RADIATION IN HIGH-\tilde{s} FINAL STATES

Peter Skands (FNAL)

with T. Plehn (MPI Munich) & D. Rainwater (U Rochester)
Overview

- QCD @ high energy: scales, logs & hands
- Tevatron: ttbar production
- LHC: ttbar production
- LHC: SUSY pair production
Collider Energy Scales

HARD SCALES:
- s: collider energy
- $p_{T,jet}$: extra activity
- Q^2_X: signal scale ($t\bar{t}$bar)
- m_X: large rest masses

\[(\hat{s}, \hat{m}^2, \ldots) \]
Collider Energy Scales

HARD SCALES:
- s: collider energy
- $p_{T,jet}$: extra activity
- Q_X: signal scale (ttbar)
- m_X: large rest masses

SOFT SCALES:
- Γ: decay widths
- m_p: beam mass
- Λ_{QCD}: hadronisation
- m_i: small rest masses

"ARBITRARY" SCALES:
- Q_F, Q_R: Factorisation & Renormalisation
Approximations to QCD

1. Fixed order matrix elements: Truncated expansion in α_s:
 - Full interference and helicity structure included to given order.
 - Divergences appear as low-p_T log divergences.
 - Difficulty (computation time) increases rapidly with final state multiplicity \Rightarrow limited to $2 \rightarrow 5/6$.

2. Parton Showers: infinite series in α_s (but only singular terms = collinear approximation):
 - Resums logs to all orders \Rightarrow excellent at low p_T.
 - Factorisation \Rightarrow Exponentiation \Rightarrow Arbitrary multiplicity
 - Easy match to hadronisation models
 - Interference terms neglected + simplified helicity structure \Rightarrow large uncertainties away from singular regions.
A handwaving argument

• Quantify: what is a soft jet?
A handwaving argument

• **Quantify**: what is a soft jet?

• **Handwavingly**, leading logs are:

 \[\alpha_s \log^2 \left(\frac{Q_F^2}{p^2,\text{jet}} \right) \to \mathcal{O}(1) \text{ for } \frac{Q_F}{p^\perp,\text{jet}} \sim 6 \]

• So, **very roughly**, logs become large for jet \(p_T \) around 1/6 of the hard scale.
ttbar + jets @ Tevatron

Process characterized by:

- Threshold production (mass large compared to s)
- A 50-GeV jet is reasonably hard, in comparison with hard scale ~ top mass

SCALES [GeV]

$s = (2000)^2$

$Q_{\text{Hard}}^2 \sim (175)^2$

$50 < p_{T,\text{jet}} < 250$

\rightarrow **RATIOS**

$Q_{H}^2/s = (0.1)^2$

$1/4 < p_T / Q_H < 2$
ttbar + jets @ Tevatron

SCALES [GeV]
\[s = (2000)^2 \]
\[Q^2_{\text{Hard}} \sim (175)^2 \]
\[50 < p_{T,jet} < 250 \]

RATIOS
\[Q^2_H/s = (0.1)^2 \]
\[1/4 < p_T/Q_H < 2 \]
ttbar + jets @ Tevatron

Hard tails:
- Power Showers (solid green & blue) surprisingly good (naively expect collinear approximation to be worse!)
- Wimpy Showers (dashed) drop rapidly around top mass.

Soft peak: logs large @ ~ m_{top}/6 ~ 30 GeV → fixed order still good for 50 GeV jets (did not look explicitly below 50 GeV yet)

SCALES [GeV]
\[s = (2000)^2\]
\[Q^2_{\text{Hard}} \sim (175)^2\]
\[50 < p_{T,\text{jet}} < 250\]

RATIOS
\[Q^2_H/s = (0.1)^2\]
\[1/4 < p_T / Q_H < 2\]

\[Q^2_s = (2000)^2\]
\[Q^2_H = (175)^2\]

\[50 < p_{T,\text{jet}} < 250\]
ttbar + jets @ LHC

Process characterized by:

• Mass scale is small compared to \(s \)

• A 50-GeV jet is still hard, in comparison with hard scale \(\sim \) top mass, but is now soft compared with \(s \).

SCALES [GeV]

\[
\begin{align*}
\text{s} &= (14000)^2 \\
Q^2_{\text{Hard}} &\sim (175+\ldots)^2 \\
50 &\leq p_{T,jet} < 450
\end{align*}
\]

RATIOS:

\[
\begin{align*}
Q^2_{\text{H}}/s &= (0.02)^2 \\
1/5 &< p_T / Q_{H} < 2.5
\end{align*}
\]
ttbar + jets @ LHC

Hard tails: More phase space → more radiation.
- Power Showers still reasonable (but caution advised!)
- Wimpy Showers (dashed) drop catastrophically around top mass.

- Soft peak: logs slightly larger (scale larger than mtop, since not threshold dominated here) → but fixed order still reasonable for 50 GeV jets.

SCALES [GeV]

$s = (14000)^2$

$Q^2_{\text{Hard}} \sim (175+\ldots)^2$

$50 < p_{T,\text{jet}} < 450$

RATIOS

$Q^2_H/s = (0.02)^2$

$1/5 < p_T / Q_H < 2.5$
SUSY + jets @ LHC

Process characterized by: (SPS1a)

• Mass scale is again large compared to s

• But a 50-GeV jet is now soft, in comparison with hard scale \sim SUSY mass.

SCALES [GeV]

$s = (14000)^2$

$Q^2_{\text{Hard}} \sim (600)^2$

$50 < p_{T,\text{jet}} < 450$

RATIOS

$Q^2_{H} / s = (0.05)^2$

$1/10 < p_T / Q_H < 1$
Hard tails: Still a lot of radiation (p_T spectra have moderate slope)

- Parton showers less uncertain, due to higher signal mass scale. Drop of wimpy showers happens later ~ 600 GeV.

- **Soft peak**: logs BIG: fixed order breaks down for ~ 100 GeV jets. Reconfirmed by parton showers \rightarrow universal limit below 100 GeV.

- (2 jet sample: matrix element blowing up \rightarrow artificially large norm. difference?)
p_T of hard system

(Equivalent to p_T,Z for Drell-Yan)

- $t\bar{t} + 1$ jet @ LHC
 - p_T of ($t\bar{t}$) system

- $\sim g + 1$ jet @ LHC
 - p_T of ($\sim g$) system

- $\sim uL + 1$ jet @ LHC
 - p_T of ($\sim uL$) system

\Rightarrow Resummation necessary

Bulk of cross section sits in peak sensitive to multiple emissions.
Conclusions

- **SUSY-MadGraph** soon to be public.
- Comparisons to **PYTHIA** Q^2- and p_T^2- ordered showers \Rightarrow **New illustrations of old wisdom:**

 - **Hard jets** (= hard in comparison with signal scale) \Rightarrow collinear approximation misses relevant terms \Rightarrow use matrix elements with explicit jets \Rightarrow interference & helicity structure included.

 - **Soft jets** (= soft in comparison with signal process, but still e.g. 100 GeV for SPS1a) \Rightarrow large logarithms \Rightarrow use resummation / parton showers to resum logs to all orders.
Conclusions

• SUSY-MadGraph soon to be public.

• Comparisons to PYTHIA Q2 and pT-ordered showers → New illustrations of old wisdom:
 - Hard jets (= hard in comparison with signal scale) → collinear approximation misses relevant terms → use matrix elements with explicit jets → interference & helicity structure included.
 - Soft jets (= soft in comparison with signal process, but still e.g. 100 GeV) → large logarithms → use resummation / parton showers to resum logs to all orders.