The SUSY Les Houches Accord

Interfacing SUSY Spectrum Calculators, Decay Packages, and Event Generators

Writeup 10’th Nov: hep-ph/0311123
Overview

1. Why?

2. The SUSY Les Houches Accord (v1).

3. Examples.

4. Outlook.
1. Why?

- **SUSY model**
 - MSSM
 - SUGRA
 - GMSB
 - AMSB
 - RPV
 - CPV
 - NMSSM
 - ...

- **Spectrum Calculator**
 - FEYNHIGGS
 - ISASUSY
 - (PYTHIA)
 - SOFTSUSY
 - SPHENO
 - SUSPECT
 - ...

- **Parton Level Event Generator**
 - COMPHEP
 - GRACE
 - HERWIG
 - ISAJET
 - PROSPINO
 - PYTHIA
 - SHERPA
 - SUSYGEN
 - WHIZARD
 - ...

- **Decay Package**
 - MICRØS
 - Darksusy
 - NeutDriver
 - ...

- **C机动车 Package**
 - HDECAY
 - SDECAY
 - Mühlleitner et al.
 - hep-ph/0311167
 - NLO SUSY Decays

The SUSY Les Houches Accord, P. Skands – p.3/14

SUSY model
- MSSM
- SUGRA
- GMSB
- AMSB
- RPV
- CPV
- NMSSM
- ...

SLHA Input

Spectrum Calculator
- FEYNHIGGS
- ISASUSY
- (PYTHIA)
- SOFTSUSY
- SPHENO
- SUSPECT
- ...

SLHA Input + Spectrum

Parton Level Event Generator
- COMPHEP
- GRACE
- HERWIG
- ISAJET
- PROSPINO
- PYTHIA
- SHERPA
- SUSYGEN
- WHIZARD
- ...

Decay Package
- MICRØS
- Darksusy
- Neutdriven
- ...

SLHA Input + Spectrum + Decay table

CDM Package

CDM Package
- CDM
- ...

The SUSY Les Houches Accord, P. Skands – p.3/14

- **SUSY model**
 - MSSM✔
 - SUGRA✔
 - GMSB✔
 - AMSB✔
 - RPV
 - CPV
 - CPV
 - NMSSM ...

- **Spectrum Calculator**
 - FEYNHIGGS✔
 - ISASUSY ✔ (PYTHIA) ✔
 - SOFTSUSY✔
 - SPHENO✔
 - SUSPECT(✔)
 ...

- **Parton Level Event Generator**
 - COMHEP
 - GRACE
 - HERWIG
 - ISAJET
 - PROSPINO
 - PYTHIA✔
 - SHERPA
 - SUSYGEN
 - WHIZARD ...

- **CDM Package**
 - MICRØS
 - Darksusy
 - Neutdriver ...

- **Decay Package**
 - HDECAY
 - SDECAY✔
 - SDHDECAY
 ...

- **SLHA Input**
 - + Spectrum

- **Decay Package**
 - SLHA Input
 - + Spectrum
 - + Decay table
1. Why?

2. The SUSY Les Houches Accord (v1).

3. Examples.

4. Outlook.
2. The SUSY Les Houches Accord

Considerations:

✧ **Flexible/Extendable**
Structure should be general enough to *eventually* handle *any* model.

✧ **Consistency**
Parameters must be consistently and unambiguously defined.

✧ **Easy to implement and use**
Address what is actually on the market, and make sure humans can understand it too.
2. The SUSY Les Houches Accord

General Structure:

✧ A unique set of conventions for input/output, necessary for unambiguous interpretation of parameters.

\[\text{CP} \implies \text{Real mixing matrices, } m_{\tilde{t}_1} < m_{\tilde{t}_2}, \text{phase choices, } \ldots \]

✧ Files are organized in named blocks:

\[\text{BLOCK MODSEL, BLOCK MASS, BLOCK STOPMIX, BLOCK NMIX, } \ldots \]

✧ All particles are identified by PDG code:

\[h^0 = 25, \tilde{t}_1 = 1000006, \tilde{c}_R = 2000011, \tilde{g} = 1000021, \ldots \]

✧ Running parameters: a grid of values may be provided.

\[\text{BLOCK GAUGE } Q= 1.00000000E+02, \text{ BLOCK GAUGE } Q= 1.00000000E+03, \ldots \]
2. The SUSY Les Houches Accord

General Structure:

✧ A unique set of conventions for input/output, necessary for unambiguous interpretation of parameters.

\[\text{CP} \implies \text{Real mixing matrices, } m_{\tilde{t}_1} < m_{\tilde{t}_2}, \text{phase choices,...} \]

✧ Files are organized in named blocks:

- BLOCK MODSEL, BLOCK MASS, BLOCK STOPMIX, BLOCK NMIX, ...

✧ All particles are identified by PDG code:

- \[h^0 = 25, \tilde{t}_1 = 1000006, \tilde{e}_R = 2000011, \tilde{g} = 1000021, \ldots \]

✧ Running parameters: a grid of values may be provided.

- BLOCK GAUGE \(Q = 1.000000000E+02, \) BLOCK GAUGE \(Q = 1.000000000E+03, \ldots \)

All the gory details in the writeup:

\[\text{hep-ph/0311123} \]
2. The SUSY Les Houches Accord

The Input File:

✧ **BLOCK MODSEL**
Model selection, e.g. which model of SUSY breaking to use.

✧ **BLOCK MINPAR**
Input parameters for a minimal type of the selected model, e.g. m_0, $m_{1/2}$, $\tan \beta$, ...

✧ **BLOCK EXTPAR**
Optional parameters for non-minimal/extended models, e.g. M_1, M_2, M_3, ...

✧ **BLOCK SMINPUTS**
Measured/fitted SM parameters, e.g. $m_b(m_b)$, $\alpha_s(m_Z)$, m_t, ...
2. The SUSY Les Houches Accord

The Spectrum File: (BLOCK is implicit)

- **MASS**: Mass spectrum.
- **NMIX**, **UMIX**, **VMIX**: $\tilde{\chi}^0$ and $\tilde{\chi}^\pm$ mixing.
- **STOPMIX***, **SBOTMIX***, **STAUMIX**: $\tilde{t}, \tilde{b}, \tilde{\tau}$ mixing.
- **ALPHA**: Higgs mixing (α).
2. The SUSY Les Houches Accord

The Spectrum File: (BLOCK is implicit)

- MASS Mass spectrum.
- NMIX, UMIX, VMIX $\tilde{\chi}^0$ and $\tilde{\chi}^\pm$ mixing.
- STOPMIX, SBOTMIX, STAUMIX $\tilde{t}, \tilde{b}, \tilde{\tau}$ mixing.
- ALPHA Higgs mixing (α).
- HMIX Q=... Higgs mixing (μ).
- GAUGE Q=... Gauge couplings.
- AU Q=..., AD Q=..., AE Q=... Trilinear couplings.
- YU Q=..., YD Q=..., YE Q=... Yukawa couplings.
2. The SUSY Les Houches Accord

The Spectrum File: (BLOCK is implicit)

- **MASS** Mass spectrum.
- **NMIX, UMIX, VMIX** $\tilde{\chi}^0$ and $\tilde{\chi}^\pm$ mixing.
- **STOPMIX, SBOTMIX, STAUMIX** $\tilde{t}, \tilde{b}, \tilde{\tau}$ mixing.
- **ALPHA** Higgs mixing (α).
- **HMIX Q=...** Higgs mixing (μ).
- **GAUGE Q=...** Gauge couplings.
- **AU Q=..., AD Q=..., AE Q=...** Trilinear couplings.
- **YU Q=..., YD Q=..., YE Q=...** Yukawa couplings.
- **SPINFO** Info from spectrum calculator, e.g. errors.
2. The SUSY Les Houches Accord

The Decay File:

✧ For each particle:
 • PDG code
 • Total width.
 • (Human readable translation of PDG code.)
 • + List of decay channels.

✧ For each decay channel:
 • Branching ratio.
 • Number of daughters.
 • PDG codes of daughters.
 • (Human readable translation of PDG codes.)

✧ + DCINFO (just like SPINFO above)
Overview

1. Why?

2. The SUSY Les Houches Accord (v1).

3. Examples.

4. Outlook.
3. Examples

```plaintext
# SUSY Les Houches Accord 1.0
# Example input file - Snowmass point 1a
Block MODSEL    # Model selection
  1  1    # SUGRA model
Block SMINPUTS # SM parameters
  5  4.25    # mb(mb)
  6  173.8   # t pole mass
Block MINPAR    # Model Parameters
  1  100.    # m0
  2  250.    # m12
  3  10.     # tanbeta
  4  1.      # sgnmu
  5 -100.    # A0
```
3. Examples

The SUSY Les Houches Accord, P. Skands – p.12/14
3. Examples

```
# SUSY Les Houches Accord 1.0
# Example decay file - Gluino decays
Block DCINFO    # Program information
  1  SDECAY   # Decay package
  2  1.0     # version number
#  PDG     Width
DECAY  1000021   1.01752300e+00   # gluino decays
#  BR  NDA  ID1  ID2
  4.18313300E-02  2  1000001  -1  # BR(sg -> sd(L) dbar)
  1.55587600E-02  2  2000001  -1  # BR(sg -> sd(R) dbar)
  3.91391000E-02  2  1000002  -2  # BR(sg -> su(L) ubar)
  1.74358200E-02  2  2000002  -2  # BR(sg -> su(R) ubar)
  4.18313300E-02  2  1000003  -3  # BR(sg -> ss(L) sbar)
  1.55587600E-02  2  2000003  -3  # BR(sg -> ss(R) sbar)
  3.91391000E-02  2  1000004  -4  # BR(sg -> sc(L) cbar)
  1.74358200E-02  2  2000004  -4  # BR(sg -> sc(R) cbar)
  1.13021900E-01  2  1000005  -5  # BR(sg -> sb(1) bbar)
  6.30339800E-02  2  2000005  -5  # BR(sg -> sb(2) bbar)
  9.60140900E-02  2  1000006  -6  # BR(sg -> st(1) tbar)
  0.00000000E+00  2  2000006  -6  # BR(sg -> st(2) tbar)
  4.18313300E-02  2  -1000001  1  # BR(sg -> sdbar(L) d)
  1.55587600E-02  2  -2000001  1  # BR(sg -> sdbar(R) d)
  3.91391000E-02  2  -1000002  2  # BR(sg -> subar(L) u)
  1.74358200E-02  2  -2000002  2  # BR(sg -> subar(R) u)
  4.18313300E-02  2  -1000003  3  # BR(sg -> ssbar(L) s)
  1.55587600E-02  2  -2000003  3  # BR(sg -> ssbar(R) s)
  3.91391000E-02  2  -1000004  4  # BR(sg -> scbar(L) c)
  1.74358200E-02  2  -2000004  4  # BR(sg -> scbar(R) c)
  1.13021900E-01  2  -1000005  5  # BR(sg -> sbbar(1) b)
  6.30339800E-02  2  -2000005  5  # BR(sg -> sbbar(2) b)
  9.60140900E-02  2  -1000006  6  # BR(sg -> stbar(1) t)
  0.00000000E+00  2  -2000006  6  # BR(sg -> stbar(2) t)
```
Outlook

The SUSY Les Houches Accord (v1):

✧ A set of self–consistent conventions for MSSM models.
✧ Definite file structures for model input, mass and coupling spectra, and decay tables.
✧ Many programs already implemented SLHA, more on the way.

Future Plans:

✧ Higher orders ➝ more soft parameters.
✧ CPV, RPV.
✧ NMSSM, ... ?
The SUSY Les Houches Accord (v1):

✧ A set of self-consistent conventions for MSSM models.
✧ Definite file structures for model input, mass and coupling spectra, and decay tables.
✧ Many programs already implemented SLHA, more on the way.

Future Plans:
✧ Higher orders, more soft parameters.
✧ CPV, RPV.
✧ NMSSM, ...

At Les Houches 2003, then implemented one simple case (CMSSM); it threw up problems in the interface design.

Design principles: general structure which can be extended, conventions for particular case etc., higher loops very thorny.