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0.1 The KV Distribution

The Kapchinskij-Vladimirskij (KV) distribution is a self-consistent, two-dimensional distribution for
which the self-fields are quadratic (i.e. the forces are linear). The distribution is applicable to long
beams in transport systems where the external nonlinearities are negligible. But the distribution
is unphysical since it is a δ-function in phase space. Nevertheless, it is a useful tool in the larger
effort of understanding beams with space charge. Further, later we will see that the KV equations
are related to rms envelope equations which have widespread applicability and are not dependent
(or very weakly dependent) on the particular form of a distribution function.

A KV distribution function has the form

f(x, px, y, py) = δ(Q(x, px, y, py)), (1)

where Q is a quadratic form in (x, px, y, py). Obviously, a KV distribution transforms into a KV
distribution under a linear mapping. To simplify the discussion, consider an initial distribution that
is upright in phase space,

f o(x, px, y, py) = Cδ(
x2

σ2
x

+
p2

x

λ2
x

+
y2

σ2
y

+
p2

y

λ2
y

). (2)

Here σx, σy are related to the initial width of the beam in position space, and λx, λy are related to
the initial width of the beam in momentum space. Also, C is a normalization constant given by

C =
1

π2σxσyλxλy

. (3)

Later we will show that the space charge forces associated with a KV distribution are linear.
Assuming the external forces are also linear, the beam dynamics is governed by a matrix M . For
this discussion assume that the beam is propagating in a channel consisting only of drift spaces and
magnetic quadrupoles. The map M is of the form

M =


ax bx 0 0
cx dx 0 0
0 0 ay by
0 0 cy dy

 , (4)

where aidi − bici = 1. (We have assumed that the transport system contains only perfectly aligned
quadrupoles and no skew quadrupole component. A more general analysis is straightforward but
tedious.) The beam density is given by

ρ(x, y) =
∫ ∫

d~pf o(M−1ζ), (5)

or,

ρ(x, y) =
∫ ∫

d~pδ

[
(dxx− bxpx)

2

σ2
x

+ · · ·+ (−cyy + aypy)
2

λ2
y

]
. (6)

The integrations can be performed using the substitutions

q cos θ = px

√√√√ b2x
σ2

x

+
a2

x

λ2
x

− x(
bxdx

σ2
x

+
axcx
λ2

x

)/

√√√√ b2x
σ2

x

+
a2

x

λ2
x

q sin θ = py

√√√√ b2y
σ2

y

+
a2

y

λ2
y

− y(
bydy

σ2
y

+
aycy
λ2

y

)/

√√√√ b2y
σ2

y

+
a2

y

λ2
y

(7)
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Performing the integration, we obtain

ρ(x, y) =
1

πrxry

×

 1 if x2

r2
x

+ y2

r2
y
< 1

0 if x2

r2
x

+ y2

r2
y
> 1

 , (8)

where

r2
x = σ2

xa
2
x + λ2

xb
2
x, r2

y = σ2
ya

2
y + λ2

yb
2
y. (9)

That is, the density is a uniformly filled ellipse with boundary given by

x2

r2
x

+
y2

r2
y

= 1. (10)

By a similar calculation, it is easy to show that every two-dimensional projection of a KV distribu-
tion is a uniformly filled ellipse.

Next we need to compute the potentials associated with this beam. An exact analytical solution
is impossible because the beam envelopes, rx and ry, are functions of z. Following the standard
approach, we will therefore compute the potentials at position z by assuming, for the potential
calculation only, the rx and ry are constants. (Equivalently, we will neglect derivatives of the
potentials with respect to z.) One can show that the scalar potential for the interior of the beam
is given by

ψ(x, y) =
−λ
2πεo

[
x2

rx(rx + ry)
+

y2

ry(rx + ry)

]
(
x2

r2
x

+
y2

r2
y

< 1) (11)

where λ is the charge per unit length. Note that this satisfies

∂2ψ

∂x2
+
∂2ψ

∂y2
= − λ

πεorxry

(12)

as required. Also, using
∂2Az

∂x2
+
∂2Az

∂y2
= −µoρvo, (13)

we obtain

Az =
vo

c2
ψ. (14)

This factor will lead to the usual 1/γ2 dependence of the transverse space charge force.
Now we can compute the self-consistent Hamiltonian, i.e. one that contains both the external

fields and the self-consistent space charge fields. For a quadrupole channel, including the above
self-fields, we have

H =
1

2
(p2

x + p2
y) +

qg(z)

2po
(x2 − y2) +

q

povo

ψ − q

po
Az. (15)

It follows that

H =
1

2
(p2

x + p2
y) +

k(z)

2
(x2 − y2)−K

[
x2

rx(rx + ry)
+

y2

ry(rx + ry)

]
(16)

where

k(z) =
q

po
g(z), (17)
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and where

K =
qλ

2πεopovoγ2
o

(18)

is the so-called generalized perveance.
Using the properties of the linear transfer maps (lecture notes 01),

dM

dt
= JSM, (19)

where S is a symmetric matrix defined in terms of H2 according to

H2 =
1

2

2m∑
a,b=1

Sabζaζb. (20)

we can determine that the matrix S associated with this Hamiltonian is

S =


s11 0 0 0
0 1 0 0
0 0 s33 0
0 0 0 1

 , (21)

where

s11 = k − 2K

rx(rx + ry)

s33 = −k − 2K

ry(rx + ry)
(22)

(23)

Using the equation M ′ = JSM , we obtain 8 first order differential equations for the matrix
elements of M :

a′x = cx a′y = cy
b′x = dx b′y = dy

c′x = −ax

[
k − 2K

rx(rx+ry)

]
c′y = −ay

[
−k − 2K

ry(rx+ry)

]
d′x = −bx

[
k − 2K

rx(rx+ry)

]
d′y = −by

[
−k − 2K

ry(rx+ry)

] (24)

These can be combined into four second order equations,

a′′x + ax

[
k − 2K

rx(rx + ry)

]
= 0,

b′′x + bx

[
k − 2K

rx(rx + ry)

]
= 0,

a′′y + ay

[
−k − 2K

ry(rx + ry)

]
= 0,

b′′y + by

[
−k − 2K

ry(rx + ry)

]
= 0. (25)

Summarizing, we have shown that a KV distribution with initial value f o(ζ) evolves according to
f o(M−1ζ), where the matrix elements of M satisfy the above equations. Lastly, we can now obtain
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the KV envelope equations. Recall that r2
x = σ2

xa
2
x +λ2

xb
2
x, and similarly for r2

y. Differentiating these
equations twice with respect to z, and making use of the previous equations for the matrix elements
of M , we obtain, after some manipulation,

r′′x + krx −
2K

(rx + ry)
− ε2x/r

3
x = 0,

r′′y − kry −
2K

(rx + ry)
− ε2y/r

3
x = 0, (26)

where εx and εy denote the edge emittances

εx = σxλx,

εy = σyλy. (27)

These are the well-known KV envelope equations.
It is worth noting that we could have started this discussion by assuming a more general initial

distribution. For example, we could have considered

f o(x, px, y, py) = Cδ(
x2

σ2
x

+
2µx

σxλx

xpx +
p2

x

λ2
x

+
y2

σ2
y

+
2µy

σyλy

ypy +
p2

y

λ2
y

), (28)

where

C =

√
1− µ2

x

√
1− µ2

y

π2σxσyλxλy

. (29)

In this case, we would have ended up with the same KV equations as above. The only difference is
that the edge emittances would be given by

εx =
σxλx√
1− µ2

x

,

εy =
σyλy√
1− µ2

y

. (30)

0.2 RMS Equations

RMS envelope equations were first introduced by Sacherer and Lapostolle [1] [2]. An extensive
treatment of cylindrically symmetric systems was given by Lee and Cooper [3]. In many situations,
envelope equations provide a useful description of charged particle beams. As we will see below, the
2D equations look identical to the KV envelope equations. A key difference, however, is that the rms
equations are meant to be applicable to all distributions, not just KV distributions. Furthermore, it
is remarkable that, under certain assumptions (namely elliptical symmetry in the 2D case), the rms
equations are exact; there are no terms whose values depend on the type of distribution function
being modeled. They are the same whether one is modeling a KV distribution, a Gaussian distri-
bution, or any other distribution. Also, even in the 3D case, for beams with ellipsoidal symmetry,
they are only weakly dependent on the type of distribution. Unfortunately the rms equations have a
notable shortcoming: they contain terms that involve the rms emittances, whose time-dependence
are generally not known apriori . Thus, in this sense the rms envelope description of beams is not a
closed description. However, they are extremely useful in those cases where the emittances change
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little or not at all. Furthermore, since the rms equations involve only a small number of ordinary
differential equations, they can be integrated quickly, and they provide an excellent starting point
in the design and optimization of beam lines.

For the sake of this discussion, consider a particle beam propagating in a quadrupole channel.
Suppose that the beam is long compared with its transverse dimensions, and that we can neglect any
longitudinal variation when calculating the beam self-fields. We will neglect image charge effects,
and we will suppose that the beam is launched along the axis of a perfectly aligned transport
system. We will use the longitudinal coordinate, z, as the independent variable. The canonical
coordinates and momenta for the transverse phase space are denoted (x, px, y, py). Let the vector
potential associated with the quadrupoles be given by

Ax = Ay = 0, (31)

Az =
1

2
g(z)(y2 − x2), (32)

where g(z) denotes the magnetic quadrupole gradient. Let Ψ denote the scalar potential associated
with the self-fields and, neglecting transverse currents, suppose that the associated vector potential
is given by

Ax = Ay = 0, (33)

Az =
βo

c
Ψ, (34)

where βoc is the velocity on the design trajectory. Rather than working with the variables (x, px, y, py)
it is convenient to define dimensionless variables (x̄, p̄x, ȳ, p̄y) according to

x̄ = x/l, p̄x = px/po, (35)

ȳ = y/l, p̄y = py/po, (36)

where po denotes the momentum on the design trajectory (i.e. po = γoβomc) and where l is a scale
length. The Hamiltonian (in MKSA units) governing these variables is given approximately by

H(x̄, p̄x, ȳ, p̄y; z) =
1

2l
(p̄2

x + p̄2
y) +

lk(z)

2
(x̄2 − ȳ2) +

K/2

l
Ψ̂(lx̄, lȳ, z), (37)

where

k(z) = (q/po)g(z), (38)

and where K is the generalized perveance,

K =
qI

2πεopov2
oγ

2
o

. (39)

Also, Ψ̂ is related to Ψ according to

Ψ =
λ

4πεo
Ψ̂, (40)

where λ is the charge per unit length measured in the lab frame, λ = I/vo. Note that we have
expanded the relativistic Hamiltonian to second order in the phase space variables, with the excep-
tion of the scalar potential, as is the standard procedure for deriving rms envelope equations. For
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the remainder of the discussion of two dimensional systems we will set l = 1 m, and we will drop
the overbar on (x̄, p̄x, ȳ, p̄y). The Hamiltonain now appears as

H(x, px, y, py; z) =
1

2
(p2

x + p2
y) +

k(z)

2
(x2 − y2) +

K

2
Ψ̂(lx, ly, z), (41)

and the resulting equations of motion are

x′ = px, (42)

p′x = −kx− K

2

∂Ψ̂

∂x
, (43)

y′ = py, (44)

p′y = ky − K

2

∂Ψ̂

∂y
, (45)

where a prime denotes d/dz.

0.2.1 Derivation of RMS Equations

Let X and Y denote the rms envelopes,

X =
√
< x2 >,

Y =
√
< y2 >, (46)

where <> denotes an average over the distribution function. Consider, for example, the evolution
of X:

X ′ =
< xx′ >√
< x2 >

=
< xpx >

X
. (47)

Differentiating again, we obtain

X ′′ = −< xpx > X ′

X2
+
< x′px + xp′x >

X
. (48)

After some manipulation we obtain

X ′′ =
< xp′x >

X
+

ε2x
X3

, (49)

where the horizontal rms emittance is given by

ε2x =< x2 >< p2
x > − < xpx >

2 . (50)

Substituting Eq. (43), we obtain

X ′′ + kX +
(K/2)

X
< x

∂Ψ̂

∂x
> − ε2x

X3
= 0. (51)

All that remains is to compute < x∂Ψ̂
∂x

>. To do this, we will follow Sacherer [1] and assume
that the beam density has elliptical symmetry:

ρ(x, y) = ρ

(
x2

a2
+
y2

b2

)
. (52)
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Before continuing, we note some properties of ρ. Assuming that ρ is normalized to unity,

∫ ∞

−∞
dx dy ρ

(
x2

a2
+
y2

b2

)
= 1, (53)

it follows that
ab
∫ ∞

0
2πr dr ρ(r2) = 1. (54)

By a similar calculation,

√
< x2 > = aC,√
< y2 > = bC, (55)

where
C = πab

∫ ∞

0
r3 dr ρ(r2). (56)

That is, a and b are proportional to the rms beam sizes, with the same proportionality constant for
both.

Now consider Poisson’s equation,

∂2Ψ

∂x2
+
∂2Ψ

∂y2
= −λρ/εo, (57)

where, as mentioned previously, λ is the charge per unit length. Given the distribution (52), we
can write the solution of Poisson’s equation formally as,

Ψ = − ab

4εo

∫ ∞

0
ds

η
(

x2

a2+s
+ y2

b2+s

)
√
a2 + s

√
b2 + s

, (58)

where the derivative of η with respect to its argument is ρ. It follows that

< x
∂Ψ̂

∂x
>= −2πab

∫ ∞

−∞
dx

∫ ∞

−∞
dy

∫ ∞

0
ds

x2ρ
(

x2

a2+s
+ y2

b2+s

)
(a2 + s)3/2(b2 + s)1/2

ρ

(
x2

a2
+
y2

b2

)
(59)

Now make the change of variables (x, y) ↔ (r, θ),

r cos θ =
x√
a2 + s

,

r sin θ =
y√
b2 + s

, (60)

followed by another change of variables s↔ r′,

r′2 = r2

[
1 + s

(
cos2 θ

a2
+

sin2 θ

b2

)]
. (61)

Performing the integration of θ, and making use of the relation

∫ 2π

0
dθ

cos2 θ
cos2 θ

a2 + sin2 θ
b2

= 2πab
a

a+ b
, (62)
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we obtain

< x
∂Ψ̂

∂x
>=

−2a3b2

a+ b

∫ ∞

0
dr ρ(r2)2πr

∫ ∞

r
dr′ ρ(r′2)2πr′. (63)

Now define a quantity F (r) according to

F (r) = ab
∫ r

0
ρ(r2)2πr dr, (64)

where, from Eq. (54), F (∞) = 1. Then we can write

< x
∂Ψ̂

∂x
>= −2

a

a+ b

∫ ∞

0
dr

dF

dr
(1− F (r)) . (65)

This can be integrated to yield

< x
∂Ψ̂

∂x
>=

−a
a+ b

=
−X
X + Y

, (66)

where we have used Eqs. (55) in the final equality. It follows that the rms envelope equations for a
beam in a quadrupole channel are given by [1, 2]

d2X

dz2
+ kX − K/2

X + Y
− E2

x

X3
= 0,

d2Y

dz2
− kY − K/2

X + Y
−
E2

y

Y 3
= 0, (67)

where Ex and Ey denote unnormalized rms emittances. Since these are rms equations the factor in
the space charge term is K/2, whereas it would be 2K for the KV equations. In closing, we note
that the envelope equations are derivable from a Hamiltonian, Henv, where

Henv(X,Px, Y, Py) =
1

2
(P 2

x +
E2

x

X2
) +

1

2
(P 2

y +
E2

y

Y 2
) +

k

2
(X2 − Y 2)− (K/2) log(X + Y ). (68)

Lastly, one can use the envelope Hamiltonian to define depressed phase advances, µx and µy, of
a particle in an equivalent KV beam. Referring to the envelope Hamiltonian, we regard the phase
advances as coordinates and the emittances as a canonically conjugate momenta. (Since the phase
advance appears nowhere in the Hamiltonian, the emittance is constant, as expected). Taking this
view, we obtain

µx = Ex

∫ dz

X2
,

µy = Ey

∫ dz

Y 2
. (69)

For a KV distribution, these formulas apply to all the particles in the beam (since the forces are
linear). For other distributions they apply to the equivalent KV beam (i.e. a KV beam with
the same rms values). The phase advance equations can be integrated along with the envelope
equations.
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0.3 Particle Simulation Techniques

0.3.1 Overview

Particle simulation techniques are widely used in the computational cosmology, plasma physics, and
accelerator physics communities. In all three cases the interaction between the particles varies as
1/r2. What sets distinguishes them is the sign of the force and the boundary conditions. In regard
to cosmology, N-body simulations are shedding light on the formation of large scale structure
in the universe. In these simulations the force is the gravitational force, which is attractive. The
phenomenon on “clumping,” i.e. the formation of structure on a sub-grid scale due to the attractive
nature of the force, is an important issue in these simulations. In regard to plasma simulation and
accelerator simulation, the force between particles is the electromagnetic force, which is repulsive.
The main difference between these simulations is the boundary conditions and the externally applied
forces. The boundary conditions are quite different for, say, a tokamak, than for a linac. Also,
the external forces in accelerators have a unique and complicated dependence on the independent
variable, (e.g. the z-coordinate) due to the fact that beamline elements such as focusing magnets
and accelerating gaps are physically localized objects that are separated along the beamline.

Particle simulations are an important tool for designing high-current machines where where
the beam self-fields must be considered in addition to the externally applied fields. Two obvious
examples are high-current rf linacs and induction linacs. Though envelope calculations provide
some means of modeling these systems, that treatment cannot provide a detailed description of
the beam evolution, and an envelope description is really only useful when the emittance growth is
small (which is possible) or known apriori (which is almost never the case).

Suppose we want to model an intense beam in a quadrupole or solenoid channel. The self-fields
in this problem are essentially electrostatic. Though the beam itself might be moving at a relativistic
velocity, the motion of particles around the reference trajectory is not relativistic. Essentially, we
can solve the self-consistency problem by simply solving Poisson’s equation in the beam frame and
then doing a Lorentz transformation back to the lab frame. Thus, this problem is identical to the
treatment of quadupoles in lecture two, except that now there are self-potentials, Ψself and Aself ,
that have to be considered. The usual procedure is to expand the Hamiltonian,

H(X,Px, Y, Py, T, Pt) = − q
δl
Az

−1
l

[
(ωl

c
Pt + ωl

c
p̄g

t + q
δc
ψ)2 − (mc

δ
)2 − (Px + p̄g

x − q
δ
Ax)

2 − (Py + p̄g
y − q

δ
Ay)

2
]1/2

−dx̄g

dz
(Px + p̄g

x) + dp̄g
x

dz
X − dȳg

dz
(Py + p̄g

y) +
dp̄g

y

dz
Y − dt̄g

dz
(Pt + p̄g

t ) +
dp̄g

t

dz
T (70)

and keep one power of Ψself . Also, the vector potential associated with the beam has only a
z-component (for transport systems where the beam is moving in a straight line along the z-axis),
which causes the beam to have a self-magnetic field, Bθ. The vector potential can be found by
performing a Lorentz transformation, the result being

Aself
z =

βo

c
Ψself (71)

in MKSA units. Upon expanding Eq. (??), the two terms involving Ψself and Aself
z can be combined

into a single term. The result, for a quadrupole system, is

H(x̄, p̄x, ȳ, p̄y, z) =
1

2l
(p̄2

x + p̄2
y) +

lk(z)

2
(x̄2 − ȳ2) +

K/2

l
Ψ̂(lx̄, lȳ, z), (72)
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where
k(z) = (q/po)g(z), (73)

where K is the generalized perveance,

K =
qI

2πεopov2
oγ

2
o

. (74)

and where Ψ̂ is related to Ψself according to

Ψself =
λ

4πεo
Ψ̂. (75)

In the above, λ is the charge per unit length measured in the lab frame, λ = I/vo. For the remainder
of this discussion we will set the scale length, l = 1 m.

We can implement a time-stepping algorithm for the simulation of intense beams using the same
techniques as presented earlier for single-particle dynamics. In particular, we can use split-operator
methods, separating terms associated with the externally applied fields from those associated with
the self fields:

H = Hext +Hself (76)

The Hamiltonian, Hext, for the external fields was dealt with in lecture 2. In the linear approxi-
mation, we have already calculated the map, Mext, applicable to quadrupole channels. The new
feature in the simulation of intense beams is the term Hself ,

Hself =
K

2
Ψ̂(x, y). (77)

Since this depends only on coordinates and not momenta, we can write down the map immediately:

xfin = xin,

pfin
x = pin

x −
K

2

∂Ψ̂

∂x
,

yfin = yin,

pfin
y = pin

y −
K

2

∂Ψ̂

∂y
. (78)

In other words, the map Mself provides a “space charge kick” to the particles.
All that remains is to compute the scalar potential Ψ, or to compute the self-fields Ex and Ey

directly. This is the major task in implementing a particle simulation.

0.4 Grid-Based Techniques

The situation becomes considerably more complicated when we consider beams without azimuthal
symmetry, and various boundary conditions. If one wants to use a large number of particles, then it
is hopeless to use a direct n-body approach in which one adds together all the interparticle forces.
The amount of data and number of arithmetic operations required goes as O(N2), where N is the
number of particles in the simulation. Roughly speaking, a three-dimensional, double precision
simulation with 104 particles would require a few GBytes of memory (which is now possible), but a
simulation with 105 particles would require 100 times that amount. Fortunately, many algorithms
have been developed to solve Poisson’s equation that do not have the O(N2) dependency.

One approach, which will will describe here, is to place the charges on a numerical grid and
solve the field equations on the grid. The steps required are the following:
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1. Charge Deposition: Place charges on a numerical grid.

2. Field Solution: Solve the field equations on the grid.

3. Field Interpolation: Interpolate the fields at the particle positions based on values at the
grid locations.

The name “Particle-In-Cell” is used in many contexts, but it is often associated with a hierarchy
of schemes that begins with “Nearest Grid Point” (NGP), “Cloud In Cell” (CIC), and “Triangular
Shaped Charge” (TSC). We will describe the first two here. Further information can be found in
the literature [4].

0.4.1 Charge Assignment and Field Interpolation

In the Nearest Grid Point scheme, all the charge associated with a given particle is deposited on
a single grid point, namely the one nearest the particle, in the charge deposition phase. Similarly,
during the interpolation phase, the field at a given particle is taken to be the field at the grid point
nearest the particle.

In the 2D, Cloud In Cell scheme, the charge associated with a given particle is deposited on 4
mesh points that make up the vertices of a square or rectangle surrounding a particle. (Similarly,
in 3D, the charge is deposited on the 8 vertices of a cube.) The amount of charge deposited on
each vertex is called the weight, and the sum of the weights is equal to one. The same weights are
normally used during the interpolation phase to compute the interpolated field value at particle
positions.

0.4.2 Isolated Systems

Hockney’s convolution algorithm for calculating the potential of isolated systems is described in
[4]. Its main drawback is that it involves doubling the grid size in all dimensions. However, with
some effort the increased memory requirement can be partly ameliorated. The advantage of the
Hockney method is that, while some people move the boundaries “sufficiently far” from the charge
distribution so that they are not an issue, in the Hockney algorithm the boundaries are analytically
moved off to infinity. Also, since it involves the use of Fast Fourier Transforms, the method is
reasonably fast. We will demonstrate the validity of this approach in one dimension. The extension
to higher dimensions is straightforward.

Consider the problem of evaluating the sums

Yl =
N−1∑
n=0

hnXl−n l = 0, . . . , N − 1 (79)

where Xl is not periodic. Such sums arise when one discretizes the formal solution of the Poisson
equation in free space,

ψ(~x) =
∫
d~x′ ρ(~x) G(~x− ~x′). (80)

Here Xl−n corresponds to the Green function, hn corresponds to the charge density, and Yl corre-
sponds to the scalar potential. If Xl were periodic, Eq. (78) would be a circular convolution, and
we could use Fast Fourier Transform techniques to solve the problem in O(N logN) steps instead
of O(N2) steps.
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Hockney’s algorithm requires that all of the source terms, hn, reside in half of the mesh called the
physical region. We will show that we can replace Eq. (78) by a circular convolution that matches
(78) in the physical region; in the other half of the mesh (the unphysical region) the potential is
calculated incorrectly, and must be discarded. To see how this works, assume there are no sources
in the unphysical region,

hn = 0
N

2
≤ n ≤ N − 1. (81)

Define a periodic Green function χl, by

χl = Xl − N

2
≤ l ≤ N

2
− 1,

χl+N = χl. (82)

Now consider the sum

Ŷl =
1

N

N−1∑
k=0

W−lk(
N−1∑
n=0

hnW
nk)(

N−1∑
m=0

χmW
mk) 0 ≤ l ≤ N − 1, (83)

where W = exp(−2πi/N). We claim that

Ŷl = Yl 0 ≤ l ≤ N

2
− 1. (84)

Proof: By Eq. (80)

Ŷl =
N/2−1∑
n=0

N−1∑
m=0

hnχm
1

N

N−1∑
k=0

W (m+n−l)k. (85)

Now use the relation
N−1∑
k=0

W (m+n−l)k = Nδm+n,l+jN (j an integer). (86)

It follows that

Ŷl =
N/2−1∑
n=0

hn χl−n+jN . (87)

But χ is periodic with period N . Thus,

Ŷl =
N/2−1∑
n=0

hn χl−n =
N/2−1∑
n=0

hn Xl−n if − N

2
≤ l − n ≤ N

2
− 1 (88)

That is,
Ŷl = Yl (89)

if

−N
2

+ n ≤ l ≤ N

2
− 1 + n (90)

and, from Eq. (87),
0 ≤ n ≤ N/2− 1. (91)

But Eqs. (89) and (90) are clearly satisfied for

0 ≤ l ≤ N/2− 1, (92)

so the proof is complete.
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