dependence will be evaluated from data using dijet-balance in QCD-
events and the absolute response corrections will be determined usingγ/Z-jet events. The correction factors used
in this analysis are based on Monte Carlo simulations in a scenario where 10 pb−1 of integrated luminosity has been
assumed for their determination. The effect of the jet energy correction on the normalized event-shape distributions
can be judged by comparing the corrected and uncorrected distributions with the corresponding generator level
distribution.

Figures 7, 8, 9, 10 and 11 show that the distributions corresponding to the corrected calorimetry jet match the
distributions with generated jets within 10 percent given statistical fluctuations. This will be discussed more in the
next section.

7 Detector Effects
7.1 Energy resolution

The effect of the jet energy resolution is studied by applying a jet energy resolution smearing function on generator
level jets and comparing these to the unsmeared jets. After the smearing, the jets are reordered in pT. The
following resolution smearing functions, which are obtained using the asymmetry method for SisCone7-jets in the
barrel region as demonstrated in eq.1, has been used:

σ(pT )

pT

=

√

(
6.0

pT [GeV/c]
)2 + (

1.4
√

pT [GeV/c]
)2 + (0.043)2 (1)

For the end cap region we use the following parameters:

σ(pT )

pT

=

√

(
6.6

pT [GeV/c]
)2 + (

1.1
√

pT [GeV/c]
)2 + (0.044)2 (2)

7.2 Position resolution

To study the effect of position resolution we look at the effect of smearing of the angular variable (η) and the
azimuthal angle (φ).

7.2.1 Resolution in Eta

We also study the effect of theη resolution by applying a resolution smearing function on generator jets and
comparing these to the unsmeared jets. The smearing function for η in barrel region :

ση =

√

(
1.31

pT [GeV/c]
)2 + (

0.25
√

pT [GeV/c]
)2 + (0.026)2 (3)

for endcap (1.4 < |η| < 3.0 region the function is:

11



0.65 0.7 0.75 0.8 0.85 0.9 0.95 1

N
ev

en
ts

0

20

40

60

80

100

120

140

10×

Genjet

CorrectedJet

Combined smeared Genjet

0.65 0.7 0.75 0.8 0.85 0.9 0.95 1

G
en

d
NC

o
rr

ec
te

d
d

N

0.8
0.85
0.9

0.95
1

1.05
1.1

1.15
1.2

Corr/Gen

0.65 0.7 0.75 0.8 0.85 0.9 0.95 1

u
n

sm
ea

re
d

 E
d

N
sm

ea
re

d
 E

d
N

0.8

0.9

1

1.1

1.2

1.3

1.4

Energy smearing

0.65 0.7 0.75 0.8 0.85 0.9 0.95 1

u
n

sm
ea

re
d

d
N

sm
ea

re
d

d
N

0.8

0.9

1

1.1

1.2

1.3

1.4

Eta smearing

0.65 0.7 0.75 0.8 0.85 0.9 0.95 1

u
n

sm
ea

re
d

d
N

sm
ea

re
d

d
N

0.8

0.9

1

1.1

1.2

1.3

1.4

Phi smearing

3jet x30.65 0.7 0.75 0.8 0.85 0.9 0.95 1

u
n

sm
ea

re
d

d
N

sm
ea

re
d

d
N

0.8
0.9

1
1.1
1.2
1.3
1.4

 smearingφ+ηEnergy+

0 50 100 150 200 250 300 350

N
ev

en
ts

0

10000

20000

30000

40000

50000

60000

Genjet

CorrectedJet

Combined smeared Genjet

0 50 100 150 200 250 300 350

G
en

d
NC

o
rr

ec
te

d
d

N

0.8
0.85
0.9

0.95
1

1.05
1.1

1.15
1.2

Corr/Gen

0 50 100 150 200 250 300 350

u
n

sm
ea

re
d

 E
d

N
sm

ea
re

d
 E

d
N

0.8
0.85
0.9

0.95
1

1.05
1.1

1.15
1.2

Energy smearing

0 50 100 150 200 250 300 350

u
n

sm
ea

re
d

d
N

sm
ea

re
d

d
N

0.8
0.85
0.9

0.95
1

1.05
1.1

1.15
1.2

Eta smearing

0 50 100 150 200 250 300 350

u
n

sm
ea

re
d

d
N

sm
ea

re
d

d
N

0.8
0.85
0.9

0.95
1

1.05
1.1

1.15
1.2

Phi smearing

3jet Psi0 50 100 150 200 250 300 350

u
n

sm
ea

re
d

d
N

sm
ea

re
d

d
N

0.8
0.85
0.9

0.95
1

1.05
1.1

1.15
1.2

 smearingφ+ηEnergy+

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5

N
ev

en
ts

0

2000

4000

6000

8000

10000

12000

14000

16000

18000

20000

22000

24000

Genjet

CorrectedJet

Combined smeared Genjet

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5

G
en

d
NC

o
rr

ec
te

d
d

N

0

0.5

1

1.5

2

Corr/Gen

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5

u
n

sm
ea

re
d

 E
d

N
sm

ea
re

d
 E

d
N

0

0.5

1

1.5

2

Energy smearing

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5

u
n

sm
ea

re
d

d
N

sm
ea

re
d

d
N

0

0.5

1

1.5

2

Eta smearing

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5

u
n

sm
ea

re
d

d
N

sm
ea

re
d

d
N

0

0.5

1

1.5

2

Phi smearing

4jet x60 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5

u
n

sm
ea

re
d

d
N

sm
ea

re
d

d
N

0

0.5

1

1.5

2

 smearingφ+ηEnergy+

0 10 20 30 40 50 60 70 80 90

N
ev

en
ts

0

2000

4000

6000

8000

10000

12000

Genjet

CorrectedJet

Combined smeared Genjet

0 10 20 30 40 50 60 70 80 90

G
en

d
NC

o
rr

ec
te

d
d

N

0.8
0.85
0.9

0.95
1

1.05
1.1

1.15
1.2

Corr/Gen

0 10 20 30 40 50 60 70 80 90

u
n

sm
ea

re
d

 E
d

N
sm

ea
re

d
 E

d
N

0.8
0.85
0.9

0.95
1

1.05
1.1

1.15
1.2

Energy smearing

0 10 20 30 40 50 60 70 80 90

u
n

sm
ea

re
d

d
N

sm
ea

re
d

d
N

0.8
0.85
0.9

0.95
1

1.05
1.1

1.15
1.2

Eta smearing

0 10 20 30 40 50 60 70 80 90

u
n

sm
ea

re
d

d
N

sm
ea

re
d

d
N

0.8
0.85
0.9

0.95
1

1.05
1.1

1.15
1.2

Phi smearing

4jet BZ0 10 20 30 40 50 60 70 80 90

u
n

sm
ea

re
d

d
N

sm
ea

re
d

d
N

0.8
0.85
0.9

0.95
1

1.05
1.1

1.15
1.2

 smearingφ+ηEnergy+

Figure 13:The effect of detector effects on the multi-jet distributions. The top left shows the hardest jet energy fraction in
3-jet case. The top right plot shows theψ angle in 3-jet case. Bottom left plot shows the energy fraction of the 4th leading
jet in 4-jet case. The Bengston-Zerwas angle is shown in bottom right plot. In each of the figure the histograms from top to
bottom are as follows: distributions with genjets, corrected jets and combined smeared genjets; ratio of corrected calojets to
genjets; ratio of smeared and unsmeared genjets with only energy smearing; ratio of smeared and unsmeared genjets with only
eta smearing; ratio of smeared and unsmeared genjets with only phi smearing; ratio of smeared and unsmeared genjets with
only energy+eta+phi smearing.

ση =

√

(
1.42

pT [GeV/c]
)2 + (

0.21
√

pT [GeV/c]
)2 + (0.017)2 (4)

for forward (3.0 < |η| < 5.0 region the function is:
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ση =

√

(
1.25

pT [GeV/c]
)2 + (0.025)2 (5)

7.2.2 Resolution in Phi

To study the effect of theφ resolution by applying a resolution smearing function on generator jets and comparing
these to the unsmeared jets. The smearing function forφ in barrel region :

σφ =

√

(
2.72

pT [GeV/c]
)2 + (

0.23
√

pT [GeV/c]
)2 + (0.004)2 (6)

7.3 Combined effect

After the studies of the individual effect of energy, eta andphi resolutions we proceeded to see their combined
smearing effect. It is worthwhile to see whether a simple Gaussian smearing of energy, eta, phi of the jets can
reproduce the detector effects as observed in the calorimeter jets after corrections. In Figure 13 the top left plot
shows the energy fraction of the most energetic jet in 3-jet case. The top right plot shows theψ angle in the 3-jet
case. Bottom left plot shows the energy fraction of the 4th leading jet in the 4-jet case. The Bengston-Zerwas
angle is shown as the bottom right plot. In each of these figures the histograms from top to bottom are as follows:
distributions with generator level jets, corrected jets and combined smeared genjets; ratio of corrected calojets
to genjets; ratio of smeared and unsmeared genjets with onlyenergy smearing; ratio of smeared and unsmeared
genjets with only eta smearing; ratio of smeared and unsmeared genjets with only phi smearing; ratio of smeared
and unsmeared genjets with only energy+eta+phi smearing.

Looking at the figures 13 we see that the effect of energy smearing is marginal in scaled energy variables but almost
negligible in angular variables. The effect of eta and phi smearing alone is very small for kinematic variables but
more significant in angular variables. We also observe that the combined smearing fails to reproduce the overall
detector effects.

8 Systematic uncertainty
The main sources of systematic uncertainties include:

• jet energy scale,

• trigger bias,

• event selection.

8.1 Jet Energy Scale

Often, the leading source of systematic errors in QCD data analysis is the limited knowledge of the jet energy scale
(JES). The JES uncertainty at start up will be±10%. Changing the JES correction within its uncertainty changes
the jet shapes as jets migrate between pT bins. Jet shapes vary slowly with jet pT and this effect is expected to be
small. To determine the impact on the jet shapes, we changed the pT of the jets by±10% and repeated the whole
analysis. We compare the ratio. From Figure 14 we see that thedistributions are almost insensitive to jet energy
scale corrections.

8.2 Systematic uncertainty due to trigger bias

As we took a specific trigger biased sample for our study we areinterested to see the effect of the trigger bias.
So we have chosen another trigger bit which is just lower to the one we were using and plotted the distributions.
Figure 15 reinforces the fact that our offline event selection was indeed efficient and the choice of HLT50 instead of
HLT80 does not affect the multi-jet event shape distributions. There is no significant trigger bias in these variables.
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Figure 14:The effect of jet energy scale on the multi-jet distributions. The top left shows the energy fraction of the hardest
jet in the 3-jet case. The top right plot shows theψ angle in 3-jet case. Bottom left plot shows the energy fraction of the 4th
leading jet in the 4-jet case. The Bengston-Zerwas angle is shown in bottom right plot.

8.3 Systematic uncertainty due to event selection

We put an offline cut on the leading jet pT of the chosen HLT trigger sample. We also demanded all the jets to have
pT greater than a certain minimum threshold. We would like to see how robust our event selection is by varying
the thresholds on the leading jet pT by 10%.

Fig. 16 shows the effect of event selection criteria. We observe that by relaxing the event selection criteria the
scaled energies deviate by less than10% whereas the variableψ deviate within5% and the Bengston-Zerwas angle
(θBZ) deviate within5% which is well within the statistical fluctuations.

Thus the leading jet threshold put some systematic effect onthe distributions.

9 Comparison to matrix element calculations
In order to demonstrate the sensitivity of hadronic multi-jet distributions to different models of multi-jet production,
we compare the distributions, as we expect them to be measured based on an integrated luminosity of 10 pb−1,
to the generator level predictions as obtained from two generators that contain different models of QCD multi-jet
production, PYTHIA 6.409 and ALPGEN 2.12 [?]. PYTHIA is based on a leading-order matrix elements of2 → 2
processes complemented by a parton shower while ALPGEN usesmatrix element calculation.
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Figure 15:The effect of trigger bias on the multi-jet distributions. The top left shows the energy fraction of the most energetic
jet in the 3-jet case. The top right plot shows theψ angle in the 3-jet case. Bottom left plot shows the energy fraction of the 4th
leading jet in the 4-jet case. The Bengston-Zerwas angle is shown in bottom right plot.

9.1 ALPGEN production

In ALPGEN, QCD multi-jet events are produced by calculatingthe multi-leg matrix elements at tree-level which
are then passed to PYTHIA for the parton shower and hadronization. The ALPGEN samples used in our study
contain QCD processes from 2 up to 6 jets with a minimum jet pT > 20 GeV/c, using a jet matching cone of
∆Rmin = 0.7. All other parameters are left to their default values.Using these parameter choices, some distinct
differences between the PYTHIA and ALPGEN samples can be noted. In ALPGEN the jet multiplicities is found
to be larger than in PYTHIA, because of more precise multi-leg matrix element treatment. Transverse energy
spectra of the four hardest jets are in good agreement between both the generators.

9.2 Comparison to ALPGEN

Fig. 17 shows that there is significance difference among thedistributions for PYTHIA and ALPGEN reflecting
the difference underlying matrix element calculations andthe different parameter choices. The results show that
the multi-jet variables can be powerful handles in comparing and tuning different models of multi-jet production.
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Figure 16: The effect of event selection on the multi-jet distributions. The top left shows the energy fraction of the most
energetic jet in the 3-jet case. The top right plot shows theψ angle in the 3-jet case. Bottom left plot shows the energy fraction
of the 4th leading jet in the 4-jet case. The Bengston-Zerwasangle is shown in bottom right plot.

10 Conclusions
In this note we demonstrate the use of multi-jet variables atthe LHC. The variables are evaluated using calorimeter
jet momenta with corrections as input. They are shown to havesome dependence to jet algorithms used and
dependent on the effect of jet energy corrections. We present an estimate of the dominant systematic uncertainties
at the start up, resulting from jet energy resolution effects and from limited knowledge of jet energy scale. Using
examples of kinematic variables - scaled energy of the hardest and softest jets and also the angle between jet
planes, we show that early measurements of multi-jet variables allow us to study the difference in modelling of
QCD multi-jet production.
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Figure 17:Multi jet distributions for PYTHIA and ALPGEN. The top left shows the energy fraction of the most energetic jet
in the 3-jet case. The top right plot shows theψ angle in the 3-jet case. Bottom left plot shows the energy fraction of the 4th
leading jet in the 4-jet case. The Bengston-Zerwas angle is shown in bottom right plot.
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