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Abstract

An analytical method for fitting points in 3D space to a helical track hypothesis with least
χ2 is described. This method is developed in the context of fitting tracks in the trigger of the
CMS experiment where the 3D points correspond to energy deposits left by charged particles in
the CMS tracker in the presence of a 3.8 T solenoidal magnetic field. A method to compute the
track parameters directly from the 3D coordinates of the energy deposits and their associated
uncertainties, that requires minimal computation and may be executed rapidly on an FPGA
is described. Part I of the document describes this method for track hypotheses without an
impact parameter, separately in the barrel and endcap regions of the tracker. Part II describes
this method for the general case of tracks with an impact parameter. In both parts, we illustrate
the performance of this fitter with simulated single muon events in the detector. The spirit of
this analytical method can be refitted for other tracking detectors in high energy physics where
latency is of critical concern.
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The problem of fitting the track of a charged particle through a sequence of experimentally
measured points of energy deposits in 3D space is a common one in high energy physics, and
several solutions have been devised for it. Kalman Filtering is a common and powerful technique
that incorporates the energy loss of the particle as it passes through material media, but it requires
significant computation and cannot be employed in hardware-based triggers. A least-χ2 fit is
a simpler approach that sacrifices physical accuracy for the kind of speed required in hardware
triggers. In this paper, we describe a least-χ2 fit algorithm for the proposed track-trigger of the
CMS experiment as it prepares for the intense data-taking conditions of the High Luminosity
LHC (HL-LHC) with center of mass energies of 14 TeV, peak instantaneous luminosities of 5 ×
1034 cm−2s−1 and an average of 140 inelastic collisions per bunch crossing. Track-triggering involves
a sophisticated flow of information, from the detector readout to its transfer to the counting room
where energy deposits (hits) will be detected and tracks reconstructed to be triggered on. The
track reconstruction is broken down into two problems – one of finding broad “patterns” of hits
that correspond to a track from a bank of all possible patterns using an Associative Memory (AM),
and another of computing the track parameters from each selected hit pattern. This paper describes
a method for the final computation step.

A detailed description of the CMS apparatus can be found in Ref. [1]. Here, we are concerned
with the proposed geometry of the tracker for the HL-LHC period that will have 6 barrel layers
and 5 endcap layers of silicon detectors. Each layer will be composed of two sub-layers. The 3
innermost barrel layers will be composed of detector modules with strips of X µm width and X cm
length in the outer sub-layer and pixels of X µm width and X cm length in the inner sub-layer. The
3 outermost barrel layers will have both sub-layers composed of the aforementioned silicon strips.
Coincidence of two hits that fall within an window of δs = X strip widths are used to reconstruct
tracks at the trigger, and are called “stubs”.

For the case of a single charged track in the detector, the AM may identify it with a certain
probability and output a pattern that consists of 5 or 6 stubs. These stubs are characterized in
3-D space by (rmi ±∆rmi , φmi ±∆φmi , zmi ±∆zmi ), where i is the index of the stub in a road, and
m is to remind us that these are measured quantities. The uncertainties come from the dimensions
of the strips and pixels. rmi correspond to the known radii of the layers. The track hypothesis is a
helix parametrized by its radius of curvature (ρ), the impact parameter or the distance of closest
approach to the z-axis through the central axis of the detector (d0), the azimuthal angle subtended
by the track and x-axis at this point of closest approach (φ0), the z at the point of closest approach
(z0), and the pitch of the helix (cot θ). The track is analyzed in the r− φ and r− z planes in order
to arrive at parametrized equations for the track connecting φi to ri, and zi to ri, respectively.
Then, the residuals between the hypothesis φi and measured φmi , and between the zi and zmi , are
used to define the χ2 between the track hypothesis and the measured stub coordinates. This χ2

is minimized analytically in order to arrive at the best-fit track parameters. Part I of this paper
assumes d0 = 0, given that the track trigger may never be used to trigger on impact parameters,
that are typically of the order of 450 µm, for identifying the decay of b-hadrons. This simplifies
the solution considerably. Part II does away with this assumption and reveals the solution for the
most general track.
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Part I

1 Track Fit without Impact Parameter

1.1 Barrel Region

Figure 1: A schematic of a track (blue) in the r − φ plane, originating from (x =0, y =0) and
intersecting with the ith layer of the detector (red). The track, in this plane, is a circle of radius
ρ whose tangent at the origin creates an angle of φ0 to the x-axis. The location of the ith stub
hypothesis is specified by the radius of the layer it occurs in ri and its azimuthal angle φi.

A track with zero impact parameter is a circle in the r−φ plane that passes through the origin
(x =0, y =0), has a radius of ρ, and has a tangent at the origin creates an angle of φ0 to the x-axis.
This is illustrated in Fig. 1 where it is shown overlaid with the ith layer of the detector in the
barrel region. The intersection of the track with the ith layer of the detector creates the ith stub at
(ri, φi). The angle subtended by the chord of length ri from the origin to the stub at the center of
the track circle is called β. The angle between the location of the stub, the origin, and the center
of the track circle is called α. Equation 1 connects the angle α to the coordinate φi and the track
parameter φ0.

α =
π

2
− (φ0 − φi) (1)

Now, we can connect the ri and φi to the track parameters through the simultaneous Eq.2 and 3.

ri sinα = ρ sinβ (2)

ri cosα+ ρ cosβ = ρ (3)
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The angle β is eliminated between Eq. 2 and 3 to obtain the relation in Eq. 4.

cosα =
ri
2ρ

(4)

Eq. 4, along with the relation in 1, allows us to compute φi as Eq. 5. This serves as the
parametric equation for the track in the r − φ plane.

φi = φ0 − arcsin

(
ri
2ρ

)
(5)

To compute zi of the stub hypothesis as a function of ri and track parameters, that can serve
as the parametric equation of the track in the r − z plane, we eliminate α from Eq. 2 and 3. This
results in the relation in Eq. 6. The trigonometric half-angle relation 1 − cosβ = 2 sin2(β/2) is
useful in deriving this.

sin(β/2) =
ri
2ρ

(6)

Figure 2: A schematic of a track (blue) originating from (z0, 0) and intersecting with the ith layer
of the detector (red). The track, in this plane, is a sinusoidal curve of amplitude ρ whose tangent
at z0 creates an angle of θ0 to the z-axis. The location of the ith stub is specified by the radius ri
of the layer it occurs in, and its zi coordinate.

The angle β is proportional to the z value on the track. It is related z simply by a wavenumber
k as β = k(z− z0), where z0 is the track’s z-intercept. A physical interpretation of k can be sought
by projecting the track on the y−z plane as shown in Fig. 2. It is apparent then that k is connected
to the slope of the track at z0 as shown in Eq. 7. θ is the pitch of the track, and cot θ is found to
serve as a convenient track parameter.

∂ri
∂zi

∣∣∣∣
zi=z0

= ρk = tan θ (7)
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This allows us to write Eq. 6 in a form that computes zi as a function of ri and the track
parameters as shown in Eq. 8. The serves as the parametric equation for the track in the r − z
plane.

zi = z0 + 2ρ cot θ arcsin

(
ri
2ρ

)
(8)

Now, armed with parametric equations for the track in r−φ and r− z planes, we can write the
χ2 as

χ2 =

N∑
i=1

(
φmi − φ0 + arcsin(ri/2ρ)

∆φmi

)2

+

(
zmi − z0 − 2ρ cot θ arcsin(ri/2ρ)

∆zmi

)2

(9)

Figure 3: Taylor expansion of the arcsin(x) function around 0.

The ρ of a 2 GeV track in a magnetic field of 3.8 T is approximately 170 cm, while r6 of the
outermost barrel layer is 110 cm. With r6/(2ρ) ∼ 0.32, we can refer to the expansion of arcsin(x)
around 0 illustrated in Fig. 3 and conclude that equating arcsin(ri/ρ) = ri/ρ is sufficient in this
case. Thus, the equation for χ2 can be simplified to:

χ2 =

N∑
i=1

(
φmi − φ0 + (ri/2ρ)

∆φmi

)2

+

(
zmi − z0 − ri cot θ

∆zmi

)2

(10)

Now we can minimize the expression for χ2 in Eq. 10 against the track parameters ρ, φ0, cot θ
and z0 as shown below.
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∂χ2

∂φ0
= −2

N∑
i=1

(
φmi − φ0 + (ri/2ρ)

(∆φmi )2

)
= 0 (11)

∂χ2

∂(1/ρ)
=

N∑
i=1

(
φmi − φ0 + (ri/2ρ)

(∆φmi )2

)
ri = 0 (12)

∂χ2

∂z0
= −2

N∑
i=1

(
zmi − z0 − ri cot θ

(∆zmi )2

)
= 0 (13)

∂χ2

∂(cot θ)
= −2

N∑
i=1

(
zmi − z0 − ri cot θ

(∆zmi )2

)
ri = 0 (14)

We now solve these equations simultaneously for ρ, φ0, cot θ and z0 by making the following
convenient definitions. Here, N is the total number of stubs correponding to a track. Each quantity
below may be computed in one for-loop over the stubs corresponding to a single track in a matched
pattern.
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A =

N∑
i=1

φmi
(∆φmi )2

(15)

B =

N∑
i=1

1

(∆φmi )2
(16)

C =

N∑
i=1

ri
(∆φmi )2

(17)

E =

N∑
i=1

φmi ri
(∆φmi )2

(18)

F =

N∑
i=1

r2i
(∆φmi )2

(19)

G =

N∑
i=1

zmi ri
(∆zmi )2

(20)

H =

N∑
i=1

ri
(∆zmi )2

(21)

I =

N∑
i=1

r2i
(∆zmi )2

(22)

L =

N∑
i=1

zmi
(∆zmi )2

(23)

M =

N∑
i=1

1

(∆zmi )2
(24)

P =

N∑
i=1

(
φmi

∆φmi

)2

(25)

Q =

N∑
i=1

(
zmi

∆zmi

)2

(26)

The measurement uncertainties, ∆φmi and ∆zmi , are predetermined to be 1/
√

12 of the strip/pixel
width and length, respectively. Therefore, the quantities B, C, F, H, I, and M are constants and
need only be computed once and not for every track. These definitions allow us to express the
simultaneous equations 12-14 simply as follows.
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A− φ0B +
C

2ρ
= 0 (27)

E − φ0C +
F

2ρ
= 0 (28)

L− z0M −H cot θ = 0 (29)

G− z0H − I cot θ = 0 (30)

And we solve them to obtain formulae for the track parameters as shown below.

φ0 =
AF − CE
BF − C2

(31)

1/ρ =
2(AC −BE)

BF − C2
(32)

z0 =
IL−GH
IM −H2

(33)

cot θ =
GM −HL
IM −H2

(34)

The denominators of φ0 and 1/ρ are identical, as are that of z0 and cot θ. Furthermore, all
denominators are constants. This should simplify its implementation in hardware.

The χ2 of the fit is most usefully separated into χ2
φ and χ2

z.

χ2 = χ2
φ + χ2

z (35)

These two components are calculated as shown below in Eq. 36 and 37.

χ2
φ = P +

E

2ρ
− φ0A (36)

χ2
z = Q− z0L−G cot θ (37)

We can cut on χ2
z to reduce combinatorial backgrounds before cutting on χ2

φ. The reduced χ2

for the fit is given as shown in Eq. 38.

χ2

nDOF
=

χ2

N − 4
(38)

9



Part II

2 Track Fit with Impact Parameter

2.1 Barrel Region

Figure 4: A schematic of a track (blue) in the r − φ plane whose distance of closest approach to
(x =0, y =0) is d0, and that intersects with the ith layer of the detector (red). The track, in this
plane, is a circle of radius ρ whose tangent at the point of closest approach to the origin creates an
angle of φ0 to the x-axis. The location of the ith stub hypothesis is specified by the radius of the
layer it occurs in ri and its azimuthal angle φi.

A track with impact parameter of d0 is a circle in the r− φ plane as shown in Fig. 4. Its center
is located at a distance of d0 +ρ from the origin, and its tangent at the distance of closest approach
to the origin creates an angle of φ0 to the x-axis. This is illustrated in the figure, where it is shown
overlaid with the ith layer of the detector in the barrel region. The intersection of the track with the
ith layer of the detector creates the ith stub hypothesis at (ri, φi). In the figure, the angle subtended
by the chord of length ri at the center of the track circle is called β. The angle between the location
of the stub, the origin, and the center of the track circle is called α. Equation 1 connects the angle
α to the coordinate φi and the track parameter φ0.

We connect the ri and φi to the track parameters through the simultaneous equations below.

ri sinα = ρ sinβ (39)

ri cosα+ ρ cosβ = ρ+ d0 (40)
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The angle β is eliminated between Eq. 39 and 40 to reveal the relation in Eq. 41.

cosα =
d20 + r2i + 2ρd0

2ri(ρ+ d0)
(41)

This, along with the relation in 1, allows us to compute φi as Eq. 42.

φi = φ0 − arcsin

(
d20 + r2i + 2ρd0

2ri(ρ+ d0)

)
(42)

Given that the impact parameter, if any, will be of the order of 400 µm and the radii of the
track and the detector layers are of the order of 100 cm, we make the simplifying assumption that
d0 << ρ, ri, and write to first order in d0/ri Eq. 43.

φi = φ0 − arcsin

(
ri
2ρ

+
d0
ri

)
(43)

Now, in order to compute zi of the stub hypothesis in the r − z plane, we eliminate α from
Eq. 39 and 40 to reveal the relation in Eq: 44.

sin2(β/2) =
r2i − d20

4ρ(ρ+ d0)
(44)

This, along with the relation between β, the pitch θ and z0 shown in Eq. 7, allows us to compute
zi as shown in Eq 45.

zi = z0 + 2ρ cot θ arcsin

(√
r2i − d20

4ρ(ρ+ d0)

)
(45)

Again, we write this to first order in d0/ρ as Eq. 46.

zi = z0 + 2ρ cot θ arcsin

(
ri
2ρ

(
1− d0

2ρ

))
(46)

Now, armed with expressions for φi and zi in the r − φ and r − z planes, respectively, in terms
of ri and the track parameters, we can write the χ2 as

χ2 =

N∑
i=1

φmi − φ0 + arcsin
(
ri
2ρ + d0

ri

)
∆φmi

2

+

zmi − z0 − 2ρ cot θ arcsin
(
ri
2ρ

(
1− d0

2ρ

))
∆zmi

2

(47)

where φmi and zmi are the measured coordinates of the ith stub and N is the total number of
stubs in a pattern. As motivated in Section 1, we can replace arcsin(x) with x for tracks with
momentum greater than 3 GeV. Thus, an approximate version of the χ2 becomes

χ2 =

N∑
i=1

(
φmi − φ0 + ri

2ρ + d0
ri

∆φmi

)2

+

zmi − z0 − ri cot θ
(

1− d0
2ρ

)
∆zmi

2

(48)
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Now we can minimize the expression for χ2 in Eq. 48 with respect to the track parameters φ0,
1/ρ, d0, z0, and cot θ as shown below.

∂χ2

∂φ0
= −2

N∑
i=1

(
φmi − φ0 + ri

2ρ + d0
ri

(∆φmi )2

)
= 0 (49)

∂χ2

∂(1/ρ)
=

N∑
i=1

(
φmi − φ0 + ri

2ρ + d0
ri

(∆φmi )2

)
ri −

zmi − z0 − ri cot θ
(

1− d0
2ρ

)
(∆zmi )2

 rid0 cot θ = 0 (50)

∂χ2

∂d0
=

N∑
i=1

2

(
φmi − φ0 + ri

2ρ + d0
ri

(∆φmi )2

)
1

ri
+

zmi − z0 − ri cot θ
(

1− d0
2ρ

)
(∆zmi )2

(ri cot θ

ρ

)
(51)

∂χ2

∂z0
= −2

N∑
i=1

zmi − z0 − ri cot θ
(

1− d0
2ρ

)
(∆zmi )2

 = 0 (52)

∂χ2

∂(cot θ)
= −2

(
1− d0

2ρ

) N∑
i=1

zmi − z0 − ri cot θ
(

1− d0
2ρ

)
(∆zmi )2

 ri = 0 (53)

We solve this set of non-linear equations for the track parameters by making the following conve-
nient definitions. Each quantity can be computed in a for-loop over the coordinates corresponding
to the set of stubs for a track.
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A =

N∑
i=1

φmi
(∆φmi )2

(54)

B =

N∑
i=1

1

(∆φmi )2
(55)

C =

N∑
i=1

ri
(∆φmi )2

(56)

D =

N∑
i=1

1

ri(∆φmi )2
(57)

E =

N∑
i=1

φmi ri
(∆φmi )2

(58)

F =

N∑
i=1

r2i
(∆φmi )2

(59)

G =

N∑
i=1

zmi ri
(∆zmi )2

(60)

H =

N∑
i=1

ri
(∆zmi )2

(61)

I =

N∑
i=1

r2i
(∆zmi )2

(62)

J =

N∑
i=1

φmi
ri(∆φmi )2

(63)

K =

N∑
i=1

1

r2i (∆φ
m
i )2

(64)

L =

N∑
i=1

zmi
(∆zmi )2

(65)

M =

N∑
i=1

1

(∆zmi )2
(66)

P =

N∑
i=1

(
φmi

∆φmi

)2

(67)

Q =

N∑
i=1

(
zmi

∆zmi

)2

(68)

The measurement uncertainties, ∆φmi and ∆zmi , are predetermined to be 1/
√

12 of the strip/pixel
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width and length, respectively. Therefore, the quantities B, C, D, F, H, I, K, and M are constants
and need only be computed once and not for every track. These definitions allow us to express the
simultaneous equations 49-53 simply as follows.

A− φ0B +
C

2ρ
+ d0D = 0 (69)

E − φ0C +
F

2ρ
+ d0B + (d0 cot θ)G− (z0d0 cot θ)H − d0 cot2 θ

(
1− d0

2ρ

)
I = 0 (70)

J − φ0D +
B

2ρ
+ d0K +

(
cot θ

2ρ

)
G−

(
z0 cot θ

2ρ

)
H − cot2 θ

2ρ

(
1− d0

2ρ

)
I = 0 (71)

L− z0M − cot θ

(
1− d0

2ρ

)
H = 0 (72)

G− z0H − cot θ

(
1− d0

2ρ

)
I = 0 (73)

And we solve them to obtain formulae for the track parameters as shown below.

φ0 =
AB2 −BDE −BCJ +DFJ + CEK −AFK

B3 − 2BCD +D2F + C2K −BFK
(74)

1/ρ =
2(ABD −D2E −B2J + CDJ −ACK +BEK)

B3 − 2BCD +D2F + C2K −BFK
(75)

d0 =
ABC −B2E + CDE −ADF − C2J +BFJ

B3 − 2BCD +D2F + C2K −BFK
(76)

z0 =
IL−GH
IM −H2

(77)

cot θ =
GM −HL
IM −H2

/

(
1− d0

2ρ

)
(78)

A single expression for the denominator appears for φ0, 1/ρ and d0. Furthermore, it is a
constant. The denominator for z0 is also a constant. For cot θ, MI −H2 is also a constant, and we
may choose not to divide by (1− d0/2ρ) for greater speed and reduced accuracy. These features of
the analytical solution are expected to dramatically simplify its implementation in hardware.

The χ2 of the fit can also be computed from the aforementioned definitions, as well as the
χ2/nDOF , as shown below in Eq. 79 and 80.

χ2 = P +

(
φ20 +

d0
ρ

)
B +

F

4ρ2
+ d20K − 2φ0A+

E

ρ
+ 2d0J −

Cφ0
ρ
− 2d0φ0D

+Q+ z20M + I

(
cot θ

(
1− d0

2ρ

))2

− 2z0L− 2G cot θ

(
1− d0

2ρ

)
+ 2z0H cot θ

(
1− d0

2ρ

) (79)

χ2

nDOF
=

χ2

N − 5
(80)
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