(July 17th-23rd 2003) in Aachen, Germany

P. Skands
Overview

- Prompt Photons.
- Factorization in Photoproduction?
- Neutrino Status.
- Neutrino Cosmophysics.
Overview

- Prompt Photons.
- Factorization in Photoproduction?
- Neutrino Status.
- Neutrino Cosmophysics.
- Pentaquarks!
And now to...

Prompt Photons
Prompt photons at HERA

Inclusive and $\gamma + \text{jet}$ (’96–’00 $\Rightarrow \mathcal{L} > 100\text{pb}^{-1}$):

Backgrounds: γ from electron ISR and FSR, from jet, and from decays.
Prompt photons at HERA

Inclusive and $\gamma + \text{jet}$ (’96–’00 $\Rightarrow \mathcal{L} > 100\text{pb}^{-1}$):

\[e q \rightarrow e q \gamma \]

Q^2: $< 1\text{GeV}^2$ in PP

γ: isolated (prompt) photon (E_{\perp}^γ)

jet: isolated in DIS; p_{\perp} bal. in PP

Backgrounds: γ from electron ISR and FSR, from jet, and from decays.

- **DIS**: First observation by ZEUS (+ comparison to MC and NLO).
- **Photoproduction**: New results from H1 (+ comparison to NLO)
Prompt photons at HERA

DIS:
- PYTHIA and HERWIG differ on $\gamma +$ jet. Neither gives a good description. Room for work?
- NLO calculations (Kramer & Spiesberger) agree better on rates and general trends.

Photoproduction:
- Inclusive: well described by NLO (Fontannaz et al) and shapes by PYTHIA.
- $\gamma +$ jet well described by NLO (with multiple interactions a la PYTHIA).
Prompt photons at LEP ($\gamma\gamma \rightarrow \gamma X$)

OPAL experiment

Single-resolved process

Direct process with FSR (suppressed by isolation)

Double-resolved process

After selection: 137 events in data.
(CERN-EP/2003-023)
Prompt photons at LEP \((\gamma\gamma \rightarrow \gamma X)\)

- **Total and diff. cross sections:**

\[
\sigma_{\text{tot}} = 0.32 \pm 0.04 \pm 0.04 \text{ pb.}
\]

PYTHIA describes the shape, but is a bit low.

NLO agrees in shape and normalization.
And now to...

Factorization in Photoproduction?
Dijets and factorization breaking

The problem: HERA pdf’s used for diffractive dijets (w/ tagged \bar{p}) at Tevatron \implies cross section 1 order of mag. above data!

Due to presence of second hadron in initial state?
(spectator interactions break up the \bar{p}, \implies “rapidity gap survival probability”)
The problem: HERA pdf’s used for diffractive dijets (w/ tagged p) at Tevatron \rightarrow cross section 1 order of mag. above data!

Due to presence of second hadron in initial state? (spectator interactions break up the p, \rightarrow “rapidity gap survival probability”)

If that is the reason \rightarrow HERA pdf’s ought to fail for photoproduction. (VMD photon \sim hadron)
Factorization in Photoproduction?

But:

H1 Diffractive γp Dijets

New (2002) fit describes data!
Factorization in Photoproduction?

Shapes (cross sections normalized):

H1 Diffractive γp Dijets

- H1 Preliminary
- H1 2002 fit (prel.)
- H1 Fit 2

Also well described!
Factorization in Photoproduction?

Shapes (cross sections normalized):

H1 Diffractive γp Dijets

- H1 Preliminary
- H_1 2002 fit (prel.)
- H_1 Fit 2

Also well described!

\Rightarrow Factorization works in (resolved) photoproduction?!
And now to...

Neutrino Physics
The Solar Neutrino Anomaly

- Remaining part of low Δm^2 parameter space excluded.

KAMLAND only

Chooz + KAMLAND + solar
The Atmospheric Neutrino Anomaly

- Status: (hep-ph/0205216)

![Graph showing the relationship between $\Delta m^2 (eV^2)$ and $\sin^2 2\theta$.]

Super-K + IMB + Soudan2 + MACRO + Chooz
CMB and large scale structure are sensitive to absolute neutrino masses.

- May ’02: 2dF Galaxy redshift survey results.
- Feb. ’03: WMAP results.
WMAP: Measuring the CMB fluctuations.

+ Balloons (Boomerang, TopHat), Interferometers (CBI, DASI), and Planck (2007).
Redshifts of 250,000 galaxies in 2° “wedge”.
The 2dF survey and beyond

- Redshifts of 250,000 galaxies in 2° “wedge”.

- + SSDS (1M galaxies!) (ongoing).
Free-streaming (massive) neutrinos affect survival of small-scale fluctuations, below $d_{FS} \sim 1200 \text{ Mpc}/m_{\nu}$

(see also astro-ph/9904001)
Neutrino mass bounds

- Latest update: $m_\nu \leq 2.2 \text{eV}$

- WMAP + 2dF + Lyα data
- astro-ph/0302209: $m_\nu \leq 0.23 \text{eV}$
And now to...

PENTAQUARKS!
Sudden explosion of evidence for

- Narrow K^+n resonance.
- Mass 1540 MeV. Width: < 25 MeV SPRING8
 < 15 MeV DIANA

Reported by 5 experiments:

- DIANA (ITEP) hep-ex/0304040
- CLAS (JLAB) hep-ex/0307018
- SAPHIR (Bonn) hep-ex/0307083
- HERMES (DESY) ?
Pentaquarks: how to find them

Spring-8 (LEPS)
\(nK^+ \) in \(\gamma^{12}\text{C} \rightarrow K^+K^-X \).
with cuts to select quasi-free neutrons and with correction for Fermi motion.

DIANA (ITEP)
\(pK^0_S \) in low-energy \(K^+\text{Xe} \rightarrow K^0_p\text{Xe} \).
Since no known \(\Sigma^* \) at 1540 MeV, signal interpreted as \(\Theta^+ \).

CLAS (JLAB)
\(nK^+ \) in \(\gamma d \rightarrow nK^+K^- (p) \).
Poor acceptance. Relying on rescattering of the \(K^- \) off the spectator proton.

SAPHIR (ELSA)
\(nK^+ \) in \(\gamma p \rightarrow nK^+K^0_S \).
+ absence of \(pK^+ \) peak in \(\gamma p \rightarrow pK^+K^- \)!
$\sigma \sim 300 \text{nb}$
So what *are* these things?

- Minimal Θ^+ content: $uudd\bar{s}$
- $Y = 2$
 - $I_3 = 0$
- Total I?
 - No K^+p partner, so $I = 0$ (?)
Pentaquarks from quark models?

- Minimal Θ^+ content: $uuudd\bar{s}$
- Negative parity! (for S wave)

- Many states, some even lighter than Θ^+!
Pentaquarks from (di)quark models?

- More dynamics included in picture with quark pairs in $(\bar{3}_F, \bar{3}_C)$ bosonic states with short-range repulsion?

- If so, imagine bound states of 2 diquarks and one antiquark.

- Overall singlet \implies diquarks antisymmetric in colour \implies repulsion \implies spatial antisymmetry preferred \implies p-wave \implies positive parity.

- Same mass pattern as in ordinary quark model, but different parity predicted. (+ good candidates for many of the required states — the annoying Roper!?!?)
Formally integrate out gluons from QCD.

Approximate resulting (chirally symmetric) non-local quark theory by simple, quartic quark interactions.

Skyrme Model ($N_c \rightarrow \infty$) and Chiral Quark Model, both devised to describe low-energy meson physics.

However, baryons arise as soliton solutions, a nontrivial (hedgehog) classical configuration of the pion field.

Allowed baryon representations (triality zero):

$$8, 10, \overline{10}, 27, 35, \overline{35}, ...$$
Skyrme phenomenology

- So Baryon number = topological quantum number of pion field.

- But Skyrme phenomenology has a mixed record:

 - Some took it seriously...

 - Praszalowicz 1987: \(M(\Theta^+) = 1530 \text{ MeV} \)
 - Diakonov, Petrov, Polyakov 1997: \(M(\Theta^+) = 1580 \text{ MeV} \), influenced experimenters.

 - NB: \(\bar{10} \) mass quite sensitive to parameters, mass \textit{splitting}s much better “predicted”, since same (to LO) as in non–exotic multiplets.
Conclusions:

- Evidence for positive-strangeness exotic “baryon” at $M_{\Theta^+} = 1540 \text{ MeV}$.

- The battle is raging: constituent quark vs. soliton vs. quasi-molecular interpretations of light baryons.

- Important to check parity.

- Important to check for other states. Quark models always have an extra exotic octet, soliton models don’t.