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Abstract

We present a simple alternative to the Crystal Ball function that has an exponential
tail stitched to a Gaussian core. It has one parameter less than the Crystal Ball function
and, where appropriate, offers more stable fits to peaks that continue into exponential tails.
The function may also be extended with two exponential tails on each side of the Gaussian,
and this has two parameters less than the corresponding double-shouldered Crystal Ball
function. This function has been used to model background and signal processes in a
recent Higgs pair production search and may be of versatile use in experimental physics
and other fields.

The Crystal Ball function, developed within the Crystal Ball Collaboration [6, 8], is a
continuously differentiable (C1) function that is often used as a fitting function in high energy
physics. It is typically used to model lossy processes like the reconstructed invariant mass of
a resonance from the energies and momenta of its decay products where some fraction of the
energies and momenta are lost to detection. The Crystal Ball function consists of a power law
tail stitched to a Gaussian core such that the function and its first derivative are continuous,
as described in Eq. 1. This results in 4 parameters: x̄, σ, α and n. The power law parameter
n appears in the formula as nn and this sometimes makes the Crystal Ball an unstable fitting
function. In this document, we report a simpler C1 function that may be used to model similar
peaks with long tails. It consists of an exponential tail stitched to the Gaussian core such that
the function and its first derivative are continuous.

f(x;α, n, x̄, σ) = e−
1
2 ( x−x̄σ )

2

for
x− x̄
σ

> −α (1)

=

(
n

|α|

)n

e−
|α|2

2

(
n

|α|
− |α| − x− x̄

σ

)−n
for

x− x̄
σ
≤ −α

The new function is described in Eq. 2 with the exponential tail on the lower side of the
Gaussian. x̄ and σ represent the mean and standard deviation of the Gaussian core, respectively.
k represents the decay constant of the exponential tail. Requiring continuity of the function
and its first derivative implies that k is also the number of standard deviations on the side of
the tail where the Gaussian switches to the exponential. We call it the “GaussExp” function.
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A similar function with exponential tails on both sides of the Gaussian core is expressed in
Eq. 3. kL and kH are the decay constants of the exponentials on the low and high side tails.
We call it the double-shouldered GaussExp, or the “ExpGaussExp” function.
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A recent CMS paper on the search for resonant pair production of Higgs bosons decaying
to two bottom quark-antiquark pairs [3] has used these functions to model the invariant masses
of background and signal processes. The GaussExp function with a high-side tail was used to
model the invariant mass of the background which consists of four candidate jets presumably
originating from bottom quarks and passes the event selection criteria of the analysis. The
invariant mass of the signal was modeled with the ExpGaussExp function.

1 Example Fits

This section contains an example of an exponentially falling distribution fit with the Crystal
Ball function and compared to a fit with the GaussExp function. It also contains an example
of a simulated H → γγ peak fit with the ExpGaussExp function and compared to a fit with the
double-shouldered Crystal Ball function. In both cases, the new functions perform at least as
well as the Crystal Ball function with less fit parameters and without instabilities related to the
Crystal Ball exponent n. These functions may therefore find more versatile use in experimental
physics and other fields.
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1.1 An exponentially falling distribution with a turn-on region
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Figure 1: (a) 1,000, (b) 10,000, (c) 100,000 and (d) 1,000,000 random data points thrown from
the GaussExp distribution and fitted to both Crystal Ball (blue line) and GaussExp (red line)
functions with maximum likelihood. The Crystal Ball fits converge in (a) and (b) but with
large uncertainties in n, and fail to converge in (c) and (d).

There may occur natural processes that are characterized in some variable with a turn-on region
that merges into an exponentially falling tail. If the turn-on region is sufficiently well modeled
with a Gaussian, modeling the tail with a power-law would not be appropriate and would result
in unstable fits and uncertainties on the parameters of the fit. We demonstrate this here with
1,000, 10,000, 100,000 and 1,000,000 random data points thrown within 0 and 30 from the
GaussExp function with x̄ = 5, σ = 1 and k = 0.5. Each of these distributions shown in Fig. 1
are fitted by maximum likelihood to both the Crystal Ball function and the GaussExp function
using the MINUIT fitting program [5] within the ROOT framework [2].
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With 1,000 throws shown in Fig. 1a, MINUIT converges with both the Crystal Ball and
GaussExp fits and reports a similar χ2/NDF . The Crystal Ball exponent n, however, is
returned with a 60% uncertainty. With 10,000 throws shown in Fig. 1b, the fitter still converges
with the Crystal Ball function but reports a worse χ2/NDF than the fit with the GaussExp
function. n is returned with an 86% uncertainty and this indicates that the Crystal Ball function
is poorly constrained. With 100,000 throws shown in Fig. 1c, the fits of the Crystal Ball and
GaussExp functions look similar by eye but the fitter reports a failure with the Crystal Ball
function. The Crystal Ball n is returned as 127 with an uncertainty of 40. Expressions like nn

in Eq. 1 for the Crystal Ball function make for an irregular likelihood function for high values
of n and this is the reason the fitter fails to find a stable maximum. With 1,000,000 throws
shown in Fig. 1d, the fitter fails with the Crystal Ball function. The n is returned as 113 ± 9.
A fit parameter that depends so sensitively on the number of events in the distribution cannot
be said to characterize the distribution.

The GaussExp fit, on the other hand, converges every time and returns fit parameters with
small uncertainties that are consistent with the parameters of the parent distribution in these
examples.

1.2 A signal peak
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Figure 2: Invariant mass of the Higgs boson in simulated H → γγ processes fit to the Exp-
GaussExp function (red line) with maximum likelihood. The plot on the left shows the fit on
a linear scale. The plot on the right shows the fit on a logarithmic scale. The solid vertical
line indicates the mean of the Gaussian core. The dashed vertical lines indicate the switch to
exponential decays. A corresponding Crystal Ball fit is also shown (blue line).

We simulate the H → γγ process in 13 TeV proton-proton collisions in Madgraph [1], shower
and hadronize events in Pythia [7], and reconstruct events from a parametrized simulation of
the CMS detector response in Delphes [4] to obtain a sample for fitting here. The two highest
energy photons are combined in these simulated events to reconstruct the Higgs invariant mass
peak as shown in Fig. 2. The detector response produces tails that cannot be fit with a simple
Gaussian.
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We fit this distribution with maximum likelihood to the double-shouldered Crystal Ball and
the ExpGaussExp functions. These fits are performed in the 100 to 150 GeV range. MINUIT
reports not just a higher χ2/NDF with the Crystal Ball function but also a failure to fit with
it. This can be traced back to the exponents nL and nH which are returned as 100 ± 120 and
63 ± 131, respectively. Large values of these exponents imply large derivatives in the likelihood
function and cause the fitter to fail. On the other hand, the ExpGaussExp fit is successful,
reports a χ2/NDF close to 1 and very small uncertainties in all its parameters.
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