Grid to Fabric Job Submission Interface in SAMGrid

A Theory with Applications

1 What this is all about
First, a clarification of terminology is in order. “Fabric” is a fancy word used to describe the collection of physical computing (as well as storage etc) facilities that comprises “Grid”. “Grid”, well, is defined elsewhere. “Grid to fabric interface” means a small collection of services that are implemented on the wide boundary between the Grid and Fabric levels. These services, inasmuch as job submission is concerned, allow for a Grid job, scheduled at the site at hand by the Grid scheduler, to be instantiated at the execution site as a collection of local jobs (known to the local batch system), be submitted and monitored, and, subsequently, for the small output (i.e. output files such as logs that are not destined for an industrial-strength data handling system such as SAM) to be propagated back to the Grid client site. In general, SAMGrid provides several types of services on the Grid-Fabric boundary; the present document focuses solely on the job submission.
This document described what appeared to be the most challenging step in the setup of a SAMGrid execution site. First, we present some ideas behind what we have done. Then, we detail the actual installation and configuration of the relevant pieces of the grid to fabric job submission; other pieces are straightforward and configured by virtue of the usual “upd install/ups tailor” commands for the packages comprising the SAMGrid suite.

2 What is the big deal? I could submit jobs before JIM!
Instantiation of a real Run II physics job (especially a multi-stage one such as Monte-Carlo), differs dramatically from that of a “simple” job consisting of pretty much a single binary performing a few KB input/output, however computationally intensive (the kind that we facetiously call “password crackers”). Hundreds, often thousands of small files must be supplied with the job in a manner that is efficient enough so as not to break local file transfer mechanisms. The fragile jobs shouldn’t interfere even when several of them are scheduled on a single node. The number of local jobs running in parallel must be determined so as to maximize the probability of job completion (within the batch system imposed boundaries) yet not to have too many small jobs producing too many small output files.
If you are a member of HEP community, then you are of course already aware of the above (and other) application-imposed complexities. Few people, however, realize how the Grid (even globally distributed) computing is complicated by many “peculiarities” of individual sites. In general, even if the site has been running real physics jobs locally for years, it may not be straightforward to add this site to SAMGrid (or any other serious Grid) for two principal reasons:

1) There seem to exist an uncountable multitude of local configurations in terms of directory structures, shared file systems, conventions for naming standard output/diagnostic files, designated mechanisms of intra-cluster small file transfers, etc, which is not managed by any “standard” Grid (or not) software. For example, your local users may be accustomed to having the standard output/diagnostic deposited in their “home area” upon job completion. This doesn’t quite work when the “grid” (i.e. foreign) user doesn’t have NFS-shared home. You can create a local account for such “grid users” and you can make it even NFS-shared, but do you really want them to leave behind junk files? Compare yourself to a ranger in a state forest – you want your campers to take their junk with them, and you want to provide, if necessary, trash bags and other tools to them.
2) Job submission by a machine such as Grid middleware imposes considerably tougher requirements on the site’s software services than job submission by a human scientist who has in her pocket the phone numbers of her friendly administrators. For example, all the batch systems we have used thus far managed to forget, at one point or another, what is actually running in them; whereas a human would simply shrug it off and re-issue the query command minutes later, the Grid machinery would have failed the job for no good reason. It is impossible for the local tools to guarantee 100% accuracy, but it becomes necessary to have wrappers that mitigate momentary lapses of memory and other transient glitches. As another example, if as much as a single node in the cluster is mis-configured to the point of being unusable, the batch system typically enjoys sending all the local jobs to the bad machine because it fails (completes) jobs too quickly and achieves “outstanding” turnaround; a human would easily modify his submission script to avoid this black hole effect but this is not straightforward to automate.

We urge you, our friendly site administrator, to understand these issues and help us overcome them.
3 Architectural perspective

Yes, there is even mini-architecture of the Grid-Fabric Interface job submission service suite:

[image: image1]
We now describe the roles of each block on the diagram.
3.1 Batch system idealizers

These, as the name implies, “idealize” the batch systems to make their interactions with the Grid machinery easier, by mitigating any imperfections and adding any “missing” features. Mitigation includes:

· retries in lookup commands for certain batch systems,
· generation of easy to parse output (batch system commands return output that’s usually too terse or too verbose),
· dealing with confusing exit status from batch system commands.
Added features include:

· grouping of jobs for all batch systems by an attribute such as generalized “project” (i.e. in SAMGrid rather than SAM sense),
· local scratch management on the worker nodes, i.e. setup and cleanup of the scratch space before/after user job execution,
· (optional) explicit preference/avoidance of nodes that are /are not well suited for the grid job(s) in question.

Scratch management deserves a special remark. Whereas in theory one can argue whether this service belongs in the batch system or not, (PBS, for example, knows nothing about it), we find it extremely useful and strongly recommend that the batch jobs run in their separate scratch directories, for reasons of performance and mutual isolation. All the computing facilities we have seen have worker nodes with a few GB scratch space which is seldom, if ever, used. For PBS, we provide a “special” scratch setup script that wraps user job and creates/deletes a subdirectory before/after the job in the location that must be configured (see below).

There is one idealizer provided as a template for each batch system with which we are familiar. Users are expected to look inside these and modify them to accommodate the local configurations by e.g. setting the full paths to correct values. These are located within the sam_batch_adapter package.

3.2 Batch system adapters

These adapters, located in the sam_batch_adapter package, were originally intended for use by the “sam submit” command, which in turn was intended to provide the correct interface to submit SAM analysis job to a batch system, and performing actions such as starting/stopping of a SAM project, see http://d0db.fnal.gov/sam_batch_adapter/sam_batch_adapter.html . In the expanded job management scheme, provided by the JIM and other SAMGrid tools, this package serves as the configuration tool for the job submission/lookup/kill commands, implemented in the aforementioned idealizers, i.e. the adapters for jobs coming from the Grid must be configured to use the idealizer appropriate for your local batch system.
The difference between “adapters” and “idealizers” is that the former provide uniform interface to the batch system, whereas the latter provide the scripts that actually correctly implement these interfaces. For example, the adapter concept contains an interface to lookup a job in the batch system, and an idealizer will actually perform the lookup, handle some of the errors, and return a string that has a chance of being parsed. In a broader sense, “adapters” include “idealizers”.
3.3 JIM Sandboxing

This service is provided within the jim_sandbox software package and will soon be documented therein, so we merely provide a brief summary. “Sandboxing” in SAMGrid refers to the ability to transfer and initialize all the relevant input files for the user job, as well as correct collection and return of “small output”, thus avoiding the poorly conceived and controversial “home area” concept for a Grid user on a cluster which he/she does not own. It allows for reproducibility of job results by providing independence from any pre-installed experiment software. For input sandboxing, a staged bootstrapping process is used whereby each subsequent stage uses results of the previous stage, the last and most advanced stage being retrieval of a small input dataset through the SAM data handling system.

3.4 SAMGrid job managers

These implement the services of grid job instantiation at the execution site, by means of mapping a logical grid job definition (with details provided by e.g. SAM Monte-Carlo request system) to set of local jobs submitted to the batch system. Our job managers come with the jim_job_managers software package and are installed into the Globus job manager area. When activated, they receive the job request via the standard GRAM protocol and perform multiple creation, submission, lookup and kill of the local jobs comprising the Grid job. In addition, they allow for XMLDB-based monitoring of Grid jobs which is at the heart of JIM Grid job monitoring.

3.5 Putting it together

The SAMGrid job managers, when receiving the Grid job request for the first time, calculate the number of the local jobs to be submitted and then prepare these local jobs using the sandboxing mechanism. File name stems for both standard output and diagnostics are chosen; local jobs will use different files as unique suffixes are appended. The result of the local job preparation is a self-extracting executable, i.e. an executable containing other files needed for the bootstrapping process. The job managers then consult the (properly configured) batch adapters to learn which command to use for job submission, and execute the command the appropriate number of times.

When the job is executing at the worker node, the sandbox bootstrapping rolls out and eventually passes control to the job wrapper, provided by the job managers from the head-node (i.e. local submission machine) for each known job type (D0 and Monte-Carlo, file merging, general SAM analysis, etc). These wrappers perform functions such as initialization of the experiment’s software “release tree” in the local scratch space etc, and finally pass control to the job script (which is either supplied by the Grid user as in the case with CDF MC or is standard for the given job type, such as the mc_runjob-based script for D0 MC).

4 OK, OK, let’s get down to it
Once again, as the SAMGrid execution site installer, the very first step you need to do is to configure local job submission. Do not try to proceed with JIM installation until after you have understood and resolved all the issues in this document and are able to submit jobs as described below.
4.1 Configure a batch system idealizer
Install (don’t configure it yet) the sam_batch_adapter package from KITS.

~/> setup sam_batch_adapter

~/> ls –l $SAM_BATCH_ADAPTER_HANDLER_DIR

Choose the one that looks like sam_XXX_handler.sh where XXX is similar to your batch system. Copy this file to a “JIM area”, rename if you like. Edit this file to ensure that all the paths are set correctly. If you are using PBS, make sure that the full path to the pbs_scratch_setup.sh script and the scratch disk path (on the worker node) are correct.
Now go back to the “JIM area” or sub-area thereof from where the local jobs will be submitted (this path will later be given to the configurator script for the jim_sandbox package) and test the idealizer. Be sure to do so as the same user as the one to which the Grid jobs are mapped! We can’t possibly list all the reasons why even though it works for user “pete” or “josh” or “ann” it may not work for user “samgrid” or whichever account you designate for Grid jobs! Execute a command like this:
/big_disk/samgrid/jim/> cp /bin/ls ./binary

/big_disk/samgrid/jim/> ./sam_pbs_handler.sh job_submit --project=test –executable=$PWD/binary –stdout=$PWD/out –stderr=$PWD/err –arguments=”-laF”
This should result, well, in a job submission. A second or so later, try:

/big_disk/samgrid/jim/> ./sam_pbs_handler.sh job_lookup --project=test

This command must return information about the job you have just submitted.

A few minutes later, when the job is finished, there must be a file with the name “out” in this directory!!! If there was a problem, check to see if the “err” file contains any message. If not, check if the batch system has sent you an email (obviously, this is not good enough for the Grid but is a means to troubleshoot local job submission). Most often occurring problems are PBS-specific:

· The batch system could not transfer the executable “./binary” to the execution node. It probably didn’t’ transfer “out” and “err”, either. Debug the pbs_rcp command or, if you must use NFS, make sure that /big_disk/samgrid/jim is properly NFS-exported.
· The scratch setup is mis-configured – you should see something like “/scratch: directory not found” in the “err” file. Go ahead and create a directory with the same name on all the nodes in the cluster and put the full path to this directory in the pbs_scratch_setup.sh script.

If you see the file “out” and it contains (aside from any debug messages) the listing of an almost blank directory on the worker node, congratulations! You are almost done!
4.2 Configure the batch adapter
Now tell the batch adapter that the way to handle your jobs is through the above newly hacked script. Use the “sambatch” command, available after setting up the sam_batch_adapter product. This command is extremely intuitive and straightforward, with solid run-time documentation (additional documentation is available at http://d0db.fnal.gov/sam_batch_adapter/sam_batch_adapter.html). Be sure to specify submit, lookup and kill commands (all implemented as the corresponding actions in the handler script) to the batch adapter. Your configuration should look similar to the following:
sam@samgfarm2:~> sambatch display --station=samgfarm
Station: samgfarm
 Default Adapter: grid
 Available Adapters: ['grid']
 Adapter: grid
 Available Commands: ['job kill command', 'job lookup command', 'job submit command']
 Command: /bin/sh -c '. /local/ups/etc/setups.sh;setup fbsng;${SAM_BATCH_ADAPTER_HANDLER_DIR}/sam_fbsng_handler.py job_kill --project=%__USER_PROJECT__ --localJobId=%__BATCH_JOB_ID__'
 Type: job kill command
 Known Outcomes:
 Exit Status: 0
 Outcome Description: Success
 Exit Status: 1
 Outcome Description: Failure
 Command: /bin/sh -c '. /local/ups/etc/setups.sh;setup fbsng;${SAM_BATCH_ADAPTER_HANDLER_DIR}/sam_fbsng_handler.py job_lookup --project=%__USER_PROJECT__ --localJobId=%__BATCH_JOB_ID__'
 Type: job lookup command
 Known Outcomes:
 Exit Status: 0
 Outcome Description: Success
 Exit Status: 0
 Expected Output: JobId=%__BATCH_JOB_ID__ Status=%__BATCH_JOB_STATUS__
 Exit Status: 1
 Outcome Description: Failure
 Command: /bin/sh -c '. /local/ups/etc/setups.sh;setup fbsng;${SAM_BATCH_ADAPTER_HANDLER_DIR}/sam_fbsng_handler.py job_submit --project=%__USER_PROJECT__ --executable=%__USER_SCRIPT__ --arguments=%__USER_SCRIPT_ARGS__ --stdout=%__USER_JOB_OUTPUT__ --stderr=%__USER_JOB_ERROR__'
 Type: job submit command
 Known Outcomes:
 Exit Status: 0
 Outcome Description: Success
 Exit Status: 0
 Expected Output: %__BATCH_JOB_ID__
 Exit Status: 1
 Outcome Description: Failure

It is now necessary to execute the test script, found in the package: $SAM_BATCH_ADAPTER_DIR/etc/testBatchAdapters.py. This tests both the current and the previous step of the installation. If your jobs execute too fast or too slowly for this test script, feel free to hack it as needed. If the script tells you that the job has executed and the standard output was correctly received, congratulations again! You can now return to the main SAMGrid manual to complete your installation.
If this is not successful, try to debug the problems with your site administrators. SAMGrid developers may be knowledgeable in many areas but they are really not the best people to answer your questions related to rcp/NFS, local account setup, batch system bugs, permissions on your local directories etc ;-).
5 Suggestions

Please send your suggestions (or) comments about this document to Igor Terekhov and Gabriele Garzoglio.
Last updated on Tuesday, August 10, 2004.

SAM Batch Adapters

BS Idealizers

JIM

Sandboxing

SAMGrid Job Managers

Local Batch System

The Grid

Grid to Fabric Job Submission

