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Abstract

We present a simple formalism for parton-shower MarkovthaAs a first step towards more
complete ‘uncertainty bands’, we incorporate a comprekierexploration of the ambiguities in-
herent in such calculations. To reduce this uncertaintythea introduce a matching formalism
which allows a generated event sample to simultaneoushpdepe any infrared safe distribution
calculated at leading or next-to-leading order in perttidmetheory, up to sub-leading corrections.
To enable a more universal definition of perturbative catahs, we also propose a more general
definition of the hadronization cutoff. Finally, we presantimplementation of some of these ideas
for final-state gluon showers, in a code dubbed®A.

1 Introduction

At present collider energies, the strong (QCD) couplingrsith; is sufficiently large that even the
most sophisticated approximations are typically reliadsiey over a limited region of phase space. De-
scriptions which work well for “hard” radiation (extra jetsard bremsstrahlung) break down rapidly in
soft and/or collinear regions (jet structure, soft brema¢dting), and vice versa. In addition, at scales
below a GeV or so, non-perturbative effects must also bentakt® account, and a transition made
to a description in terms of screened charges inside cebtiadrons. In this paper, we shall put the
main focus on aspects which are systematically examinedorcomplementary perturbative approx-
imations: that of fixed-order truncations, appropriate ‘foard” radiation, and that of parton shower
resummations, appropriate for “soft/collinear” radiatio

In the past, these two approximations were often pursueepirtlently. The last decade or so
has witnessed rapid progress in our understanding of howittues of each can be used to overcome
the vices of the other, to yield “matched” results which rajpé¢ to combine the best features of both
approaches. The earliest concrete approach, due to@jdsind collaborators [1], is implemented in the
PYTHIA generator [2] and consists of re-weighting the first partoowser emission off a hard system
by a correction factor equal to the ratio needed to reprothewee-leve( X +1)-parton matrix element.
This reweighting relies heavily on the shower algorithnr$YTHIA [3] covering all of phase space and
on the first shower emission being clearly identifiable ashledest”. A different approach was needed
for the coherent angular-ordered algorithm [4] used in tlERWIG Monte Carlo [5], in which soft
gluons can be emitted at large angles “before” harder or@walter angles. The approach developed by
Seymour for this purpose [6] combines two ingredients: @rtgion populated by the shower, emissions
are reweighted to produce the matrix element rate almodb@geggeneralized to the angular-ordered
case), whereas in the so-called “dead zone,” sepéiate 1)-parton events are generated according to



the appropriate matrix element, and weighted by a SudakdwerfaThis technique can be viewed as a
precursor to the modern CKKW approach [7].

Although matching beyond one extra parton was attempteldimibhe PrTHIA framework [8], the
complexity of the problem grows rapidly. The CKKW and MLM [@]atching schemes broke through
this barrier, in principle providing a framework for matobithrough any number of tree-level matrix
elements, though practical applications are still limiteéhcluding matrix elements for at most a hand-
ful of additional partons. The original CKKW approach is ieqpented in the SERPA generator [10].
The MLM one is in principle less dependent on the specific @m@ntation, but is probably most of-
ten used with APGEN [11] interfaced [12] to either HRwWIG or PYTHIA. The basic idea behind the
CKKW scheme has since been refined and extended, first vialgalgseudoshowers introduced by
Lonnblad [13, 14] in the context of the color dipole modéb[16] and implemented in theFAADNE
generator [17]; and later by Mrenna and Richardson [18]gusitaD GRAPH [19], again interfaced
to HERwWIG and FYTHIA. The most recent advance to be implemented in a widely-useérgtor
was the subtraction-based loop-level matching proposeBrixyone and Webber [20] that led to the
Mc@nNLo [21] add-on to the lHRWIG generator.

More recently, several groups have presented proposatspimve Mc@NLO-style matching [22];
to include 1-loop contributions in a CKKW-like scheme [2&];develop a formalism capable of dealing
with subleading color and spin effects [24]; to include dmagffects [25]; and to use Soft-Collinear
Effective Theory (SCET, see ref. [26] and references th¢ms a framework for matched parton show-
ers [27].

Making use of a generalization of subtraction-based maggtour aim is to present a simple for-
malism for leading-log leading-color (LL) parton showearsnstructed explicitly with two main goals in
mind: 1) including systematic uncertainty estimates withie LL shower, and 2) combining the virtues
of CKKW-type matching (matching to tree-level matrix elamgewith an arbitrary number of additional
partons) with those of M@NLO-type approaches (matching to 1-loop matrix elements).eldazr, we
aim to do this in a manner which is simultaneously simple apeischot introduce any dependence on
clustering schemes or, cutoffs beyond those required to regulate explicit subtgatbgarithms and
hadronization effects.

The question of negative weights is generic to subtradtiased approaches, although tricks can be
used to circumvent them, as, e.g., in the POWHEG approag¢h\{@éin the formalism we present, the
appearance of negative weights is directly controlled Me&adhoice of subtraction terms. When present,
they are associated with corrections that contain no lasgarithms. Further, weights of either sign
should be devoid of strong infrared peaks since phase sgaeFajion only needs to be carried out on
matrix elements which 1) have had their leading singuksgisiubtracted out and 2) their subleading ones
cut away, as follows.

Though we shall discuss several possible ways of regul#tiegubleading divergences (subleading
in color and/or logs), the simplest is arguably a step famctutoff, e.g. inm? or p?. Similar to
the “matching scale” in CKKW approaches, which also sertespurpose of regulating subleading
divergences, such a cutoff should be placed at an interteed@ale, between the hard scale and the
hadronization scale, in order to prevent logarithms inv@\(),.q from appearing in the final answer.
At no point do we claim that our approach is valid beyond Iegdiolor, leading log, but it should also
be made clear that the only remaining subleading logarithithinvolve this intermediate scale, not the
hadronization scale.

Finally, as a first step towards making hadronization mogelgarticular their “tuning”) less depen-



dent on the details of the parton shower they are used witlprejgose a generalized definition of the
hadronization cutoff. Since our perturbative proposaludes infinite families of different shower evo-

lutions, minimizing the differences at the non-pertunmfiactorization stage is an important ingredient
in matching it to hadronization descriptions.

As an explicit proof of concept, we have combined the antdantorization formalism [29, 30]
with that of dipole showers [16] in a code dubbedviA (Virtual Numerical Collider with Interleaved
Antennae) [31], which is being developed both stand-alomkes a plug-in to PTHIA 8 [32]. Similar to
the existing dipole shower implementationR ADNE [17], the choice of the antenna-dipole formalism
has the added benefit that the shower is built up from cohedot dipoles which reproduce the dipole
radiation pattern by construction, and thus there is no needtroduce explicit coherence effects by
hand, neither by choice of evolution variable (angular ardg nor by ad hoc cuts. We thus expect a
much milder dependence on the choice of evolution varidida is the case for conventional parton
showers.

The organization of the paper is as follows: in section 2, weekwout a convenient formalism
for general parton showers in which a clear distinction isntaéned between each component of the
algorithm (evolution variable, phase space, radiatiortion, and scale choices). This clear distinction,
combined with the relative simplicity of the formulationilMplay a central role in securing a high degree
of analytical control later on. We then expand the showeratrtial cross sections of fixed multiplicities
of resolved partons. This expansion is used in section 3rigeda set of matching terms for arbitrary
tree- and 1-loop matrix elements, up to corrections of oateinfrared cutoff (hadronization scale)
and an intermediate scale regulating the subleading kbgasi Section 4 then deals with improving the
infrared factorization between parton showers and hadation models. The numerical implementation
of many of our ideas, in the form of theINCIA code, is then presented in section 5. In section 6, we
discuss how one might go further in the perturbative exmamsiVe then round off with conclusions and
outlook in section 7.

2 The Shower Chain

As a starting point, consider a Markov chain algorithm [38]Jeyed in some measure of timeSuch
chains characterize the development of a broad variety siésys. In our application, the system will
be a set of partons and the rbletofill be played by a measure of parton resolution seale: 1/¢, but

the chain could equally well represent the real-time evatudf a simple system such as an ensemble
of radioactive nuclei. Two global quantities characteseeh evolution: the starting configuration and
the duration of the experiment.q — t;,. At each differential time step in between, there is a pratab
density A(t) for the system to undergo a non-trivial change. After sucthange, A(t) itself may
change (for example, a nucleus may be replaced by its decmugis). For the chain to have the
Markov property, all that is required is that(t) depend only on the system’s present state, not on its
past history. This property will turn out to be useful in thantext of higher-order matching in section
3.

Let us write the Sudakov factor [34], the probability thag 8ystem does not change state between

IMany thanks to T. Sjdstrand for making this possible.



two timest;, andte,q, as:
lend
A(timtond) = exp (— \ dt A(t)) s (1)
with the understanding that can depend on the particular system configuration attjfp@nd thereby
that A implicitly has such a dependence as well.

In the parton shower context(¢) is the total parton evolution or splitting probability dégsThis
includes sums and integrals over all possible types of itians, such as gluon-to-gluon pair or gluon-
to-quark pair splitting. As our aim is to resum the leadinggsilarities,A(t) must necessarily be infrared
divergent: there is an infinite probability to radiate a swftollinear gluon. The evolution variable must
therefore itself be infrared safe, such that all the singfiga of A correspond to “late times” as defined
by ¢ (or, equivalently,l /@Q). Specifically, for leading-log evolutionmust regulate at least all leading-log
divergences.

Letting {p},, denote a complete specification of @parton configuration in the leading-color limit
(carrying not only information on momenta, but also the calalering, flavors, and perhaps polariza-
tions), we define the leading-log Sudakov factor by,

end

A(tm tend; {p}n) = exp <_ n+1 Z / n+15 n+1 - t ({p}n-{-l))Az({p}n_) {p}n—i—l)

tn ie{n—n+1} )

, 2
whered®,, denotes the:-particle Lorentz-invariant phase-space measure, scxitta%til /d®,, repre-
sents the branching phase space, and-threlering is imposed via the integral ovgr, ; together with
the § function. This definition will be the cornerstone for the i@nder of this paper, and so we now
devote a few paragraphs to its explanation. To simplify thiation, we shall usually let the dependence
on {p}, be implicit, lettingA (t,, tend) = A(tn, tend; {P}n)-

The first important aspect is that we define the Sudakov faxibfor a lone parton or color dipole,
but rather for then-parton configuration as a whole. The degree to which theugeol of smaller
subsystems factorize will naturally play an importanerbut does not need to be specified explicitly
at this point. The sum ovare {n — n + 1} runs over all possible ways of obtainimg+ 1 partons
from the originaln ones. For example, starting with arparton configuration of which, partons are
guarks, an unpolarized parton shower with four active géladors would yield one term for each quark
in the event{, x ¢ — qg) and five terms for each gludm — ny) x (ny x g — qq + g — gg).

The evolution phase space is represented symbolically déyrth+ 1)-parton phase space for an

evolution step of type, d<I>[rf]+1, divided by that of the evolving configuratiod®,,. Its specification
requires three variables, along with a mapping from thesablas to the phase space for the emission.
Existing parton-shower Monte Carlo implementations edubose a different function for this map.
To name a few known issues, the map may have ‘dead zones’ whiereero, and/or it may have
regions where several independent emitieopulate the same point (such double counting is not
necessarily a problem, so long as the sum is properly nazedli in some formulations, the entire
event may participate in each branching, in others only aiip@air of partons ‘recoil’ off each other;
in analytical leading-log (LL) resummations, a purely owhar map is usually used, which slightly
violates momentum conservation, and so on. Our point is matlwchoice is ‘best’, but that many are
possible, each leading to a different shower evolution.

In this paper, we shall require that the partons at each semtshell and that four-momentum be



conserved. Arin + 1)-parton phase space then 38 + 1) — 4 degrees of freedom:
n+1 n+1 d3pj
A, = (Z pj — ZPy) H W 3)

where we denote the original momenta by, and the notation for four-vectors jg = (E;, p;). This
represents all possib(@+1)-parton configurations consistent with energy and momewgtumservation.
In the context of evolution, however, we are already implicintegrating over all possible-parton
configurations, and we are also explicitly summing over aligible evolution possibilities for each
such configuration. The notatiomﬂrl/d@n is thus intended to signify the subdivision of the full
phase space into discrete (but possibly overlapping) nsgieach corresponding to a specifiparton
configuration and a specific Since then-parton phase space has — 4 degrees of freedom, this
amounts to imposingn — 4 additionalo functions and adding the explicit superscHiit

dq)[l] n+1 n+1 )
onin _ 5<4>(sz ZpJ)H%@“ (05 hosi b = 1) @)
j=1

where/-;i‘1 is the inverse of the map discussed above. This inverse caiewed as a clustering defi-
nition? that, giveni and the(n + 1)-parton configuration, reconstructs the correspondingValved”
one,{p},. The requirements on the mapare thus:

1. For each, a unique inverse of; must exist £; must be injective), however each individusgl
does not necessarily have to cover all of phase space, smoaly care about the coverage after
summing ovel and integrating oved®,,.

2. After summing ovei and integrating oved®,,, the resulting composite map should cover all of
phase space (be surjective), in order to avoid creating deads. It does not necessarily have
to be one-to-one: thé: + 1)-parton phase space may be covered several times so lonig &s th
properly taken into account in the normalization of the aidin functionsA; (or more precisely,
of their singular parts).

Obviously, these statements only apply to configuratioas dhe supposed to be obtainable via shower
branchings in the first place, and not, for instance, to suldhe color topologies such & — gqgg
with the two gluons in a color singlet state.

Below, we shall restrict our attention to maps correspamdiindipole-antenna showers, such that:

o, doll,def
d®, d®,_o dd,

Dipole Showers: (5)
The first factor on the right hand side indicates that we weosb8(n — 2) ¢ functions to leave the

momenta ofn — 2 partons unchanged. This leaves us with a dipole—antenrsepﬂmced@@f]/d%,
carrying nine degrees of freedom compensated by the siximérga functions. Introducing the notation

’That is,x; ' “inverts” the shower in a manner similar to the action, ea§. ARCLUS on the ARIADNE shower [17] or
PycLus on thep, -ordered RTHIA shower.



a+b — a+r + bwhich we shall use for dipole-antenna branchings throughour of these delta
functions embody overall momentum conservation,

8 (pa+pr+po—pa—p3) (6)

The last two delta functions specify the global orientatidrihe plane spanned by the three daughter
partons in the center of mass of the parent dipole (the biaggiane), relative to the axis of the parent
dipole, in terms of two angle$) and+. Parity conservation fixes one of them so that the branching
plane contains the parent dipole axis:

56 —10) , 7)

whered is the orientation angle of the parent dipole in a global dmte system. Thé function in

1 fixes the rotation angle of the daughters around an axis pdipdar to the branching plane. This
angle does have a reparametrization ambiguity away frorndhieear and soft limits and hence has the
following general form

5t — Y — aa) (8)

wherez[z is the other global orientation angle and the reparaméizéerme,; will be explored further
in section 5 (see also ref. [35]). For the time being, we natly that it must vanish in the soft and
collinear limits.

The remaining three integration variables we shall map itwariant masses,, = (pq + p,)?
ands,, = (p. + py)?, and the last Euler angle, describing rotations of the branching plane around the
parent dipole axis. The antenna phase space then takegltivgrig form:

1
dol! A (s, m2,m2) 2 d¢ di dcos
Ad, 1672 dsardsrog - A d cos ©)
= ewdsn 3 for ma—m; =0 5 =+t and 6=0, (10)
1672500 ar@Srby a b ) ad ’

where\(a, b, ¢) = a4+ b+ c* — 2ab— 2bc— 2ca is the Kallén functions!” is the invariant mass squared
of the branching dipole, ana, ; are the rest masses of the original endpoint partons. Tiumddme
represents the massless case W|th the two orientatioesthghd1) fixed as discussed above.

Immediately following the phase space in eq. (2) dfanction requiring that the integration variable
t,+1 should be equal to the ordering variablevaluated on the set ef+ 1 partons{p},1, i.e. that the
configuration after branching indeed corresponds to augsolscale of,,, ;. We leave the possibility
open that different mappings will be associated with défgrfunctional forms for the post-branching
resolution scale, and retain a superscript/8rio denote this.

Finally, there are the evolution or showering kernél${p},— {p}.+1), representing the differen-
tial probability of branching, which we take to have the daling form,

Ai({ptn—A{p}n+1) = dras(ur({P}tn+1)) Ci ai({p}n—{P}tnt1) (11)

where4ra, = g2 is the strong coupling evaluated at a renormalization sgefed by the function
1R, C; is the color factor (e.gC; = N. = 3 for gg — ggg), anda; is a radiation function, giving a
leading-logarithmic approximation to the correspondiggased evolution amplitude (that is, a parton
or dipole-antenna splitting kernel). When summed over iptssgverlapping phase-space regions, the



combined result should contain exactly the correct leadofgand collinear logarithms with no over- or
under-counting. Non-logarithmic (‘finite’) terms are inrtast arbitrary. They correspond to moving
around inside the leading-logarithmic uncertainty enpelo The renormalization scajez could in
principle be a constant (fixed coupling) or running. Agale point here is not to impose a specific
choice but just to ensure that the language is sufficienthegs to explore the ambiguity.

Together, eqgs. (2), (4), and (11) can be used as a framewortefining more concrete parton
showers. An explicit evolution algorithm (whether basedpamtons, dipoles, or other objects) must

specify:
1. The choice of perturbative evolution variable()
2. The choice of phase-space mappa}tidflrl/d@n.
3. The choice of radiation functions, as a function of the phase-space variables.
4. The choice of renormalization scale functjep.
5. Choices of starting and ending scales.

The definitions above are already sufficient to describe hasl &n algorithm can be matched to
fixed order perturbation theory. We shall later presentrs¢explicit implementations of these ideas, in
the form of the INCIA code, see section 5.

Let us begin by seeing what contributions the pure partowshgives at each order in perturbation
theory. SinceA is the probability of no branching between two scales,A is the integrated branching
probability Pr.anch- Its rate of change gives the instantaneous branching pilapaver a differential
time stepdt,, 1 1:

deranch (tna tn—i—l) d
= 1— A(tn,tn
dtn—l—l dtn+1 ( ( +1))

(1]
= Z/ d§£:15(tn+1 - tm({p}n—i-l))AZ({p}n—) {p}n—i-l)A(tmtn-H) )

(12)
This expression still contains an explicit integral overphlase-space variables except . The corre-
sponding fully differential distribution of the (time-cgded) branching probability is simply the “naive”
evolution kernel times the Sudakov factor,

Ai({ptn—=APtn+1)Altn, tny1) - (13)

We now seek the complete fixed-order expansion for the bligtan of an observabl®, as com-
puted by the Markov process. By definitiaf, is always evaluated on the final configuration, reached
once the Markov chain terminatestaty. A convenient physical interpretationf4 is as the hadroniza-
tion cutoff, t,,,4, beyond which the parton shower is not evolved; since thkigea would receive)(1)
corrections from hadronization beyond this scale, exetusivent properties can only be further probed
by switching to a non-perturbative description in that oeg{alternatively, stopping the shower and
evaluatingO on the partons at this scale is still an improvement over fixelr calculations). We will
return to a generalization of this notion in a later sectifum;now merely take,.q as a cutoff in the



evolution variable. This amounts to implicitly treatind eddiation (and hadronization effects) below
the cutoff inclusively, that is summing over additional foais below that scale.

Starting from any process, with differential phase space weighty, the parton-shower improved

distribution of O is:
dox

@ pS = /d(I)X wyx S({p}X,O) . (14)

The definition ofwx in the context of matching will be explored in the next settibut for the pure
showerwy is just the tree-level matrix element squared for the papentessX, possibly subject to
matrix-element-level cuts or constraints (egproduction restricted to a window around themass,

etc). S is a showering operator that generates the Markov chaitirgidrom a list of partongp} x. It
is defined by:

S(p}x,0) = 0(0 - O({p}x)) Altx,thad)
X + 0 exclusive above /thad

+ “’?‘iml / X+15tx+1—t ({phxs1)AEx tx ) A S({pY 1, O)

X + linclusive above /ty,,q
(15)
wheret x, the starting scale for each successive step of the evojuliepends implicitly ofp} x, the
integration ovet x; runs over all possible branching scales betwiegandty,,q, andA;(...) is defined
by eqg. (11). Expanding the Markov chain to a few orders wilubeful in the context of matching below
and simultaneously illustrates explicitly how the chainrkeo

Sx({p}x,0) =

6 (0 —O({p}x)) Altx,thaa)
X + 0 exclusive abové /t},.4

thad d@ .
+/ tX+1Z/ X+15 (txsr — I ({pY a1 At tx 1) Asl)

X [A(tX+1> thad)0 (O — O({p}x41)) (16)
X + 1 exclusive abové /t},q

thad .
+ [ ditxio / +25 (txto — I ({p}xr2)) Altxs1, txr2)Aj(...)
tx1 X+1

X{ A(tx+2:thad)0 (O — O{p}x42)) + - }] .
X + 2 exclusive abové /ty.q

Each underbraced term corresponds to the finite contrib@ition a specific exclusive final-state multi-
plicity (exclusive in the ‘smeared’ sense discussed abitw is, exclusive above scal€s.q = 1/thaq



but inclusive for smaller scales and hence still infrarefg)saT he first underbraced line describes the
shower-improved contribution to the distribution @ffrom ‘events’ which have no perturbatively re-
solvable emissions at all, the second contributions froenes/which have exactly one resolved emis-
sion, and so on.

This expression can now be expanded further, to any fixed andae coupling. Eack contains
one power ofy,, and the exponentials inside must also be expanded. The latter expansion gives rise
to higher-order corrections which do not increase the pamailtiplicity, and thus correspond to the
‘virtual corrections’ generated by the shower. The explitifactors, in contrast, represent the shower
approximation of corrections due to real radiation.

3 Matching

There are several possible definitions of what one might nigaimatching’, reflecting the general
concept of making two different asymptotic expansions oivargobservable agree in an intermediate
region; our first task is thus to establish a clear nomendatim a perturbative calculation, observables
will have expansions in the strong coupling. Each observable will start at some orgen the cou-
pling, and suffer corrections at subsequent orders. Asualus fixed-order calculations, we will refer
to a calculation of the first order for a given observable d@sdoef leading order (LO), a calculation
accurate to the following order as next-to-leading orddr@) and so on. Because of the presence of
infrared singularities, a given order in an observable reitleive contributions from perturbative ampli-
tudes (matrix elements) of different loop order. We willéaperturbative amplitudes of ‘bare’ partons,
complete with their infrared singularities, by loop ortleiThat is, we reserve the nomenclature LO,
NLO, etc. forobservable®nly, and that of tree-level, 1-loop, etc. fioratrix elementsnly.

Event samples as produced by a matched Markov-chain pdrtoves can be used to measure many
different observables. We therefore believe it would beleading to characterize them as being of
leading or next-to-leading order. More properly, they dtidae characterized in terms of which matrix
elements are included in the matching. In this paper, forrhitrary shower initiator proces” (the
parent process), we intend tifak' matched taX + n partons at tree level andk” + m partons at loop
level” (with m < n) should fulfill the following:

e It should resum the leading-color soft and collinear lopanis to all orders.

e Foranyj < n, it should reproduce the LO distribution of any observabl®gse expansion starts
at orderaZ, up to corrections of order! ™! and/orQ?, ,/Q%, whereQy,q is a hadronization scale
andQ x is a hard scale associated with theprocess.

e Fork < m, it should also reproduce any such distribution calculatgdLO, that is up to correc-
tions of O(aX*+2) andQ?,,/Q%.

The first point corresponds to the pure parton shower, thenskio CKKW- or tree-level matching, and
the third to a generalized variant of loop-level matchinghe sort implemented by M@NLO. Our
purpose here is to combine all three into a unified approachhich essentially any tree-level or 1-loop
matrix element could be incorporated with a minimum of effor

3We will, however, leave the use of and details of dimensioeglilarization and infrared cancellations implicit.
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As an example, considef decay. A pure parton shower resums the leading logarithatsyibh only
be “matched” toZ + 0 partons at tree level, as it will generically introduce esrof O(«ay) in any ob-
servable. If we match t& + 1 parton at tree level, we will correctly reproduce any lalggarithm-free
distribution as predicted using the — ggg matrix element (the only three-parton leading-order matri
element). If we match t& + 2 partons at tree level, we will correctly reproduce fourgestributions
with only O(a2) corrections, corresponding to the use of tree-level fartgm matrix elements such as
Z — gggq. Tree-level matching up to three additional partons comdbiwith 1-loop matching up to
two additional partons, will allow us to reproduce four-gistributions up to corrections @(a?), in
addition to resumming the leading logarithms, and so forth.

Let us fix an (arbitrary) observabl@ as representative of the distribution above, and consider a
computation of the cross section, or partial width as the ecaay be, differentially inD. We seek a
prescription that will yield a generated event sample fronicl distributions can be made that simulta-
neously fulfill all the three requirements above.

To specify our matching prescription, we introduce two &mbatching terms at each orderdn,
one for resolved radiation (R) and one for single unresobuedi 1-loop corrections (V). Our expression
for the matched-shower-improved (MS) distribution is then

do

40 hus Z / D 5 (Wi + 0§ )y) Othaa — D} x ) SUPIx ek, 0) . (17)

whereu&}rk is the tree-level matching coefficient fof + k partons andu( )k is the corresponding
virtual one. Denoting the couplings present in the pareotgssX coIIectlver byax, these matching
terms are of ordet x ¥ andaxa¥*!, respectively. One or both of them may be zero in the abseince o
matching. The operatds is the same as above, embodying an all-orders resummatiootiofeal and
virtual corrections in the leading-logarithmic approxiina

The tree- and loop-level matching termé( i andwgﬂzk may now be derived by expanding the
real and virtual terms of separately and, order by order, comparing the contributiom each fixed

parton multiplicity to the observabl@ as calculated in a fixed-order expansion:
do

2
_E : )
a0 IME —k_o/dq>X+k: ZE_OMX+k

50 — O({p}x+k) (18)
wherek still represents the number of legs ahbpresents the number of loops. It goes without saying
that matching at incomplete orders will involve some aabitress, which will be explored further below.

3.1 *“Matching”to X + 0 partons at tree level

Matching to “X + 0 partons at tree level” just means verifying that the lon@sker expansion of the
shower is identical to the lowest-order parent matrix eletniee., that all corrections generated by the
shower are of higher order. This is trivially true, but letvasify it explicitly as a first exercise. Only the
first line of eq. (16) is relevant, with the Sudakdvexpanded to unity,

d(g PS /d<I>X w{?y8(0 — O{p}x0) . (19)

from which we infer that the trivial conditiowgfirO = ]M)(?+O\2 ensures that the two descriptions match

at lowest order.
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3.2 Matching to X + 1 parton at tree level

At orderag, the parton shower (PS) generates only one term that cotgsiboX -+ 1 parton, i.e., taking
the real radiation term and expanding the Sudakov to unityi{e matching definition above):

had [Z]
s [y L [Nt / oL s — () A3 O — O{phxan)

X+O

(20)
where the preceding (trivial) matching has been used tcacembgﬂo by |M )(?10\2 and, as above;
runs over the discrete different branching possibilitees] A; contains the explicit factar,. To match
this to the tree-level X + 1)-parton matrix element, we first divide the complete mattément phase
space into a ‘resolved’ part at early (perturbative) timest,,q corresponding to the region populated
by the shower, and an unresolved part t,,q which we will treat later. In the region with resolved
perturbative radiation, we will compute the differencetie tlistribution of© by subtracting the shower
term from that of the relevant tree-level matrix element ME

ME [ d®x ML P60 - O({phxsn)) (21)
had

Subtracting the parton shower term, the matching term (MThia partial order, differentially in the
additional parton’s phase space, is simply

M2 = S e ({phxi) — ta) A )M (B} )17 (22)
mr ieEX—X+1
PS

wherei now runs over the number of possible contributing ‘parentifigurations for the phase space
point in question and th® function reflects the shower’s not producing any jets hattoen its starting
scale (cf. e.g. the discussion of ‘power’ vs. ‘wimpy’ showar ref. [36]). Above the starting scale, the
shower effectively has a dead zone, and hence the matchimgotomes just the unsubtracted matrix
element. We show this mostly to illustrate the principle.c8&se the theta function only affects the
hard emissions, and because the antenna radiation furegores all the infrared singularities of the
matrix element, the subtracted matrix element is finite lisiagle-soft or simple collinear limits.

For final-state showers, we can start the shower at a nominéhite resolutionQ gy = 1/tg — oo,
i.e. att = 0, obviating the need for the explici function (we defer a discussion of initial-state showers
to future work). We shall assume this to always be the caséhasddefine the equation for the matching
term by:

R 0 0)
MT = wld = MO — > A (Bidxr0)? - (23)
ieX—X+1

As before, the hatted momenfa appearing inM)(?J)rO are a shorthand for the momenta obtained by
operating on thé X + 1)-parton configuration with an inverse map of tyipe

{itx = {7 ({Prx+1)}x - (24)

From this discussion, it becomes clear how important it isie phase-space map to allow a rel-
atively clean phase space factorization such that the chasties and integrals in eq. (20) produce a
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manageable number of subtraction terms with simple bord@edow, we will construct the WcIA
showers explicitly with this goal in mind.

Before considering the unresolved and virtual correctideisus remark on a few noteworthy as-
pects which appear already at this level. We noted abovdedhding-log resummation only fixes the
soft/collinear singular terms ofl. Variations in its finite terms are an implicit source of urtaity
and indeed can be used to help estimate this uncertaintgditi@an to the standard techniques, such as
varying the scale choice in;). We see here how the matching explicitly cancels such tiamnis and
hence reduces the uncertainty:Afis made “harder”, then the shower generates more branchogs
the subtraction term in the matching equation also becoarger making the matching term smaller
and compensating the change. Note also that, in the dipiwdavaa formalism, there is no explicit
dependence on the choice of evolution variable at this pofleeq.(23).

An extreme case arisesAfis made so large that the matching term becomes negativenia segion
of phase space. This just means that the shower is overpinjuthat region relative to the matrix
element, and hence a negative correction is needed to ccaaitence it. The corresponding correction
events would have negative weights, but there is otherwiglinmg abnormal about such a situation.
Alternatively, one could switch to a shower re-weightinggedure as done inYAHIA and thereby
maintain positive event weights, but in the interest of diaiy we shall not consider reweighting in
this paper.

The overall normalization of the parent process under stlodys change, by an amount given by the
integral over the matching term. This includes an integver ¢he arbitrary finite terms id. However,
as we have yet to fix the corresponding virtual term, thisgostesponds to changes within the range of
tree-level uncertainty.

More importantly, this subtraction should in principle kesg to automate. Given any tree-level
matrix element, which these days can be easily obtained $tamdard tools like APGEN [11], COM-
PHEP/ICALCHEP [37], MADGRAPH [19], and others, the only additional ingredient neededsistarac-
tion term, whose most general form is a sum over lower-poitriom elements multiplied by evolution
kernels. As mentioned above, because the leading sintiesaot the resulting subtracted matrix element
are absent, it should be substantially easier to integfatgeatly over phase space than its unsubtracted
counterparts.

Finally, we note that the matching scheme described abambkésently incremental. With presently
available methods, a sample of unmatched events canniytleasnodified to produce a matched sample
(except by doing sophisticated reweightings). Insteasghnaptete new sample must be generated using
the matched generator. With our method, a pre-generatedf ssients need not be re-generated to
improve the matching; we need only generate an additionalfsents corresponding to the matching
term in eq. (23) and add it to the first, with the relative weighthe two samples fixed by the relative
integrated cross sections and the number of events in eaghlesaOf course, this only works to the
extent that the particulad chosen for the first sample is known at the time the second ggirierated.
The total cross section corresponding to the combined sawqlild again be different than that of the
original parton-shower sample, but the difference is ohhaigorder.

3.3 Matching to X + 0 partons at loop level

To include the fullO(a,) corrections to the initiator process, and thereby fix the normalization of
inclusive (X + 0)-parton observables (such as the inclusive cross sectitire ¢otal width) to NLO, we
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now turn to the relative order, corrections taX with zero additional (perturbatively resolved) partons.
Again, the parton shower only generates one term, the fimst ite eq. (16) with the Sudakov (egs. (2)
& (11)) expanded to ordef;:

Ps « — [aax M5 (0 - O({pkx) /“”éimlz/ X“étx =t ({p) ) A

(25)
which, as a consequence of the unitary construction of tbeveh is essentially identical to the real
radiation term in eq. (20). The only differences are an dierimus sign, and the fact that the observable
is here evaluated on the parent configurati&n (ather than on one with an additional emissigh+ 1).

We now wish to find the matching term that, together with the @r real radiation above, will
give the fullO(«y) corrections, possibly modulo power corrections in the perturbative cutoffy,,q.
To accomplish this, we need to include two terms from fixedeomatrix elements, one corresponding
to genuine 1-loop corrections and another correspondirigetoeal radiation below the hadronization
cutoff, which was left out above:

ME d®x 1| M), 26 (0 — O({p}x41)) /d<I>X2Re[ MO P5 (0 — 0({p}x))

t>thad
(26)

Let us re-emphasize that the extra parton in the first terrerie inresolved (inclusively summed over)
and hence the observable cannot really depend on it, up towenalbpower correction. Within the
required precision, the observable dependence is thusithe for all terms in egs. (25) & (26), which
we use to justify lumping them together below.

The matching term will again be defined by the remainder whitracting off the parton shower
contribution from the full matrix element. Differentiallp d® x the matching term becomes:

MT: wl) = 2ReMPMV) + M9 Z/ X“A )+ [ dox )
allt d(PX t>thad (27)
ol

= 2Re MO M) + |MOP Z/ 0N 41 + Oltx/tnaa)
allt d®x
where we again used the properties of a clean phase spamézaiion and extended the definition of the
subtractedvx ;1 from eq. (23) into the unresolved region. Because the mdtoiegrix element is free
of soft or collinear singularities, the last term is just ayeo correction, below our required precision.

Note that & function restricting the shower term to contribute onlyeafty has again been avoided
by letting the shower populate the entire phase space. dndhatching with additional partons in the
final state, a theta function similar to that in eq. (31) wél ppresent. We defer a detailed discussion to
future work.

As usual, the first two terms in eq. (27) are separately damrgnd a regularization must be intro-
duced before their (finite) sum can be evaluated. The diveesge which are universal, are usually reg-
ulated using dimensional regularization and the caneafiatan be performed in a process-independent
way. Only the finite terms must be computed anew for each neaegs. We thus believe that this part
could also be automated fairly easily, once the requireabp-matrix elements become available.

We see here how the NLO normalization of inclusive obsep&ld fixed. In the matching of the real
radiation term above, the LO normalization changed by thegiral ofw ("), a quantity which depends
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explicitly on the finite terms iM;. The same variation is subtracted in eq. (25). The final nbzateon
should accordingly be stable up to higher-order and notug@tive power corrections.

3.4 Matching to X + 2 partons (and beyond) at tree level

So far, we have discussed a matching prescription similtrabof the program M@NLO, though we
have here attempted to develop a formalism more readilyicgipé to the treatment of non-collinear
ambiguities and associated uncertainties. The next stegglircing these is to include further informa-
tion from tree-level coefficients deeper in the perturteseries.

As mentioned in section 2, we shall now limit our attentioretomlution variables which fulfill the
Markov property in the strictest sense, i.e. which do noehaw explicit memory of the event history.
It then becomes irrelevant whether a particylar + 1)-parton configuration was obtained by parton
showering fromX + 0 partons or from the tree-levéX + 1)-parton matching term. With a uniquely
defined “restart scale!’x 1 in both cases, the subsequent evolution also becomes tlge sam

In fact, the Markov property solves nearly the entire probfer us. We are interested in the relative
ordera? double real radiation termY + 2 partons) from a shower which we assume has already been
matched taX + 1 partons above. By virtue of this prior matching, the t@t&l+ 2)-parton contribution,
for a history-independent evolution variable, is just gibg the parton shower off the tree-leyef +1)-
parton matrix element, here differentially (X' + 1)-parton phase space:

thad aol
PS¢ ML [ s} R altss — (P} 2 Ai(-)3 (0~ O{p)xs)) 5 (28)

Ix+41 i

which, apart from the replacemeit — X + 1 and the restriction thatnot depend on (the Markov
property), is identical to the expression in eq. (20). Thmed-level matching term would then be,

[wial” = (ML = 3 A ML POH({phx2) — t({B)x01) (29)

where the momentum configuratidp} x 11 is defined by eq. (24) and th@ function expresses that
the shower evolution is ordered, i.e. that,» must come aftety ;. That is, the matching coefficient
w is obtained precisely by subtracting the leading singiiéarias expressed by the evolution kernel
(including also the finite terms). It is essentially the sase¢he subtraction term that would be used for
real emission in a next-to-leading order calculation, Bfsam the© function which here imposes that
nested antennae be kinematically ordered, as measuree Biidlwver evolution variable.

Because of the Markov property, this procedure can be regédat tree-level matrix elements with
an arbitrary number of additional emissions. However, @/ltile LL antenna functions capture all the
leading singularities, the full higher-order matrix elerteewill generally contain sub-leading singular-
ities as well. This leads to problems with unwanted contidms coming from matrix elements with
“too many” final-state partons. In general, all the follogriterms may appear (after integrating over
phase space),

2n
oy H Lym, 1112”_7”(@%/@%) ) (30)
m=0

where(@ 2 are scales in the problem ardd,,, are finite coefficients. For example, at each order
m = 0 is the double logarithmic (eikonal) term amad = 2n is the non-logarithmic (“ finite”) one.
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We can now be more specific. Since the shower generates an({etding-coloryn = 0 andm = 1
pieces exactly, the subtraction in eq. (29), beyane: 1, may leave pieces inside the matching term
which would be divergent were it not for the hadronizatiotofu If left alone, the excess contributions
with m = 2 and greater would lead to distributions of physical quattitvith overly large subleading
log contributions (divergent in the limit the hadronizatioutoff is removed), which is obviously not
desirable.

At n = 2, corresponding td.X + 2)-parton matching at tree level, these divergences woulébe r
moved in an NLL shower (where “next-to-leading” here meaitk vespect to the LL shower). Though
we do make some remarks aimed in this direction at the encegbaiper, we note that even if we were
able to present a complete solution, the same problem wbeldjust appear at NNLL level when at-
tempting(X + 3)-parton matching, and so on. To do tree-level matching beéyoe additional parton,
clearly, we need a prescription to consistently regulatestibleading logarithms in tree-leVel’ + n)-
parton matrix elements. The uncertainty they induce isiwithe stated accuracy of the calculation, as
they are higher order in both logarithms and powers of thengtcoupling.

One possibility is to nominally subtract the subleadingalithms as well in eq. (29), to the ex-
tent they are known. Although the LL shower wouldn't regetterthem, this procedure would at least
cure the problem without affecting the validity of the apgeh, up to subleading logarithmic correc-
tions. However, for tree-level matching 2 + many partons, the analytic form of all the corresponding
N™any] | terms would then have to be explicitly subtracted, cheasterkill considering that all we are
really after is just a regulator.

A simpler approach is to place explicit restrictions onhe,» phase space, cutting out the regions
where the subleading logarithms become important, foais by introducing cuts on parton—parton
invariant masses or transverse momenta. (This would b&aqut to the “matching scale” cut imposed
in CKKW approaches.) As a rule of thumb one should choose uh&de smaller than the hard scale
Qx (so as not to disturb the matching in the hard region) butstfficiently large thain(Q% /Q?2.;)
is not much greater than unity. A back-of-the-envelopenestie would be that roughly one order of
magnitude between the two scales could be a reasonablagiaoint.

Finally, an alternative approach is to use a Sudakov or Swdhilke function as a regulating fac-
tor. This smoothly suppresses unwanted configurationseveinihultaneously maintaining a fixed-order
expansion that begins at unity over all of phase space.

This gives the following general form for leading-order okahg with any number of additional
partons

R ~
vT s o, = Apbxsrn) (M

Y A, PO ) — D) < g

whereA is either the Sudakov-like function just mentioned or, raléively, just a® function for the
cut-off case mentioned above.

For automated approaches, tBefunction method is probably more appropriate for a staodal
matrix element generator, which would not have the showdakav readily available, whereas a more
integrated solution could more easily make use of the sneo@hdakov suppression.

How does this work in practice? To generate a sample of eveatshed ta: additional partons at
tree level, we should generate events with zero thrauglartons according to probabilities given by
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the subtracted matrix elements of eq. (31), and then evealgbk eonfiguration using the parton shower,
down toQyaq.

4 Shower Termination

The traditional approach in Monte Carlo parton-shower geioes is to cut the shower evolution off at a
low value of the evolution scalé)y,.q of O(1 GeV). At this point a transition to a different “evolutibn
is made, in the form of QCD-inspired phenomenological haidiation models which explicitly enforce
confinement and other non-perturbative features.

From the point of view of a perturbative calculation, thisaffiis simply an arbitrary infrared regu-
lator, below which partons are not resolved. In the conté&xh® ordered evolution of parton showers,
however, it represents a scale at which non-perturbatisgonents of the evolution become significant,
and hence at which point the perturbative evolution keraségl in the parton-shower approximation no
longer suffice to describe the physics of events; that isidfelution” should really contain large cor-
rections e.g. from pion resonances.

In the context of the WCIA code, we start by defining the infrared cutdff,.q in a more uni-
versal way. Because it simply represents a separation batvegions with “large” and “small” non-
perturbative corrections, respectively, itnst necessary to tie it to the perturbative evolution variable.
Any infrared-safe phase space contour will do. For instamee could easily imagine defining a
hadronization cutoff in terms of dipole-antenna masse$iepn a shower which uses transverse mo-
mentum as its evolution variable, as long as the former etgslall perturbative divergences and the
latter separates off all regions where hadronization ctimes are expected to be large.

We denote the phase space contour defining the hadronizattoff for ann-parton configuration

by @had({p}n):

B _J 1 in“perturbative” region
@had({p}n) - @(thad - thad({p}n)) - { 0 in “non-perturbative” region

(32)
wherety.g = 1/Qnaq is the value of the hadronization cut-off and its functiofaim (which may be
different from that of the evolution variable) is given by,q({p}). The Sudakov factor then takes the
form,

tond (4]
A(ZL/n7ZL/(>nd§thzaud) = H exp <_ dtn41 / %5@71—1—1 - t({p}n—l—l))@had({p}n-{—l)Ai(---) ;
ie{n—n+1} tn n
(33)

for brevity, we have rewritten the sum overin eq. (2) in product form. The perturbative shower
termination scalé.,q can now be taken to infinity without any problem, as the digarges are explicitly
regulated byO,,q. The probability that the configuration emits no pertunsiresolved) radiation at
all is,

S(tni1 — t({Ptns1))Onaa({P 1) Ai(-) |
(34)

A(tmOO?thad) = H exXp | — dtn+1/ il
. ¢ de®,
ie{n—n+1} "
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corresponding t@c,q = 1/tena — 0. This probability is non-vanishing. The matching equadiam
section 3 remain unaltered by the introduction of this hathation cut-off, except for the replacements
tena — o0 in the integral boundaries along with— ©y,,4 A.

The hadronization cut-off has traditionally been imposedeims of the evolution variable itself,
since, getting one job done well, it usually gets the otheredaimost as well. (A few additional cutoffs
are normally imposed, e.g. to avoid systems with very lovaiiant masses, but those are minor points).
This has the disadvantage of making the region defined to twe-fyerturbative” different from shower
model to shower model, and hence a hadronization model fitiddone shower cannot be used as is
with any other shower.

Decoupling the form of the hadronization cut-off, as pragabkere (34), from the shower parameters
(and in particular the evolution variable), would make tlo@+perturbative modeling more universally
applicable. This should be true up to the uncertainty intitarethe perturbative evolution itself.

This would also be a step towards making it meaningful to canaplifferent parton showers before
hadronization. This is in stark contrast to the presentsiin, where different parton showers are far
from directly comparable, each having its own cut-off ald@isgown contour. Fixed-order parton-level
calculations could then be replaced by parton showers ohtding hadronization and matched to fixed
order matrix elements as the “gold standard” of what is a gmtlrbative QCD calculation.

5 The ViINCIA Code

We now turn to a proof-of-concept implementation of the gleantained in previous sections, in the
form of the ViNCIA code (Virtual Numerical Collider with Interleaved Antem)aimplemented both
as a stand-alone program and as a final-state shower plag-RyTHIA8. We have also implemented
matching ofH — gg to first order at both tree and 1-loop level, according to tlacimning terms defined
in section 3. For the plug-in, this includes the possibitifyenerating negative-weight correction events
when the shower is overpopulating phase space.

The numerically implemented shower is based on an inteztéawolution (see e.g. ref. [3]) of
systems of color-ordered QCD antennae. The implementdigmussed here is limited to gluons, and
uses a strict dipole-antenna factorization [30]. (The nafiole factorization’ is associated with a
related NLO formalism due to Catani and Seymour [38].) ltisgrthe massless dipole phase space,
eg. (10), into the event Sudakov eq. (34) yields a produchdifzidual color-ordered dipole Sudakov
factors

A(tm tend; {p}n; thad) =

Texo (— [0 S [T s o Ai(..)
I I p n+1 Sar Srb 9 ( n+1 ({p}n+1)) had({p}n+1) 2 oli] )
; tn 0 0 0 2T 1674s

(35)
where the branching invariants, = (p, + p,)? ands,;, = (p, + p)? are illustrated in Fig. 1. We now
proceed to give explicit forms for each of the objects regpliiny section 2 for the definition of a shower.

5.1 Evolution Variable

We shall here consider only Lorentz-invariant evolutiomialales,Qr = 1/t. We have implemented
two different choices, corresponding to ordering in tramse momentum and in dipole mass (related,
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Figure 1: Left: illustration of the two original dipole amigae in a closed color-singley system in
the center-of-mass. Right: the system after one branckimgwing the branching phase space invari-
antss,, ands,,. The ¢ angle corresponds to rotations around the axis of the aliglipole. They
angle corresponds to a rotation of the branching systemtabroaxis perpendicular to the branching
plane. The “forbidden angled, always set to zero in our maps below, would correspond tdingt the
branching plane off axis with respect to the original dipole

but not identical, to parton virtuality) respectively:

. 2 _ SarSrb 2
Q2 = typel : QF = 4—— =4p) ArjapnE (36)
typell : Q% = 2min(sar,Sp)

where the normalizations have been chosen so that the maxivalue of the evolution variable is
always the dipole-antenna invariant magso avoid cluttering the notation, we now let the superdcrip
[i] be implicit). We will usually work with dimensionless veosis of these invariants,

Q? SarSrb

type | : y12 = =1 = ll?"27” = 4YarYrb
s s

typell : y4 = =L = 2min(ye,ym)

S

wherey; = s;/s, so that the maximal value af 11 inside the physical phase space is unity. A com-
parison of isoy contours for these two variables in the branching phasessigaghown in Fig. 2. Their
complementary nature is now readily apparent. The trassweromentum or RIADNE variable (type

1) will categorize a hard but collinear branching (close t® @f the axes) as harder than a wide-angle
but soft one (close to the origin), whereas the the dipolesra@dering (type 1) will tend to do the
opposite. This affects which regions act to Sudakov sugpndsch branchings during the evolution.
Because the antenna functidrcaptures the singularities of the matrix element compleéeld because
using either of these evolution variables integrates thditey singularities, thereby capturing the correct
leading-log behavior, they are both appropriate choicesvolution variables. (Further choices beyond
the two above are possible as well.) Likewise, the cohergaie@l radiation pattern approximated by
angular ordering in conventional parton showers are cagtimr the antenna function (see, e.g., [15]),
and hence coherence is independent of the choice of evolwigable to first order in this formulation.
We therefore do not include an “angular ordering” option.
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Dipole Branching Phase Space
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Figure 2: lllustration of the progression of the evoluti@riables over phase space for massless partons:
contours corresponding g1 =0.5(left), 0.1(middle), and 0.01(right). On tkeandy axes respectively
are the rescaled invariantg, = sq/s andy,, = s,;/s after the branching. The soft singularity is at
the lower left corner, and the collinear singularities lieng the axes.

Note also that the definitions in eq. (37) do not yet compyetbley the Markov condition. Because
gluons are indistinguishable, it is not possible to singletbe radiated parton without knowing the
branching history of the configuration. In other words, wkbowering off a three-gluon configuration
with an unspecified history (e.g. from the three-gluon miatgierm), we have several possible choices
of what “restart” scale to choose, depending on which of #mtgms we decide to call We emphasize
that this is not a problem for matching to first ord&r 1 at tree level and 40 at loop level), since the
history-dependence only has to do with whedtart scale to choose and hence, at the earliest, affects
the second emission. There is no fundamental difficulty iimdey variables which strictly obey the
Markov condition, but as already discussed in section 3,@stgone a detailed discussion of this aspect
to future work.

5.2 Phase Space Map

We must next choose a phase space map. The restriction tie-@iptenna phase space factorization,
egs. (5) & (10), already fixes most of thdunctions: all partons except the two involved in the siplgt
are just “copied” to thén + 1) configuration. Denoting the branching antenna paitihyeq. (6) implies

pi=0p; ¥V j¢li. (38)

The branching antenna pair, denoteaindb, are replaced as shown in fig. 1, by a trio of partons, denoted
a, b, andr. This replacement conserves energy and momentum, and akg@stons at their physical
masses. In the center of mass frame of the parent dipole,nigies are related to the branching
invariants as follows,

_ S_Srb'i'mg
Ea - 2./s 27
_ S_Sar'+mb
By = 5= (39)
E o s—sab—i-mg
o =

o5 -
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Our discussion here will focus on massless parteng,= m;, = m, = 0. Since the phase space
construction implicitly usesg functions requiring the partons to be on shell, the absolatees of the
momenta are equal to the energies for massless particles.

Staying in the dipole’s center-of-mass frame (DCM), therao freedom left to choose the relative
angles between the three daughter partons in the brancling:p

2FE. FE, + mi + mz — Sar

cos by = ,
o 2|pallpr|
2F,F 2 2
cosl,, = ab + Mg + M ~ Sab . (40)
2|pallpol

We still need to fix the orientation of the three daughter grastwith respect to the parent dipole.
This involves three Euler angles. As noted in section 2, dnihese is fixed by requiring that the
branching plane contains the dipole axis, or equivaleritht the normal to the plane be orthogonal
to the dipole axis. (This imposes parity conservation on2the 3 transition.) Another angle is just
the integration variable representing rotations around the dipole axis. While ttterds here chosen
isotropically we note that the matching terms will still{iatroduce anisotropies up to the order of the
matching.

The remaining ambiguity in the phase space map thus restslgmith the last Euler angle, the
one corresponding to rotations around an axis perpenditulédne branching plane. In the context of
ARIADNE [17], a choice was made which “least disturbed” neighbodipples. In order to explore the
consequences of this ambiguity, we have so far implemenhireg tiscrete possibilities for this angle,
defined by eq. (8) to be the angle between pastamd the original parton in the DCM frame,

E2
YARIADNE = 2+ B2 +bE§ (m—Oap) (41)
_ 0 3y Sar > Srb
wPS N { = eab }Sar < Srb } (42)
2 aa
Yan = L+ (43)
— Yrb
wherey,, in the last line is defined by:
Yrb
= —0 44
f Yar + Yrb ( )
po= AP~ F)Yartin/var - (45)
(1 B p)yab + 2fyaryrb
Yaa = — . (46)
2(1 - yar)

It is important on physical grounds théat — 0 smoothly as partom becomes collinear with parton
b (that is, ass,, — 0), so that partorn becomes aligned with parent partépand likewise when the
roles ofa andb anda andb are simultaneously interchanged. This ensures that thghtlerusystem
approaches the parent one in this limit. Otherwise, howekere are no constraints ain All three
alternatives satisfy this constraint.

“For quark antennae, Kleiss has shown that an optimal chaists¢35], but for gluon antennae the situation is lessrclea
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The first choice corresponds to the&k A\DNE map, just as our first evolution variable corresponds
to the ARIADNE one [17]. We hope this helps make comparisons between thagpimaches simpler.
The second corresponds roughly to conventional parton atsow which the non-radiating parton only
recoils longitudinally. (Since our antenna shower doesmrmaintain a clear distinction between which
parton radiates, the one with the largest invariant mads regpect to- is chosen to play the part of
recoiler.) The last choice is an example of a more generai;fdifferent choices of could be used to
explore it more fully.

5.3 Radiation Function

We have thus far implemented only the — g¢gg radiation function, for which we have used the
Gehrmann-Gehrmann-De Ridder—Glover “global” antennatfanfy [39]°,

1 2 Yar Yrb ) 8
0
as Proy = —(1- ar — Yr ( +— + — + = 47
f5Pasprsmy) = [( Yar =m)| St ) T3 (47)
—— ~—

“

soft”  “collinear”

In this formula, s is the mass squared of the dipole-antenna. “Global” meaaistie phase space of
each antenna is unrestricted by overlap with other anteina@ormalization and singularities are such
that the sum of contributions has the desired structure. I&ming (double logarithmic) singularities
correspond to two invariants vanishing (soft radiatiomjg arise only from one antenna. The single-
logarithmic (collinear) singularities receive contrilouts from two neighboring antenna.

We choose a second-order polynomial in the invariants ferfthm of the arbitrary finite terms,
imposing only the restriction that the antenna function bsitive definite. Combining) above with
the normalization implied by eq. (35), the radiation fuantfor the INCIA gluon shower becomes:

dras(ur) N, 2 b
A(pa, prpy) = # (1= Yar — yrb) ( + 2 yL) + Y Cap yartsy| + (48)
S YarYrb Yrb Yar a,3>0

where finite terms are parametrized by the constéhts. We can explore systematically the conse-
quences of making the radiation function harder or softevarying C,3; €.9., the special case corre-
sponding to thefd antenna function can be obtained by choosifig = 8/3. As discussed in section
3, matching absorbs these variations in the matching tdeagng only the uncertainty due to genuine
higher-order terms in the shower. We can thereby quantdyélduction in the associated uncertainty.

5.4 Renormalization Scale

We let the renormalization scale far; at each branching be given either by the evolution scaleeat th
branching,Q%, or by the invariant mass of the dipole being evolved,

; (49)

typel : 1 = KgQp
type2 : py = KpgVsli

°Note that we have changed the non-singular term from 2/3%or8lative to the original paper.
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where Qg is the evolution variable and we allow for an arbitrary potda Kr to be applied. For
example a factoK p = 1/2 applied to the type | evolution variable would yield a renafization scale
equal to the RIADNE definition of transverse momentum. By default we will useladp runninga,
but we leave open the option of studying fixed coupling or teap running as wefl

5.5 Starting and Ending Scales

For a parent process producing two partons in a decay, sublh-asgg which we shall consider below,
we choose the initial starting scale to be the full phaseepaso that the shower does not have a dead
zone. After branching at scalgy, the shower evolution continues from that scale. As alrelislyussed,
this does imply a slight dependence on the shower histortheasame configuration can in principle
be obtained by different branchings corresponding to idiffevalues of) . For showers off the three-
gluon matching term, which has no history and thus no unigueattached to it, we compute the scale
corresponding to each possible ordering and select thdeshaf these, as the matching is intended to
describe the hardest emission. The shower is cut off in fin@rad by an evolution-independent contour,
as described in section 4. The choices possible for theiuradtform of this contour are the same as
for the evolution variable, eq. (36). The history dependermuld be eliminated by implementing a true
Markov evolution; we leave further discussion of this tafet work.

5.6 Shower Implementation

Shower generation proceeds as follows. Given a startinig §&a a trial branching for each antenna
dipole is found by generating a random numisee [0, 1] and solving for@,,+ in the following “trial
equation”™

R = A(Qm@rﬁl)
s=Sar A

= exp l dQn+1 /dsar dspp 0(Qnt1 — Q({P}nﬂ))m ; (50)

where we use\ to signify that a nominally larger branching probability> A may be used to generate
these trials (for instance using an over-estimate’®f* > «(ur), no hadronization cutoff, etc); the
resulting distribution will then be corrected by subseduetos.

In traditional approaches, an equation@y1(Q.,, R) is obtained by analytically inverting eq. (50).
Since we wish to be able to choose arbitrary evolution véggahnd radiation functions, however, we
have instead used a more numerical approach.

For fixed coupling, the Sudakov factor only depends on onetifyathe ratio of the evolution scale
@n+1 to the starting scal€),,. Re-expressing the Sudakov factor in terms of dimensieniasos of
invariants,

A(ytrial) = A(l ytrlal

1=yar sA(...
= exp l dyE /0 dYar ; dyrs 0(yE — yE(ym«,yrb))ﬁ ,

Ytrial

(51)

8In the PyTHIA 8 plug-in, we rely on they, implementation in PTHIA, which likewise provides these choices.
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whereyr = Qg is the dimensionless evolution scale, as defined by eq. BB39ause the combination
sMA(...) is independent ofl, cf. eq. (48), this quantity depends only on a single vaeiahl;..
Accordingly, it is simple to tabulate it during initializah; we do so using a cubic spline, performing
the integrals inside the exponent either numerically, wia-timensional adaptive Gaussian quadrature,
or analytically, as a counter-check. (Using a running ciogptonstant introduces a dependence on
explicit scales, which we implement using a veto as desdrifetow.)

We may then solve the equatidh= A(ytrial) numerically fory,;. using the splined version of the
Sudakov and standard root finding techniques. These areutatigmally quite efficient.

The antenna with the largest trial scale is then selectetuftrer inspection. Ap angle is chosen
uniformly, and the remaining degeneracy along thegismntour (as shown for example in fig. 2) is
lifted by choosing a complementary invariant, which we ealiccording to the probability distribution,

qoA

z , 1 1_yar' , S[Z}A(...)
[z(yEa Z) - / dz / dyar dyrb 5(yE - yE(yar7 yrb)) 5(2 - Z(yar7 yrb)) 16 )
0 0 0 a

. B
= [ e, AL

— 52
Zmin(yE) 167T2 ’ ( )

where |.J(yg, z)| is the Jacobian arising from translatif@.,, v} 10 {yg, 2z} and zmin(yr) is the
smallest value: attains inside the physical phase space for a giyen Sincez merely serves as a
parametrization of phase space along anjig@ontour, its definition is arbitrary, so long as it is lingarl
independent ofj. Depending on the type of evolution variable, we chooss

typel : z=uywp ,
yp Yrb (53)
type Il @ 2z =max(yar, yrp)
leading to the Jacobian factdis| = 1/(42) and|Ji| = 1/2, respectively, and the phase space bound-
aries
typel : zmin(yp) = %(1 —V1-=9yE) , Zmax(ye) = %(1 +vV1I—-ygr) ,
54
type Il zmin(yE) = 3YE . max(yE) =1—2yp %)

where the type Il case should be divided into two branches vath y,,. > v,, and one withy,;, > y..,
each having the phase space limits given here.

Because thé, functions depend on two independent variablgsandz, we have not implemented
a splined approach for this task. Instead, we use analytitegrals over the two kinds of phase space
regions we are interested in. In generic form, these are

max
a N,

47

I (yp, 2) = [S(2) = S(2min) + K(2) — K(2min)] , (55)

with S(z) coming from the soft and collinear singular terms,

2 2 3
53 YE 8+yr 2z —122+432°—2z°+12Inz
typel : S — _z
P 15) = 103 32 16 al 6y !
typell : Si(z) Gy (—6(8 + 9%+ 22— zyp)z — 825 +3(2 —yp)(8 +¥%) In z) ,

(56)
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and K (z) coming from the finite polynomial,

typel @ Ki(z) = i%;c%)a

1 Py
typell : Ki(z) = 5> Capo— (—
2427 B+1\ 2

[B—a
Caaan+ZCa,@; ] ’
Ba @

(57)
) (Caﬁ - Cﬁa for Yar > yrb) )

with a, 3 > 0.

With the trial resolution scalgz and the energy-sharing fractiannow in hand, we can compute
yar @ndy,,. Together withy (chosen above), this gives the complete branching kinematve now
apply a veto, accepting the trial branching with probaypilit

Paccept - @had(Qhad({p}n—l-l) - C?had)OéS (MROEizin—i_l)) . (58)
S

Thatis, the branching is only accepted if it is inside theyndative region and then only with probability
as/a®* which reduces the effective coupling to the correct valpeitiue of the veto algorithm. (Note
that the event is not thrown away, it is merely the branchitnictvis vetoed.) In order to evolve the
system further, we repeat the steps above. The trial braga@tale becomes the new starting scale,
whether the above branching was vetoed or not.

The evolution continues until there is no perturbative ettoh space left (the equivalent of reaching
the hadronization cutoff in our terminology). In the cutrénplementation, we consider this condition
satisfied for a given antenna if ten consecutive trials gezted due to th€®,,,q condition.

5.7 Matching Implementation

In this paper, we restrict ourselves to matching at first ofaetree and loop level) for a scalar decaying
into two gluons via an effective point coupling. By first ordeatching we mean that, in addition to
wh = |M2(0)|2, we include the matching coefficieméR) andwév). For the decay proced$ — g¢g the
subtracted matrix elements are relatively easy to obtaiverGG@he Born squared matrix eIeméMéO) ?

for H — gg we find for the 2-gluon matching term at one loop

) = ol [8_67 g s (J\%) F2 G LR
and for the 3-gluon matching term
w? = %lg)m (8 — Fiog — Fog1 — F312) 72
— _8770‘3\(;5_)]\[0 (8 —3Co0 — (C10 + Co1) — C11 (y12y23 + y23y31 + Y31y12) + -+ ) ‘Méo)P )
(60)
where
Fup= > Copystlty - (61)

a,820
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Figure 3: Comparison between th& 1A 8 and MNCIA showers, with as similar settings as possible.
Inclusive 3-, 4-, and 5-jet rates for fully showered partevel events as a function of Durhak®-.
For VINCIA, two different choices of the evolution variable are showrar PYyTHIA, ¢ — ¢ was
switched off, as was gluon polarization effects. All curuse a 1-loop running coupling with (mz) =
0.12. The p, definition of the respective generator is used as both remloration scale im; and
hadronization scale, with the latter placedat,.q = 0.5 GeV.

We note that by taking’oo = 8/3 and all other coefficients equal to zero, the three-gluorchiiag) term
is zero. This means that the compléfe— ggg amplitude has been absorbed into the Sudakov factor.

5.8 Preliminary Results

We now turn to a comparison between results obtained usimgvaifferent parameter and variable
choices with the WcIA code (using the WcIA plug-in module with RTHIA8). Recall that we are
here studying pure gluon evolution in the fictitious decag etalar to two gluons. We thus intend these
results mostly for illustration of the method. We set thdatanass td 20 GeV and use a 1-loop running
as With as(myz) = 0.120. The hadronization scale is chosen tape= 1 GeV, cf. eq.(36), correspond-
ing to p 1 hag = 0.5GeV. In all cases we have switched off hadronization so agmahinentionally
obscure the differences between the partonic evolutions.

As a first sanity check, we compareNCIA to PyTHIA8. To make the comparison as direct as
possible, we make the following non-default choices ¥TRIA 8: an unpolarized pure-gluon evolution
is obtained by turning off gluon polarization effects ashasly — ¢g splittings, and we use;(myz) =
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0.120, as in VINCIA. The following relevant defaults were not changed: 1-laaming of«,, with the
Lund definition ofp |, p | eval [3], @s renormalization scale (the closest we can get to tREABNE p |
that is used by default in McIA), and the hadronization cutoff, ..,; = 0.5 GeV, again as similar as
possible to ours, though not identical. The plot in fig. 3 shake 3-, 4-, and 5-jet inclusive fractions
as a function of the logarithm of Durhaka (using the default PTHIA 8 Durham clustering algorithm).
Results are shown forHIA 8 (solid) and INCIA with two different choices of the evolution variable:
p -ordering (dashed) and mass-ordering (dot-dashed). FoAbaCIA evolution variables, the parton-
shower-like kinematics mapips, was used, an@y, = 8/3, i.e., the shower should correctly reproduce
the tree-level 3-gluon matrix element.

We draw two conclusions from fig. 3. Firstly, even with the ices defined above, MciA and
PyTHIA should still differ by finite terms in the radiation functenby the definitions of transverse
momentum and evolution variable, and by the kinematics mifips fact that large differences between
PYTHIA and VINCIA are absent in the jet rates is thus more than just a nice chessc on our imple-
mentation, it also shows that the standardri?iA gluon evolution closely reproduces tlig — ggg
matrix element, as contained in theN¢ 1A shower. Secondly, the absence of large differences between
the two different UNCIA showers underscores one of the main differences betwesemional parton
showers and dipole-antenna showers (see also [15]); inigudecantenna formulation, the radiation
patterns are intrinsically generated by coherent pairsadiops in a Lorentz-invariant way, and hence
the evolution variable no longer affects this behaviour it forder. The remaining genuine ambiguity
associated with the choice of evolution variable is a snffdce

Next, we turn to variations of the MciA shower itself. The plot in fig. 4 illustrates the distributio
of the (symmetrized) type-I resolution scale for threetqgrarconfigurations, obtained with unmatched
VINCIA for “soft” (all C,3 = 0), “standard” Coo = 2.66 ~ 8/3) and “hard” (oo = 10) variants.
For all curves, we user = Q1/2 ~ p,. The point@Q = 80GeV corresponds to the “Mercedes”
configuration. While the variations greatly affect the shapthe distribution, the peak position remains
fairly stable, here at around a tenth of the original mass.

To investigate how matching reduces this uncertainty, fehdws the two-dimensional phase space
population for three-parton configurations correspondinfjve different settings of the MciA plug-
in, from top left to bottom right: soft (unmatched), soft (ttlzed), standard, hard (unmatched), hard
(matched), where matched here refers to matching te- ggg at tree level. As in fig. 2, the dipole
phase space is represented as a triangle in the two phaseispatiantsy;; = s;;/s andy;; = s;i/s,
here symmetrized oveéy j, andk (because gluons are indistinguishable). The dark coldrarcenter of
the plots indicates low probability, with warmer colorgiter shades) denoting increasing probabilities
towards the corners and sides. In order to focus on the hatthteegion, the color scale has been forced
to white for1/NdN/dy;;dy;, > 2, thus “whiting out” the strong peaking towards the cornerd sides
of the triangle which would otherwise dominate. In the tow,roorresponding to the soft shower, the
matching fills in missing configurations in the near-“Merestregion. In the middle row, no matched
plot is shown, because settiig, = 8/3 corresponds to exponentiating the matrix element itsedf an
hence the shower already produces the “correct” resultisinctise. For the lower two plots, the shower
is significantly harder than the matrix element. In this ¢ése code responds by generating a matching
term with negative weight, effectively reducing the popiola of the hard region when “added” to the
unmatched events. The reduction in uncertainty for thigolable is evident by comparing the variation
from top to bottom on the left, with the variation on the rigfithe somewhat odd-looking contours are
merely an artifact of ROT's contour algorithm operating on binned histograms.) Weenbat the
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Figure 4: Type | evolution scale for the first shower branghisymmetrized ovea, r, andb: @@ =
min(Qr(a,r,b), Q1(r,b,a), Q1(b,a,r)) ~ 2p,, for H — gg with my = 120 GeV, showered with three
different choices of the finite terms in theiNECI1A shower, corresponding to “standard”y, = 2.66),
“hard” (Cpp = 10), and “soft” (Cyy = 0) variations.

dependence on genuine higher-order corrections of coarsains. We have here varied only the finite
terms in the shower, in order to focus on that particular ssuthe distributions shown here should not
be interpreted as indicative of the entire remaining uadet.

In fig. 6 we show the number of two-jet configurations as a fiencof the type-I resolution scale,
roughly equivalent to the Sudakov factor expressed in thigble, before (left) and after (right) match-
ing to the tree-leved — ggg matrix element. As could be expected, the uncertainty anahservable
is greatly reduced by matching to this level.

The thrust is a more complicated observable, whose disinibbis shown in fig. 7, again with (right)
and without (left) matching. We see that, in the region agibés to 3-parton configurations,— T <
1/3, the variation is indeed canceled, while in the region oféar — 7', accessible only to 4-parton
and higher configurations, some uncertainty remains (thauvigh 2.5M events generated per curve,
small statistical fluctuations also become noticeable éstiarply-dropping tail). We also note that the
behavior at smal{l — T) is very sensitive to the choice pfz, a point to which we plan to return in the
future. We have usedr = Q11/2 here.
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Figure 5: Phase space populatibhVd N /dy;; /dy;, for three-gluon configurations, symmetrized over
all combinations ot, 7, andk. Top left: the “soft” VINCIA shower off two-parton configurations, with
all C;; = 0. Top right: as in top left, but including the tree-levél — ggg matching term. Note how
the radiation “hole” in the center is filled in slightly. Mite the “standard” Wcia shower, which
absorbs the tree-levél — ggg matrix element correction. Lower left: same as upper lait, iith
Coo = 10, corresponding to a “hard” McIA shower. Lower right: as in the lower left, but including
tree-level matching. In this case, tlie — ggg correction is negative, reducing the population of the
central region.



29

[y

[y
4
\

Exclusive 2-jet fraction
o
oo

Exclusive 2-jet fraction
o
oo

Vincia 0.015 + Pythia 8.086 |
H. . aq.(

Vincia 0.015 + Pythia 8.086 |

H gg(.H uuuuuu 0.4 Y H-gg(m =120GeV

o
o
T T T
3
|
—
N}
D
D
D
-~
\>
L
o
o
T T T
Y
3
|
—
N
D
D
D
-~
\>
L

0.4 ;
: No matching 1 : 7 Matched: H-ggg (T) i
g — Std (C00=2.66) - i / — Std (C00=2.66) -

02 Hard (C00=10) ] 0.21 /A B Hard (C00=10)

v Soft (C00=0) 1 -/ Soft (C00=0) 1
i | ¥ 1
0o 20 40 60 0o 20 40 60

k;[GeV] k[GeV]

Figure 6: The number of exclusive two-jet configurations dsretion of DURHAM k. Labels are
identical to those in fig. 4, except that we have here usedfarelift renormalization scale choice,
ur = Qmu/2, translating tqur = my /2 for the first branching over all of phase space. The kinersatic
map should not lead to big effects and was setig; Apne fOr all plots.

6 Still Deeper?

In sect. 3, we discussed how to match a leading-logarithraitop shower to tree-level calculations
with an arbitrary preselected number of resolved partons. al&o outlined how to perform a similar
matching at one loop. In the previous section, we presentiest @anplementation of these ideas. While
there is still a great deal of work to be done in fleshing out mmglementing our approach, it is also
interesting to peer ahead, and ask: how would one go furthpeiturbation theory? How could one
further improve the accuracy of parton-shower predicttons

One can presumably proceed to higher fixed orders, matchifédNLO calculations by deriving
generalizations of the equations presented in sect. 3. @ergit examine such matching in any greater
detail. Instead, let us explore the possibility of resungrsnbleading logarithms, that is including not
only terms ofO(a” In?™2"~1 y) wherey is a large ratio of scales, but down@{a2+1 In?™27=1 ),

For this purpose, it is crucial to have a formalism that et the leading-logarithmic singulari-
ties exactly point-by-point in phase space. This is truehefantenna-based formalism described here
(and would also be true of showering based on the Catani-@aydipole formalism). To set up a
subleading-logarithmic shower, we must consider comastito the showering kernel itself. There are
two kinds of corrections: virtual corrections, and realigsion ones. The former still correspond to a
2 — 3 branching process, but with the branching probability cotaeg@ to one order beyond leading
in as. The real-emission corrections correspond to a new bragghiocess2 — 4 partons. Such a
branching can occur with the basic Sudakov, of course, bytiartwo branching steps. Here, it will
sometimes happen in one step. Indeed, the kernel that withatiely enter a modified Sudakov factor



w
o

"%\ F 1 T T T T T T T T T T T T T T T T T T T "%\ F 1 T T T T T T T T T T T T T T T T T T T

\F_L 10 = E \F_L 10 F oSG E

S E E S ES E

zZ | 1 Z | ~- 1

z | |z | . |

— 1 E E — 1 E \ E

10* £ Vincia 0.015 + Pythia 8.086 10* £ Vincia 0.015 + Pythia 8.086

I H-gg (mH:12C GeV) ] I H-gg (mH:12C GeV) ]

> I No matching i > | Matched: H-ggg (T) i

10°F — std (C00=2.66) 10°F — std (C00=2.66)

F - Hard (C00=10) ] F - Hard (C00=10) ]

Lok Soft (C00=0) | 13k~ Soft (C00=0) —
O 1 1 1 10.11 1 1 10.21 1 1 10.31 1 1 10.4‘ l il 10.5 O 1 1 1 10.11 1 1 10.21 1 1 10.31 1 1 10.41 \l__l___}_o_:5

1-T 1-T

Figure 7: Differential Thrustl(— 1) distribution. Labels are identical to those in fig. 4.

will not be simply the2 — 4 branching or antenna function, but rather that functiorthwhe iterated
2 — 3 contribution subtracted out. This excess represents thaimgecorrelated2 — 4 branching
probability. The required ingredients in a dipole-anteaparoach — 1-loop corrections to the basic
antenna, and the — 4 tree-level antenna function — are known from the develognoéan NNLO
fixed-order formalism [40].

We would further need a definition of the evolution varialfiattcan be evaluated on — n + 2
branchings, and that regulates all infrared divergencegbeém. We would also need an appropriate
phase-space mapping for the following factorization,

aoll, aall, gal
do,, d®,,_o d®s ’

which is now six- rather than three-dimensional. With theésgnitions and mappings, the NLL Sudakov
would presumably take the form,

(62)

ANLL(tna 75end) = /LL(tn» tend) X

"tend

eXP[— 5 dtni2 Z / "+25 tnr2 — 9 ({p}ny2))A 2—>4({P}n—>{P}n+2) ;

je{n—n+2}

(63)
whereA7; includes the 1-loop corrections to the LL kernel. We willdabe issue of fixing the finite
terms in the LL Sudakov factor upon matching to the NLL one arelated issue of maintaining the
positivity of the resulting NLL correctiond,_.4. The requirement of maintained positivity is crucial to
a probabilistic interpretation, such as the Markov chain.

Assuming these issues can be resolved in a satisfactoryanahe matching prescriptions appear
to generalize in a straightforward way. At ordey, nothing much changes, except for possible mod-
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ifications to the LL kernels. At relative order?, the shower now simply produces one extra term,
corresponding to a dire@ — 4 branching. It contains the proper subleading logarithmsdmstruc-
tion, and accordingly the tree-level matching equatior kale the form (differentially irld x4 »),

Wxio = !Mx+2\2—ZAglg(---)!MXH\Ze(t[i}({z?}xw)—tx+1)

oo _ (64)
ST AT (M POEN ({pYxya) — tx) ; t < thaa s
J

whereAgL3 includes 1-loop corrections amgl4 is the direct2 — 4 kernel, as discussed above.

At least from this perspective, the inclusion of explicit> n 4 2 branchings poses no fundamental
problem. In addition, inclusion of matching to 1-loop antb@p matrix elements, which will both be
modified by subtraction terms, would open the way to eveneggion at NNLO.

7 Conclusion and Outlook

We have presented a new general formalism for parton-shmsaimmations. The formalism allows
us to explore both the uncertainties inherent in the pastower predictions, and the reductions in
them possible by matching to fixed-order matrix elements. Ké&p track of the ambiguities of the
shower approach away from the soft and collinear regioewalg us gain a systematic estimate of
the associated uncertainties. The quantification of thesertainties, as well of their reduction by
matching, is novel.

We have outlined a general approach for matching to fixedramatrix elements, based on a sub-
traction approach which generalizes that of Frixione andh&e We also presented a specific algo-
rithm based on antenna factorization and dipole-antenowests, generalizing that of Gustafson and
Lonnblad. The formalism is simple and intuitive, but is maful enough to match fixed-order matrix
elements at higher multiplicity both at tree- and 1-loopelevn this respect, it provides a generaliza-
tion of both the CKKW and M@nNLO approaches. The (arbitrary) choice of non-singular temtké
shower kernel is explicitly canceled by the matching termisich allows us to quantify the degree to
which matching to a given order reduces the uncertaintyraitén parton-shower predictions.

We presented a generalization of the definition of the hadation cut-off that would make possi-
ble a more universal modeling of non-perturbative physalswing more meaningful comparisons of
different parton-shower approaches, as well as the impnewn¢ of fixed-order parton-level calculations
without reference to a specific hadronization model.

We have developed a proof-of-concept level implementdtiormatching of gluon showers in the
decay proces&él — gg including both real and virtual corrections, in the formlaétViNCIA code, and
have presented illustrative comparisons with and withaaticiing for a few benchmark distributions.

The next step will be to include quarks and perform a more cehgnsive study of botld —
gg and Z — qq fragmentation, exploring the properties of theNZiA algorithm and its relation to
existing approaches in greater detail. We plan to go intatgredetail on various theoretical aspects
in a future paper [31]. We believe that it should be straigftird to automate matching for general
lepton collider and decay processes matrix elements, traceviblution variables are generalized to be
history-independent. The inclusion of initial-state eddin and matching will be necessary to extend
the approach to hadron collisions. The formalism outlinetetshould be sufficiently general to make
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this feasible. Indeed, as we have discussed briefly, weveelievill be sufficiently general to open a
path to matching and showering deeper into the perturbegiyiene, both in powers af, and orders of
subleading logarithms.
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