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Topics

-

Lecture 1:

Numerical Integration + on Friday

Monte Carlo methods Practical Exercises:

Importance Sampling PYTHIA 8 kickstart
(check the instructions)

The Veto Algortihm 8

J

Lecture 2:
Application of these methods to simulations
of collider physics: Monte Carlo Event Generators

J




Why Integrals?

Think: SCGH‘ering — Integrate differential cross sections

over specific phase space regions

experiments

lime-gatad
small-angle
detector

: do
Prgduc’red number QF counts Neomnt(AQ) / 1022
= integral over solid angle A df

In particle physics:
sum (= integrate) over all quantum histories



1SION

ALICE Coll

L» More complicated integrals ...



Why Integrals?

Why Numerical?

Lets go back and look at something slightly simpler ...

ALEPH-XDALI 9 Apr 2001 version k1l X11/XUIT
Evt=d881

\ 4-jet event in
 ALEPH at LEP (a
Higgs candidate)

Now compute
the
backgrounds ...

2cn 0 X*
.20 ' D2 Nisd san.0t



Part of Z = 4 jets ...

Why Integrals?

5.3 Four-parton tree-level antenna functions

The tree-level four-parton quark-antiquark antenna contains three final states: quark-

gluon-gluon-antiquark at leading and subleading colour, A9 and flg and quark-antiquark-

quark-antiquark for non-identical quark flavours BE as well as the identical-flavour-only

contribution CJ. The quark-antiquark-quark-antiquark final state with identical quark

flavours is thus described

by the sum of antennae for non-identical flavour and identical-

flavour-only. The antennae for the gggq final state are:

AY(14,34,44,27) =

AY(14,34,44,25) =

aj(1,3,4,2) =

a(1,3,4,2) +a3(2,4,3,1) , (5.27)
a9(1,3,4,2) +a9(2,4,3,1) + a3(1,4,3,2) +a(2,3,4,1) , (5.28)

! 1 [2312814 + 2819893 + 28%2 + 8%4 + 533]
81234 | 2513524534

1
2 2 3 3
0 . . [3512534 — 4579834 + 2879 — 534]
251352451345234
1
2 2 2
+— [3812823 — 3512534 + 4875 — 523534 + 553 + 834]
8135245134
2512 4 514 + 523] + [4512 4 3523 + 2524)
2513524 813834
5— [512534 + 523534 + 524534
51357134
1
2 2 2
+— [3812824 + 6812834 — 4812 — 3824834 — Soq — 3834]
81351345234
+ [—6512 — 3523 — S24 + 2534]
5135134
1 2 2 2
_ [2512514 + 2519893 + 2512 + 2514893 + sS4+ 823]
8245345134
1
+ [—4s12 — 514 — 523 + 834] + —5— [s12 + 2513 — 2514 — 534]
5245134 S34
1 258195148
2 2 2 12514824
+5—= [2312314 + 25745923 + 2814324] -
5345134 83451345234
1 -2 —4 + 257
B} 512814 514524 514
5345134
1
2 2 2
+—————— [2s12514 — 45Ty + 2514504 — 5714 — 554
83451345234
1
-+ [—8312 — 2893 — 2824] + 5 [812 + s93 + 824]
5345134 5134

3 1
+—— 12519 + S14 — S24 — S34| + + O(e ,
251345234 [ ] 25134 ()

a3(1,3,4,2) =

Why Numerical?

1 1 3 1
2 2 3 3
_512834 — 2512834 + 512 - _834
51234 | $1352451345234 | 2 2
1 2 2 2
————— [3512503 — 3512534 + 45Ty — S23534 + 533 + 534
5135248134

53, 1 1
2

~S12814 + 8%2]
$13524(S13 + 523)(S14 + S24)  S13524(S13 + S23)

1 1 9 ] [ 3 3 ]
—812823 + S + 3s12 + =814 + =S93
513524 (514 + S24) [2 12 513524 2 2
1 253,
5— 512534 + 523834 + S24534] +
5138734 $1351345234(513 + 523)
1
+—————— [3s12534 — 24534 — 253
51351345234
1 2
+ 812524 + 812534 + 28
5135134(813 + S23) [ 12
1 1

[—523 — S24 + 2534] + [312314 + 812834 + 23%2]

5135134 $135234(513 + 523)

_|_

[—2512 — 2814 + S24 + 2534]
5135934

23?2
s13(813 + $23) (814 + S24)(S13 + S14)
1

s13(813 + S23)(s13 + S14)
1

513(514 + 524) (513 + 514)

2512 2 b (5124 503+ 524)
- . N — —5 — |S12 523 524
s13(513 +514)  s13 STy

[812824 + 23%2]

[312823 + 28%2]

L o1 — g+ — + 0(6)} . (5.30)

51345234 5134

First computed by K. Ellis, D. Ross,A.Terrano, Nucl.Phys.B178 (1981) 421

This version from Gehrmann-de-Ridder, Gehrmann, Glover, JHEP 0509(2005)056




Why Integrals?

Why Numerical?

The non-identical quark antenna is:
BY(14,34,44,25) = b3(1,3,4,2) +63(2,3,4,1) +03(1,4,3,2) +b3(2,4,3,1) , (5.37)

with a sub-antenna function given by

1 1
v9(1,3,4,2) = {72 (512513514 + $13514523 — 513504]

2
51234 | 53457134
1 1
2
+—5———— | 512513524 + 513514523 — S13554| + ——— [512513 + S13523]
2 2
53451345234 5345734
1 512
[2512513 + 515 + +0(e) ¢ . (5.38)
253451345234 251345234

The identical-flavour-only quark-antiquark-quark-antiquark antenna is:

0 0 0
014,34, 45,24) = ¢2(1,2,3,4) + 3(1,4,3,2) | (5.42)
1 S$12513S 1
0 12513514
ci(1,2,3,4) = - + [—s12513524 + S13514524]
81234 259353451235134  252353451345234
2
513534 512513
2593534533, S2351235134
1 2
[—812514 — 512534 — S19 + 813824]
259351235234
1 S
2 13
[812814 + 512834 + S1p + 813824] -
252351345234 251235134
1 1
+——5— [s12524 + S14524] + [—s12 + s14] + O(e) p - (5.43)
8238534 281235234

Integrate over 4-particle phase
space ...

This is one of the simplest
processes ... computed at lowest
order in the theory.

Now compute the quantum
corrections: Z — 5, 6, ..

And higher orders of quantum
fluctuations (quantum loops) ...

And hadronization, hadron decays, detector response, ...



Numerical Integration

AY Problem:

find a numerical
approximation to
the value of S

J(x)




Riemann Sums

/b fle)dz = lim i f(tz)(xwma
. i=1 —

ery =e*sin(8x%) +1  Midpolint Rule
"\ Sample Points = 6

Numerical Quadrature
Approximation = 2.059280

1.5 :
| \
|

&
-

.
o

12



&umerical Integration in 1D

1 function evaluation per bin

4 k= /cf.ldl ~ (b—a)f (q “,L f) ........... Mi d Poi n-|- (rQC'l'dﬂglJlGr) Ru le:

s s s s /\it /. .. . R .
‘ - . o Divide into N "bins” of size A
e ; Approximate f(x) = constant in each bin
2 1 : 1 2 Sum over all inside your region
. 2 function evalua’riorj;(pe)r bil}b)
4 f=ma 'f(.‘l')(l.‘r ~ (b— a) “ .i ( | S <
I Trapezoidal Rule:
0 0 N— | | Approximate f(x) = linear in each bin
2 O o 1' 2 Sum over all inside your region

Simpsons Rule:

, . . . Approximate f(x) = quadratic in each bin
2 q 0 1' 2 Sum over all inside your region

etc ..

13



Convergence Rate

The mwost impor%a&\% ques&ww

How long do I have to wait?
(How many points do I need for a given precision)?

Uncertainty as a function of Approx
number of points Conv. Rate
7 (in 1D)
Trapezoidal Rule (2-point) 2 1/n®
Simpsons Rule (3-point) 3 1/n*
... m-point (Gauss quadrature) m 1/n2m-1

; : See, e.qg., F James, "Monte Carlo
See, e.q., Numerical Recipes » €G- ’

Theory and Practice”

14



I-Ilgher Dlmensmns

\,.

= leed Grld (Produc’r) Rules scale exponen’rlally W|’rh D

N*POEME rule A 1 dimension

e—e—e—eo— — m function evaluations per bin

1 2 m

e LA 2 Aivvensions

7T7°—®—°=  — m? evaluations per bin
~ 8

.o A D dimensions — NP per bin

E.g., to evaluate a 12-point rule in 10 dimensions,

need 1000 billion evaluations per bin




Convergence Rate

+ Convergence is slower in higher Dimensions!

/0/\1 fbl \‘

Uncertinty as o fncton of |/ i | cons Rat
(in D dim)
Trapezoidal Rule (2-point) 2D 1/n2/D
Simpsons Rule (3-point) 3D 1 /n/D
.. m-point (Gauss rule) mP 1 /n(2m-1)/D

: : See, e.g., F. James, Monte Carlo
See, e.g., Numerical Recipes .
Theory and Practice

16
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U g, a
5 —~—a V&

A Monte Carlo technique: is any technique making
use of random numbers to solve a problem

—— e—- —— e J N | N

4 ' : ’ r‘ :)—j - l o= o N i Y -"".‘ BN 1 = -- < al - - - - - - - ,_.--"--l-- %

NS =] i l = ‘| &
A Conve rgence: . ‘This risk, that convergence is only given with a
Z certain probability, is inherent in Monte Carlo
‘.4.-?‘"' Calculus: {A} converges to B calculations and is the reason why this technique
if an n exists for which was named after the world’s most famous
|Ai>n - B| < g, for any € >0 3§ gambling casino. Indeed, the name is doubly
appropriate because the style of gambling in the
sk Monte Carlo: {A} converges to B Monte Carlo casino, not to be confused with the
= if n exists for which noisy and tasteless gambling houses of Las Vegas
; the probability for and Reno, 1s serious and sophisticated.”

|Ai>n - B| < €, for any € > 0, F. James, “Monte Carlo theory and practice”,
is > P, for any P[O<P<I] Rept. Prog. Phys. 43 (1980) 1145

1 = = mn ™=

s
*

,z, //
ni :

=




Random Numbers and Monte Carlo

Example 1: simple function (=constant); complicated boundary J

Exampi&: you want to know the area of this shape:

Now get a few
friends, some balls,
and throw random

shots inside the

circle

(PS: be careful to make
your shots truly random)

Count how many
shots hit the shape
inside and how
many miss

18

Assume you know the

/ area of this shape:

mR?
(an overestimate)

N
Earliest
Example of
MC
calculation:
Buffons
Needle
(1777)
to calculate
m

G. Leclerc, Comte de Buffon (1707-1788)
J

\_

A= Nhi’r/Nmiss X 1R2



Random Numbers and Monte Carlo

Example 2: complicated function; simple boundary J
AY
Jmax Start from overestimate,
- f(x) Frnax

Generate uniformly
distributed random points

between a and b % _n,
a b X Jmax

I o f(z;
The integral is then = (b — a)/fmax —Zf(xl)

n - Jmax
1=1

area of rectangle fraction that ‘hit’

19



Justification

1. Law of larqe numbers

For a function, f, of random variables, x;

n ) For infinite n:
1 1 te Carlo
lim — f(x;) = / f(z)dx Monte Carlo Is a
nmeon Zzl : b—aJqg consistent
Monte Carlo Estimate The Integral QSﬂmCl'l'OT'

2. Cenkral Limik Eheorem

4 )
The sum of n independent random variables (of finite

expectations and variances) IS asymptotically Gaussian

(no matter how the individual random variables are distributed)
(U J

For finite n:
The Monte Carlo estimate is Gauss distributed around the true value

20



Convergence

MC = Monte Carlo

MC convergence is Stochastic!

7 in any dimension

1 ORDER STOCHASTIC

I Y o'o.’.o
T 00
eeccee ’o‘o 4
eeccoe .00'0‘
ecccce Jeote,
ecccee %00,

Fixed dot size Flxed dot siae
Fleed dot spacing Variable dot spacing

+ can re-use previously generated points (= nesting)

Uncer:ii;Lye: SOFG Fu.nc;’rion of Neval / bin C:::/F.)I::’re Ccﬁlz?l::’re

points (in 1D) (in D dim)
Trapezoidal Rule (2-point) 2P 1/n? 1/n?/P
Simpsons Rule (3-point) 3D 1/n% 1/n4/0

.. m-point (Gauss rule) mP 1/n2m-1 1/n(2m-1)/D
Monte Carlo 1 1/nl/2 1/nl/2

21



Importance Sampling




G/Gmax

1.00

0.50

0.00

Peaked Functions

Functions: Breit-Wigner

Il
§'\
S

|

|

| ! |

(E-M/T

Precision on integral
dominated by the
points with f = fmax (i.e.,
peak regions)

— slow convergence
if high, narrow peaks



< Stratified Sampling >

Functions: Breit-Wigner
| ' | ' I ! I ! |

1.00

— make it twice as
likely to throw points
in the peak

— faster convergence
for same number

of function evaluations

G/Gmax

0.50

0.00

(E-MV/T



<__Adaptive Sampling >

Functions: Breit-Wigner
] L I L I L) I L] ]

1.00

— can even design
algorithms that

do this automatically
as they run

— Adaptive sampling

(T/Gmax

0.50

0.00

(E-M/T



o/C, .,

1.00

0.50

0.00

Functions: Breit-Wigner

_oll ¥ N )

1.1'0-

-2 -1 0 1
(E-MV/T

E.g.,VEGAS algorithm, by G. Lepage

— or throw points
according to some
smooth peaked
function for which you
have, or can construct,
a random number
generator

(here: Gauss)



Why does this work!?

|) You are inputting knowledge: obviously need to
know where the peaks are to begin with ... (say

you know, e.g., the location and width of a resonance)

2) Stratified sampling increases efficiency by
combining n-point quadrature with the MC
method, with further gains from adaptation

3) Importance Sampllng° Effectively does flat MC with

changed integration variables

/ f f<x)dG( ) Fast convergence if

g(x) fx)/g(x) ~ |



The Veto Algorithm




How we do Monte Carlo

1. Talee your svs&em

® Set of radioactive nuclei

® Set of hard scattering processes
® Set of resonances that are going to decay

® Set of particles coming into your detector

® Set of cosmic photons traveling across the galaxy

® Set of molecules

29



How we do Monte Carlo

1. Tolee your sstem

2:« G’QM@."Q&Q a “&T’EO&L” (event/decay/interaction/... )

® Not easy to generate random numbers distributed
according to exactly the right distribution?

® May have complicated dynamics, interactions ...

® — use a simpler “trial” distribution

® Flat with some stratification

® Or importance sample with simple overestimating
function (for which you can generate random #s)

30



How we do Monte Carlo

Sounds deceptively simple,but ...
with it, you can integrate
arbitrarily complicated functions (in

~ 1. Tolee your sstem

particular chains of nested functions),
over arbitrarily complicated regions,

2. G’QMQT’Q&Q a “&Tﬁ&t” in arbitrarily many dimensions ...

® Accept trial with probability f(x)/g(x)

® f{(x) contains all the complicated dynamics [~ K MRl

- only affects convergence rate

® g(x) is the simple trial function

o If accept: replace with new system state

® If reject: keep previous system state

k— And keep going: generate next trial ...

31



Complicated Function:

Time-dependent
Traffic density during day, week-days vs week-ends

(i.e., simulates non-trivial time evolution of system)

No two students are the same

Need to compute probability for each and sum
(i.e., simulates having several distinct types of “evolvers”)

Multiple outcomes:
Hit — keep walking, or go to hospital?
Multiple hits = Product of single hits, or more
complicated?

32



Monte Carlo Approach

Approximate Traffic

Simple overestimate:
highest recorded density
of most careless drivers,

driving at highest recorded speed

etc. (If this becomes too slow (computing time), try more
clever “stratifications”, adaptations, and/or importance sampling)

Approxima&e Skudenk

by most accident-prone L- and R-hand traffic student
(overestimate)

33



Hit Generator

05t we qO-...
Throw random accidents according to:

Nstud

R= / / d o; (T, t x,t x,t Too
' Z S’riden’r—Car) gezngl’ry of ) pDCeSsn’ry oF) DlFﬁ CUH'

Coupling Student i Cars
Sum over

students (possibly weighted by speed X drunkenness)

t. . time
of accident

= (t.-10) (O‘L,max Np + &R max NR) Zentral Overestimate

Stratification

Simple

Coupling of Coupling of Rush-hour density
most accident-prone most accident-prone of cars
left-hand-traffic student right-hand-traffic student

34



Hit Generator

Trial Gewnerator: (generate t.)
R = (te-t0) (L max NL + R max NR) pemax  [oNCESIIETS

Coupling of Coupling of Rush-hour density
te : time most accident-prone most accident-prone of cars
left-hand-traffic student right-hand-traffic student

Simple

of accident

(Also generate trial x., uniformly between Travelers lodge and Stias)

Accept with Frobo\bdwj
ai(xa t) ,OZ'(I', t) ,OC(ZE, t)

(O‘L,max Ny, + AR max NR) Pemax

paccep’r =

— True integral = number of accepted hits
(note: we didnt really trit multiple hits ... = Markov Chain)

35



Summary

Quantum Scattering Problems are common to many areas of physics:
To compute expectation value of observable: integrate over phase space

Complicated functions = Numerical Integration

High Dimensions — Monte Carlo (stochastic) convergence is fastest
Additional power by stratification and/or importance sampling

Additional Bonus — Veto algorithm — direct simulation of
arbitrarily complicated reaction chains = next lecture




Recommended Reading

F. James
Monte Carlo Theory and Practice
Rept.Prog.Phys.43 (1980) p.1145

S.Weinzierl

Topical lectures given at the Research School Subatomic physics, Amsterdam, June 2000

Introduction to Monte Carlo Methods
e=-Print: hep-ph/0006269

S. Teukolsky, B. Flannery, W. Press, T.Vetterling
Numerical Recipes rommnc )

http://www.nr.com/
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