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Abstract

We report on the inclusion of massless quarks into thecva time-like shower.
Comparisons are made to the dipole-antenna functions ns&@dlADNE. At
the phenomenological level, we also compare to tkeHAa 8 shower for
hadronicZ decays at/s = m, with similar choices foky, the hadroniza-
tion cutoff, etc.

1. INTRODUCTION

In this report we take the next step in the development of thec\A shower towards a full-fledged
parton shower, embedded into theT®iA 8 generator [1, 2]. Previously, we included only the gluonic
time-like shower [1]. By including massless quarks we camntshaking comparisons at LEP energies
and make guantitative studies for future linear collidefss the VINCIA shower is a dipole-antenna
shower, we can make direct comparisons with the dipoleraatéunctions used in RIADNE [3].

We also make a phenomenological comparison with theHPa 8 shower. For this purpose, we
choose the evolution variable, the hadronization boundad other parameters inINCIA as close as
possible to the default YAHIA 8 settings. In this emulation mode we compare a few repratent
distributions, both infrared safe and infrared regulatbdepvables, such as jet rates, thrust, and parton
multiplicities for hadronicZ decays at/s =

2. DIPOLE-ANTENNA FUNCTIONS

The most general form for a leading-log antenna functiomiessless parton splittingh — arb, can
be represented by a double Laurent series in the two bramahrariants,

(yar7 Yrvy S) = - Z a,f yar yrb ) (1)
7/6
where s
§=58, = Sqrp aNd y;; = f <1 2)

are the invariant mass squared of the antenna and the scalecthing invariants, respectively. In prin-
ciple, eqg. (1) could also be multiplied by an overall phasgcspveto function, restricting the radiation
to specific “sectors” of phase space, but we shall here usalksd “global” antenna functions which
are summed together without such cuts. Note that we havearéten the antenna function stripped of
color factors, to emphasize that this part of the discusisiomt limited to the leading-color limit.

The coefficient of the most singular terid, ; _;, controls the strength of the double (soft) sin-
gularity (the “double log” term) and the coefficiends ; ;>0 andC;>o 1 govern the single (collinear)
singularities (“single log” terms). These, in parton showsrminology collectively labeled “leading
log” terms, are universal, whereas the polynomial coeffisi€’;~ ;>0 are arbitrary, corresponding to
beyond-leading-log ambiguities in the shower or, equivilye different NLO subtraction terms in the
fixed-order expansion.



Co1-1][C1ip Co1 Co1n Cion Coip Co_1 [ Coo Cio Con
GGG
qq — qg9q 2 -2 -2 1 1 0 0 0 0 0
q9 — qqg 2 -2 -2 1 1 0 -1 5 -1 %
99 — 999 2 -2 -2 1 1 -1 al ¢ a1
q9 — q7'q 0 0 1 0 -1 0 1 % 1 0
99 — 9qq 0 0 % 0 -1 0 1] -1 1 :
ARIADNE
q7 — q9q 2 -2 -2 1 1 0 0 0 0 0
q9 — qgg 2 -2 -3 1 3 0 -1 0 0 0
99 — ggg 2 -3 -3 3 3 -1 -1 0 0 0
q9 — q7'q’ 0 0 1 0 -1 0 1] -1 1 1
g9 — 9q4q 0 0 % 0 -1 0 1 -1 1 %
ARIADNEZ (re-parameterization of &AADNE functions a la GGG, for comparison)
qq — qg9q 2 -2 -2 1 1 0 0 0 0 0
q9 — q9g 2 -2 -2 1 1 0 1) -1 0 0
99 — 999 2 -2 -2 1 1 -1 A

Table 1: Laurent coefficients for massless LL QCD antenﬁée—é arb). The coefficients with at least one negative index
are universal (apart from a re-parameterization ambiguitygluons). For “GGG” (the defaults in McIA), the finite terms
correspond to the specific matrix elements considered inlptparticular, thegg antenna absorbs the tree-level— qgq
matrix element [5] and thegg antennae absorb the tree-le#dl — gg — ggg andh® — gg — ggg matrix elements [6]. The

qg antennae are derived from a neutralino decay process [7].

We take the Gehrmann-de-Ridder-Glover (“GGG”) antennatfans [4] as our starting point. The
corresponding coefficients, s for the the five antennae that occur in massless QCD at LL dliected
in tab. 1. For reference, we also compare to the radiatioatitums [8—10] used in the RIADNE dipole

shower [3], which are also the ones used in a recent studyeb§thrPA group [11]. Note that the single
log terms have a slight ambiguity when gluons are involveidjrag from the arbitrary choice of how to
decompose the radiation off the gluon into the two antennpariicipates in. Nominally, the RIADNE
single log coefficients therefore look different from the G@Gnes. However, a re-parameterization of the
total gluon radiation, which we label MADNEZ2, reveals that the only real difference lies in the choice of
finite terms. Interestingly, while all the ®IADNE radiation functions are positive definite, the equivalent
ARIADNEZ2 one forgg — ggg is not and hence could not be used as a basis for a shower Marite C

In modern versions of AIADNE, gluon splitting to quarks has an additional pre-fadg(l +
s.i/53:), Wherec is the neighbor on the other side of the splitting gluon. Thisased on comparisons
toeTe™ — q¢'¢'q matrix elements and implies that the smaller dipole takesatyer part of the — ¢q
branching. Such effects are not included inNZIA at this point.

Our convention for color factors is that they count colorréeg of freedom. Their normalization
should therefore be such that, in the lafge-limit, they tend toN raised to the power of the number
of new color lines created in the splitting. In particular,

~ N2—1
Cr = F ~ 3 ©
Cq = N¢ 3.

For gluon splitting to quarks, the antenna shower expligtims over each flavor separately, hence the
relevant antenna functions should be normalized to onerfldyo= 1. (We use the hatted symbaf-
and 7' to distinguish this normalization from the conventionattpa-shower one in whicli’y = 4/3
andTr = 1/2))



The complete antenna functions, in the notation of [1, é)saifd (11)], are then

A(qq — q9q) = Amas Cr alqq — q9q) ,

A(qg — q99) = 4may Cralqg — q99)

Algg — ggg) = dmas Ne a(gg — 999) » (4)
Alqg — qd'q') = 4masalqg — q7q) ,

Algg — 9qq) = 4mas algg — 94q) ,

whereas = as(ugr) may depend on the branching kinematics. If so, we use a nérina- 1 for
generating trial branchings, which are then accepted withability o (1.z) at the point when the full
kinematics have been constructed (see below). The paisbibr .z currently implemented in WcCIA
are
type 0 : Kgr2p,
pr=19 typel : KrQg (5)
type2 : Kgr . /55,

where K is an arbitrary constang, is defined as in RIADNE with pi = Sarsrb/sazs [3], QF is the
evolution variable, and/s;; is the invariant mass of the mother dipole-antenna. Theuttéfaa 1-loop
running five-flavoras with up = p, (i.e., Type 0 above, wittKp = %) andags(myz) = 0.137 (the
default in PrTHIA 8, making comparisons simpler). Alternatively, both fixed 2-loop running options
are available as well [2]. For the pure shower, the deperelendhe renormalization scheme@f is
beyond the required precision and hence we do not insist d%definition here. Indeed, the default
value ofa,(myz) in PYTHIA 8 is determined from tuning to LEP event shapes. Though kkfr@nscope

of the present paper, we note that in the context of highgeramatching, one should settle on a specific
scheme, and should then see the dependence on both the seshdreeale choices start to cancel as
successive orders are included.

3. SHOWER IMPLEMENTATION

Brief descriptions of the WCIA switches and parameters are contained in the program’s Xfatn*
ual”, by default calledvi nci a. xm , which is included together with the code. This file also eorg
the default values and ranges for all adjustable parametdish may subsequently be changed by the
user in exactly the same way as for a standaraiH?A 8 run [2].

The default antenna functions are contained in a separate fi®) Ant ennae- GGG. xmi . An-
tennae that are related by charge conjugation to the oried lisb. 1 are obtained by simple swapping
of invariants (e.g.¢gq antennae are obtained from tjigones). Similarly, antenna functions that are per-
mutations of the ones in tab. 1, suchggs— gqg, are obtained by swapping. In view of the probabilistic
nature of the shower, all antenna functions are checkeddsitiyaity during initialization. If negative
regions are found, the constant te€ is increased to offset the difference and a warning is given,
stating the new value afj .

We use the PPTHIA 8 event record [2], which includes Les Houches color tags]2PRfor repre-
senting color connections. At every point during the eventwion, leading-color antennae are spanned
between all pairs of (non-decayed) partons for which therdalg of one matches the anti-color tag of
the other.

Shower generation proceeds largely as for the pure-gluee dascribed in [1], including the
choice between two evolution variables

. . 2 le o SarSrb
type | (p  -ordering) L= = 4 S Y arYrb
yE = ) . (6)

type Il (dipole-mass-ordering): vy = I = 2min(yar,yr)

S




Note that we do not include an “angular-ordering” option.cbmventional parton showers, which use
collinear splitting functions, angular ordering gives ad@approximation of the coherent dipole radiation
patterns we here describe by the antenna functibnsSince dipole-antenna showers udelirectly,
coherence is thus independent of the choice of evolutioiaiMarto first order in this formulation (see,
e.g., [8]).

For the phase space map an optimal choice for the functiamad bf the “recoil angle™);,
(see [1, 3]) away from the soft and collinear limit exists f@grantennae [14]. However, we have not
yet implemented this particular subtlety in then@1A code. The default choice for all antennae is thus
currently the same as for thg — ggg splitting in ARIADNE [3]

E2
YARIADNE = %) J:Eg (m —0ap) 7

with alternative choices listed in [1].

Trial branchings are generated by numerically solvingyes, in the equationk = A(ymal),
whereR is a random number uniformly distributed between zero arej and the trial Sudakov is [1,

eg. (51)]

N 1 1 1=Yar A arsy Jgr
A(ytrial) = €xp [ - / dyE /dyar dyrb 5(yE - yE(yam yrb))% ) (8)
Y 0 0 ™

trial

with A an overestimate of the “true” antenna function such that

A(yan yrb) = Sarb/i(yar» Yrbvs Sarbs 1) > SarbA(yam Yrbvs Sarbs 1) (9)

only depends on the rescaled invariants (for instance Ingusfixed overestimate of; = 1 here). Once
the full kinematics are known (see below) the trial branghtan be vetoed with probabilitly — A/A,
which by the veto algorithm changes the resulting distiiimuback to that of4, as desired.

During program execution, cubic splinesﬁfand A1 are used for the actual trial generation.
These splines are constructed on the fly, with the 2-dimeasighase space integrals in eq. (8) carried
out either by 2-dimensional adaptive Gaussian quadraA®€)) on A directly or (substantially faster)
by 1-dimensional AGQ on the primitive function along a camtof fixedy,,., defined by

Y2 A ,
Ia(yamyl»yQ) = dyrb(yLerb)
1 167
) B+1 B+1
asCi =, (y2) - Yo — Y1
_ oG Coiln (Z2) + Y Cup2—r—2t |, 10
e a;1 Yar a,—1 m IBZZO o, 6+1 ( )

whered; is the overestimate af, discussed earlie€; represents the color factors appearing in eq. (4),
and the phase space limigs » depend on the choice of evolution variable, see below. Qunitial-
ization, the program checks for consistency between thigtamand numeric integrals and a warning is
issued if the numerical precision test fails.

The antenna with the largest trial scale is then selectefdifdrer inspection. Ay angle distributed

uniformly in [0, 27| is generated, and a complementary phase space invarjasitzhosen according to
the probability distribution

z A(yar yrb)
I, = dz’ Nt el 11
(yEa Z) ZIniij{(?JE? z )‘ 1672 ) (11)

where|J (yg, z)| is the Jacobian arising from translatifig,,, v, } t0 {ye, z} andzmin (yE) is the small-
est valuez attains inside the physical phase space for a givenDepending on the type of evolution



variable, as defined in eq. (6), we chodse, 2} (Yar, Yrp) @S

typel ' yg=4YwrYrb, 2= Yrb
= |/l =1/(42) ; zmaxmin(yE) = 1 +vV1—ye), (12)
typell yE:2ym"72«':yrbf0rZ§1——E
YE = 2Urb » 2 =Yar + (1 — 2yp) for z > 1 - Jyp
= il = 1/2, zmin(uE) = 3u5 » Zmex(E) =2~ Syp (13

where, for type I, we have arranged the two separate branghe< y,, andy,, < y, one after
the other by a trivial parallel displacement in theoordinate. Using the Laurent representation of the
antenna functions, the analytical formsigfbecome

Coaln + Z — Zmi“(yE)ﬁ_a] (14)

Zmin (yE B 6 —«

X dscz - y_R ¢
type | : o > (4)

a=-1

aC; 1 .
type Il - [Ia (§yE, Zmin(YE), min(z, 1 — me(yE)))
1
+ 17 Gyt = 2 () max(z 1~ zuns) )| (15)

where thel,, is defined in eq. (10) angf is the primitive along a direction of fixeg}.,

+1 a+1
] (16)

o) 0o a
§ : Y2 Z Y
I(Z—‘(yrlh y17 y2) = yfb [0_176 ln (a) —|— CO(, fll
a=0

f=—1

4. NUMERICAL RESULTS

We now turn to a quantitative comparison betweefT#PA 8 and MNCIA for ete™ — Z — qq at

Vs = mz. We use a 1-loop runnings with as(mz) = 0.137 (the default in RTHIA 8), with a 5-flavor
running matched to 4 and 3 flavors at thand ¢ thresholds, but to eliminate the question of explicit
qguark mass effects we only allow and » quarks in theZ decay and subsequent shower evolution.
The evolution is terminated at;,,q = 0.5 GeV, and we have switched off hadronization so as not to
unintentionally obscure the differences between the partevolutions. Likewise, photon radiation is
switched off in all cases, and inyPHIA 8 we further switch off gluon polarization effects. FOm¢IA,

we use three different settings: transverse-momentunriogdevith “GGG” antenna functions, dipole-
mass ordering with “GGG” antenna functions, and transverseentum ordering with the “AIADNE”
antenna functions.

Fig. 1 shows the 3-, 4-, and 5-jet inclusive fractions as fions of the logarithm of Durhark,
using the default PTHIA 8 Durham clustering algorithm [2]. In¥AHIA 8, the 3-jet rate (the set of
curves furthest to the right) is matched to the tree-levphBon matrix element, whereas the GGG and
ARIADNE antenna functions in McCIA reproduce it by construction. The general agreement on-jbe 3
rate is therefore a basic validation of g — ggg antenna implementation. Higher-order effects appear
to make the mass-orderedNCIA slightly softer, which we tentatively conclude is due tcstliariable
favoring soft wide-angle radiation over high- collinear radiation (as illustrated by fig. 2 in [1]).

Similarly, the 4-jet fractions (the middle set of curves ig. fl) test the;jg antennae in WCIA,
with the GGG showers here slightly higher and thelADNE one slightly lower, in agreement with
the differences inyg antenna finite terms, cf. tab. 1. This trend becomes moreoprared in the 5-jet
fraction, since also theg — ggg function in ARIADNE is softer than GGG.
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Fig. 1: Inclusive 3-, 4-, and 5-jet fractions.

We may now study further distributions, as a representaikample of which we take thrust,
illustrated asl — 7' in the top row of fig. 2. The full distribution is shown to thdtlevith a closeup
of the regionl — T' < 0.1 to the right. Theregio.1 < 1 —-T < % is dominated by well-separated
three-jet configurations. In the tail,— 7" > % a matching tee* e~ — 4 jets would be required to
improve the accuracy. In the region beldaw- 7' = 0.1, however, this would not help. These are three-
jet configurations which are “nearly two-jet”. Here, the ¢éyand size of the Sudakov suppression is
essential, the first fixed order of which could be accessedlbpd matching, but since the fixed-order
expansion is poorly convergent in this region anyway, tlsaglieement is more likely to be cured by a
systematic inclusion of higher-logarithmic effects in gteowers (either implicitly, by “clever choices”
of evolution, renormalization, and kinematic variableghe LL shower, or explicitly, by a systematic
inclusion of NLL splittings). It should be noted, howevdrat hadronization and hadron decay effects

are important in the region below

2
(A few Gev)” QGeV) <0.01, (17)

1 -T ~1—max(zy) = min(y;;) <
mz

where thexr andy fractions pertain to 3-jet configurations. This complicatiee separation of genuine
non-trivial higher-log effects from non-perturbative exfts when comparing to experimental data at cur-
rently accessible collider energies.

Finally, as illustration of an infrared sensitive quantity the bottom row of fig. 2 we plot the
probability distribution of the number of partons produadthe shower termination for each of the
four models. The total number of partons is shown to the left the number of quarks (not counting
anti-quarks) to the right. The definitions pf in PyTHIA and in VINCIA/ARIADNE, respectively, are
not exactly identical, but they have the same infrared ingitbehavior [15], and hence a comparison
of the number of resolved partons with a cutoffiat,,q = 0.5GeV should be meaningful. Since
we have also chosen the samg values etc., the basic agreement between the models in s lo
left-hand plot in fig. 2 reconfirms that there are no largeetddhces between the showers, even at the
infrared sensitive level. AIADNE produces somewhat fewer partons, consistent with tReaABNE
radiation functions being slightly softer. On the rightadaplot, however, it is interesting to note the
first substantial difference betweerr 1A 8 and the \INCIA showers. The PTHIA shower produces
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Fig. 2: Top row: Thrustl — 7. Bottom row: Number of partons (left) and number of quarkgh) at shower termination,
with 2 massless quark flavors.

significantly fewer quarks than any of theNCIA showers, despite its being higher or comparable on
the total number of partons (cf. the left-hand plot). A samitifference between parton and dipole-
antenna showers was observed in an earlirradNE study [10], in which a comparison was made to
the virtuality-ordering of traditional parton showersislinteresting that we here observe the same trend
when comparing to theAHIA 8 shower which is ordered jm, . Finally, we note that this difference will
also have practical consequences; in the context of turfihngdronization models, the/MCIA showers

will presumably need a stronger suppression of non-peative strangeness production to make up for
the larger perturbative production rate, as comparedrttHix 8.

CONCLUSIONS

We have presented the inclusion of massless quarks into thelN¥ shower algorithm, implemented
as a plug-in to the PrHIA 8 event generator. The dipole-antenna radiation functimasexpressed as
double Laurent series in the branching invariants, witlr-specifiable coefficients. At the analytical
level, we compare the coefficients of the “GGG” antenna fionst [4] used by default in WcCIA to



the ARIADNE ones [3]. Modulo a re-parameterization of emissions fronogs, we find the double and
single log coefficients to be identical, as expected. Théefir@rms, however, are generally somewhat
smaller for the ARIADNE functions. This represents a genuine shower ambiguity twbam only be
systematically addressed by matching to fixed-order matements.

At the phenomenological level, we have also compared to yteidh parton-dipole shower in
PYTHIA 8 [2] for ete™ — Z — qq aty/s = mz. We find a good overall agreement, even at the level
of an infrared sensitive quantity such as the final numbeadions. For the number of quarks produced,
however, RTHIA 8 is markedly lower than any of theINCiA showers we have compared to here.
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