Sam Test Harness

Use Cases.

The purpose of the test harness should be able to run automated checks on the health of
SAM.

There are two possible use cases for this:

1) Check the installation of SAM on a particular machine
It would be helpful to have a set of tests to run to verify that a new SAM station
is installed correctly, or to help find what portion of sam has caused an
installation of SAM on an existing station to fail.
The tests could run regularly and be an assistance to shifters.

2) Check the health of a complete SAM system

A complete SAM system (database, stations, enstore, dbservers, etc...) needs to
have systematic, well controlled set of tests, so that:

2.1)We can test new software releases
2.2)We can evaluate performance under controlled conditions

The tests would be triggered by developers, and run relatively rarely.

The original test harness addressed only the first of these use cases, but I see no reason
why a new one should not provide solutions for both.

A special test machine might want to try running ALL of the sam products
locally, including running a dbserver for instance, and run ALL the tests.

On a production station, however you may want to test that you can contact the dbserver,
and start a project, but you won't want to stop the station or waste diskpace retriving large
files.

On a machine running only a dbserver, you might want another set of tests.

These use cases can be satisfied simply by making it simple to configure exactly which
tests are run on a given machine.

Specification.

It is important that the test harness be easy to configure for each use case.
It should be easy to add new tests to the harness.

Tests should be able to run sequentially, in parallel, or after certain time delays from the
testharness starting.

Each test should produce pass/fail output, but for performance tests there is also a need
for it to be able to produce far more detailed information. Stderr and Stdout information
should be logged on running a test, for later retrival

A performance test should also log the performance information, separately from errors
and other output.

The test harness should be customisable to run on any station at any experment.

The set of tests that are performed should be selectable and configurable. A set of tests
can be stored and reused.

Configuration information should be stored separately from the set of tests.
Config info will be taken from the environment where possible
Other information will be stored in a file for reuse.

XML is an obvious choice for these configuration files.
Exactly what the output of the test harness should be is unclear.

There are several kinds of output the test harness could log:
1) information written to stdout by subprograms while running a test
2) information written to stderr by subprograms while running a test
3) performance and timing information
4) pass/fail boolean
5) Failure Reason Message
6) the configuration environment the test ran in
6.1) Machine name
6.2) Environment Variables
6.3) Test harness configuration
7) information written to log files while running a test (*)
8) Testharness specific debugging output (i.e. Not one of the subprograms)

Collecting information from ALL the log files of ALL the systems involved in running a
sam project is unmanageable since enstore, oracle, local and remote stations, dbservers
and other bits of code produce copious logs in different places. The test harness should
not attempt to parse other log files.

The output could be stored in an xml file. For each test, the test name, the configuration,
stdout, stderr, performance, environment and pass/fail information is written to the output
file. An xslt could then render only the necessary information desired for various users.

While running the test harness, only pass fail information, and results of performance
tests are written to the screen with explanatory information. Test harness specific
debugging info is written to a log file.

Tests:

This is a simple list of some of the tests I think the test harness should initally support.
The tests start at a very basic level. This is to aid diagnosis of faults

that might appear to be coming from a complex code change, but are infact

due to some misconfiguration or crashed server.

The set of tests pretty much specifies what the test harness should be able to do, so
without futher ado, here is a preliminary listing of some of the tests the harness should
be able to run.

1) Is ups installed?
2) Is upd installed, can we contact kits?

4) Is sam installed, can we set it up?
4.1) What sam configuration qualifiers are there?
For each configuration qualifier:

4.1.1) Can sam contact the name service?

4.1.2) Can sam contact the dbserver?

4.1.3) Are the databases up?

5) Is station installed?
What universes do we want to run in? For each universe:
Check node registered in database
Check groups registered in database
Check disks registered in database
For each station name:
Check name registered in database
5.1) Can sam start a station?
5.2) Can sam define a dataset using this station?
5.3) Can it start a consumer?
5.4) Does the project receive files?
5.4.*%) Performance recieving files.
5.5) Can sam stop the project?
5.5) Can sam stop the station?

**** Stuff on storing is a vague - I'm not totally sure what is

involved. In particular the stagers and optimizers probably need to be
tested, but I have no idea how this stuff works, or what to test. I need to
talk to Sinsia or Vicky about this, apparently. ****

6) Is FSS installed?
(on cdfdata016 or on this station)
6.1) Can sam start an fss?
6.2) Do we have enstore access?
If not: Can we contact the master station at fnal?
Is the master station at fnal working?
6.3) Can we store a file?
6.3.*) Performance storing files.
6.4) Can sam stop the fss?

7) Is gridftp installed?

7.1) Is the certificate uptodate?

7.2) Is the certificate in the gridmap file?
7.3) Can we copy a test file using gridftp?
7.3.*) Performance using gridftp

8) Can the station talk to enstore?

For each enstore server:

8.1) Can we copy from enstore?
8.1.*%)Enstore performance.

8.2) Can we copy to enstore?
8.2.*%)Enstore store performance

9) Is bbftp installed?
9.1)bbftp performance

**k*%* Again, ['ve no real idea what tests you might run on a dbserver.
10) Checks on remote, local DBServer including performance information, starting and
stopping?****

Stress Tests:

Can we define a dataset with 20,000 files in?
Can we start a project with this in?

Can we start N projects, for large N?

Implementation.

There is a question of whether we should run tests on SAM through the API or through
the command line. The command line would test a futher layer of the sam software, but
the usefulness of python exception handling vs simple return codes is a strong argument
for using the API wherever possible.

As I understand it, the command line tools are basically wrappers around the API,
however there is still some potential for errors here, so the command line tools could be
tested separately to the API.

Tests should be specified with their type, and when to run them. Tests can be exceuted in
parallel or sequentially by setting waitForTermination to true or false. You may also
configure the delay in ms from the previous event. Events are executed in the order in
which they are declared.

A test may declare a dependency on a previous test — it will run only if the dependency
test succeded.

<test 1d="0" type="startStation” waitForTermination="yes” delay="0" >
<testOption name="universe” value="dev”/>
<testOption name="stationVersion” value=”4 2 0 07/>

</test >

<test 1d="1" type="defineDataset waitForTermination="yes” delay="200"

dependency="0">
<testOption name=
<testOption name=

</test >

1

1

Defaults will be wait waitForTermination="yes” delay="0"

An event object will have a method to discover which parameters it accepts so that an
automated config tool can prompt for these when creating an event file. Events will heave
default values where sensible, and the defaults will also be discoverable and configurable
through the global config file.

There are also global configuration options. These are kept in a separate file to the events
It can be used to configure any default values in the testharness — e.g. Default universe,
default station version... Most of these should not need to be changed, but some (station
name, for instance) will require setup — these will be at the top of the file and marked
with comments.

Basic Class Diagram

TestFactony TestHamness

Tasts : List

getTestitestame: String testOptions: TestOptions) @ Test TestQutputs - List

runTests]) © woid

configureitestsFile: String,globalOptionsFile: String) : void

v

Test TestOptions cysess TestOption
delay :int ceuzers Options : Wector ______‘\;a.name : Btring
name :Sting [T --—= }qloballjptinns ; TestOptions walue : String
dependency : int addOptionfoption: TestOption) : woid description : String
10 int getOptionfname: String) : TestOption default : String
\waitForTerm : boolean getOptions() : Wectar gefwaluel) : String
getOptions?) : TestOptions gethescription() : String
gethesctiption() : String getMameq): Strirfg
runTest]) : TestOutput ZguseRy getDefault) : String
setOptiongloptions : TestOptions) : woid - TestOutput

stdOut : String Persistance
startStation T est stdErr : String

testF aszed : boolean writeObje ¢t : void

staTime : Time readObject’) : Object

stopTime : Time

peformancelnfo : String
testEnw : String
testOptions : TestOptions
globalOptions : TestOptions
failleszage : String vurite Objectiobj: Object) : void
read0bjectElement: String) : Object

FILPemsistance

Sequence description

1) The testharness loads and begins to parse the global config file into a miniDOM object

2) Each testOption tag is converted into a testOption object by the XMLPersistance class

3) The testharness checks that all required options are set, and raises an error if not,
which describes which option is missing.

4) The TestHarness loads and parses the events file into a miniDOM object

5) For each test, a testOptions object is created, and the testFactory is passed the name of
the test, allong with all options and depenencies.

6) The constructor of the test object checks the options provided, and raises an exception
if required options are not set.

7) Once all tests are parsed, the runTests method is called.

8) Prior to calling runTest, we first check the dependency, if this is not set, or the
dependency passed, we continue — otherwise we skip the test.

9) We then wait for the appropriate delay, and launch the test. The tests are run either in
the main test harness thread, or if waitForTermination is not set, in a separate thread.
The ouput is added to the TestOutputs list, and we move to the next test.

My plan of action:

1) Start exploring sam_user_api to discover how we might implement the above tests

2) Write a python script to run simple project.

3) Add modularity of tests.

4) Add configuration of which tests to run, and a main loop to run them.

5) Add xml output of test results and environment info for each test.

6) Add command line tests which parse output to produce yes or no answers to above
questions where not possible in pure python.

7) Create single XML Configuration file that holds all info any test might need

8) Preconfigured sets of tests described by XML

9) More of the tests listed above

10) Tools that create the configuration and event list XML files

Possibilites that I probably wont have time for, but which I will bear in
mind so that they might be easy to add:

11) Web output of the results

12) Collection of results in central database

13) Integration with config management/version control to automatically
test various combinations of releases / new releases.

