Fundamentals of Charged Particle Optics in High Energy Accelerator Systems

U.S. Particle Accelerator School
Winter 2008
Mike Syphers, Arden Warner -- Fermilab
Ryoichi Miyamoto -- University of Texas
Class Overview

Students:

- 23 in the class
- ~15 from labs/research centers
- ~8 from universities; 1, high school
- Various stages/levels of education:
 - 3 PhD, 4 MS, 5 gs, 9 BS, 2 ug, 1 HS(!)
- credit (undergraduate) vs. audit

13 - Credit 10 - Audit

PLEASE CONFIRM -- initial sheet!
Course Overview

- Charged Particle Optics
- Beam transport (beam lines)
- Periodic (circular) systems
- Mostly, concerned with single particle effects

Why “high energy” in this course?

First week: basic, fundamental concepts

Second week: more details; design issues
Syllabus / Procedures

- lectures, labs, homework, exam
- lectures in mornings
- lecture/discussion + lab in afternoon
- study sessions in evenings

- physics vs. technology
- lots to cover in SHORT time !!
Homework/Labs

Many problems on the handout; not all to be assigned
Will choose from the list each day, ~4 problems
problems AND labs due 9:00 a.m. next morning
will go over HW in afternoon sessions
Enthusiasts can use ‘extra’ HW as practice; can go over during future discussion periods...
Hopefully Labs can be done in 2-hr slot; room also will be available at other times...
Syllabus

Week 1

<table>
<thead>
<tr>
<th>Day</th>
<th>9:00 - 10:15</th>
<th>10:30 - 11:45</th>
<th>1:30 - 2:45</th>
<th>3:00 - 5:00</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mon</td>
<td>Introduction & Course Prerequisites</td>
<td>Single Particle Trajectories and Weak Focusing</td>
<td>Linear Guide Fields and Focusing Fields</td>
<td>Lab: Weak Focusing, Optical Elements</td>
</tr>
<tr>
<td>Tues</td>
<td>Matrix Formalism and Strong Focusing</td>
<td>Analytical Methods – Courant Snyder Parameters</td>
<td>Courant Snyder Parameters – II</td>
<td>Lab: Doublets, Triplets, Ray Tracing</td>
</tr>
<tr>
<td>Wed</td>
<td>Phase Space and Emittance</td>
<td>Off-Momentum Considerations</td>
<td>Homework Review & Discussion</td>
<td>Lab: Lattice Parameters</td>
</tr>
<tr>
<td>Thur</td>
<td>Transverse Linear Errors and Adjustments</td>
<td>Additional Optics Components</td>
<td>Homework Review & Discussion</td>
<td>Lab: Steering and Dispersion</td>
</tr>
<tr>
<td>Fri</td>
<td>Optical Design – cells and insertions</td>
<td>Optical Design – off-momentum</td>
<td>Homework Review & Discussion</td>
<td></td>
</tr>
</tbody>
</table>

Week 2

<table>
<thead>
<tr>
<th>Day</th>
<th>9:00 - 10:15</th>
<th>10:30 - 11:45</th>
<th>1:30 - 2:45</th>
<th>3:00 - 5:00</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mon</td>
<td>Synchrotron Radiation</td>
<td>Light Source Lattices</td>
<td>Beam and Optics Diagnostics</td>
<td>Lab: Optical Insertions</td>
</tr>
<tr>
<td>Tues</td>
<td>Sensitivity Analyses</td>
<td>Beam Lines vs. Circular Accelerators</td>
<td>Homework Review & Discussion</td>
<td>Lab: Beam Line Analysis</td>
</tr>
<tr>
<td>Wed</td>
<td>Consideration of Nonlinearities</td>
<td>Space Charge Effects</td>
<td>Homework Review & Discussion</td>
<td>Lab: Synchrotron Analysis</td>
</tr>
<tr>
<td>Thur</td>
<td>Transverse Coupling</td>
<td>Emittance Exchange</td>
<td>Review Session</td>
<td>Lab: Finish Labs</td>
</tr>
<tr>
<td>Fri</td>
<td>Wrap Up 9:00-9:30 a.m.</td>
<td>Final Exam 10:00 a.m.-noon</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Today...

- Review of Classical Physics, esp. required concepts
 - Newton, Maxwell, special relativity, ...
- “Weak” Focusing synchrotron
- Linear Guiding and Focusing Magnetic Fields

Goals:
- review (get used to problem solving again!)
- get feel for techniques, range of parameters
Some Philosophy

- Optics design and calculations
- Modularity of Optical Systems
- Design Codes
- Acknowledgments
- Apologies

since from FNAL, SSC, BNL -- many examples are from these labs; will attempt to be general...
Homework for Tuesday

Problem Set 1 -- Nos. 3, 4, 5, 8, and 10
Invention of Particle Accelerators

- Early DC Accelerators -- van de Graaf, Cockcroft-Walton, ...
- AC Required for higher energies
 - Wideroe and recognition of RF
 - Invention of cyclotron by Lawrence, et al.
 - Radar leads to Alvarez linear accelerator
 - The Betatron principle
 - Invention of the Synchrotron -- McMillan, Veksler
 - Invention of Alternating Gradient Focusing
Modern Accelerators

- The HEP era -- SLAC, CESR, Tevatron, LEP, KEKb, PEP II, SSC, LHC, ...

- Also, modern-day Nuclear Physics -- CEBAF, RHIC

- Emergence of other interests -- medicine, defense, industry -- light sources, etc.

- Someone did a better job ...

- Where do those 1 Joule cosmic rays come from?
Single Particle Trajectories

- In each case -- single particle motion in magnetic fields
- Newton, Maxwell, Lorentz force, Relativity
- Magnetic rigidity
- The need for transverse focusing
 - “emittance” of a beam
 - space charge force
- stability of motion
- Electric vs. Magnetic forces on a charged particle
Special Relativity

- Frames of Reference
- The Principle of Relativity
- The Problem of the Velocity of Light
- Simultaneity
- Lengths and Clocks
- The Lorentz Transformation
- $E=mc^2$
- Transformations of E-, B-fields
Speed, Momentum, vs. Energy

Electron: 0 0.5 1.0 1.5 MeV
Proton: 0 1000 2000 3000 MeV
Single Particle Trajectories

- Newton, Maxwell, Lorentz force ✓
- Relativity ✓
- Magnetic rigidity
- The need for transverse focusing
 - “emittance” of a beam
- Space charge force
- Stability of motion
- Electric vs. Magnetic forces on a charged particle
Weak Focusing System

(as it has come to be known...)

- Field varies with radius:

\[B = B_0 \left(\frac{R_0}{r} \right)^n \]

\[n \approx \frac{R_0}{d} \]

\(n \) is determined by adjusting the opening angle between the poles

\(d = \infty, n = 0 \)

\(d = R_0, n = 1 \)
Weak Focusing System

Centr. Force:
\[
\frac{mv^2}{r} = e v B_0
\]

\[
B = B_0 \left(\frac{R_0}{r} \right)^n
\]

“field index”
\[
n \equiv - \frac{R_0}{B_0} \left(\frac{\partial B}{\partial r} \right)_{r=R_0}
\]

radial force

\[r \]
\[R_0 \]
\[r \]
Weak Focusing System

- Differential Equations (Horizontal and Vertical)
- Betatron Tune
- Stability Condition
- Maximum Oscillation Amplitude
Weak Focusing: Differential Equations

Radial:

\[
\gamma m (\ddot{r} - r \dot{\theta}^2) = -evB_y = -evB_0 \left(1 - n \cdot \frac{x}{R_0} \right)
\]

\[
\gamma m \ddot{r} = \gamma m \frac{v^2}{r} - evB_0 \left(1 - n \cdot \frac{x}{R_0} \right)
\]

\[
\ddot{r} = \frac{v^2}{R_0} \left(1 - \frac{x}{R_0} \right) - \frac{ev^2 B_0}{\gamma m v} \left(1 - n \cdot \frac{x}{R_0} \right)
\]

\[
\dddot{x} = - \left(\frac{v}{R_0} \right)^2 (1-n)x
\]

\[
\dddot{x} + \omega_0^2 (1-n)x = 0
\]

- Betatron Tune
- # osc.'s per turn:

\[
\nu_x = \sqrt{1 - n}, \quad \nu_y = \sqrt{n}
\]
Maximum Excursions

- **Solution is Simple harmonic Oscillator:**

\[
\ddot{x} + \omega_0^2 \nu^2 x = 0 \\
v^2 x'' + \omega_0^2 \nu^2 x = 0 \\
x'' + \left(\frac{\nu}{R_0}\right)^2 x = 0
\]

\[\Rightarrow x(s) = x_0 \cos \left(\frac{\nu}{R_0} s\right) + x'_0 \frac{R_0}{\nu} \sin \left(\frac{\nu}{R_0} s\right)\]

\[x_{\text{max}} = \frac{R_0}{\nu} x'_0\]

- For given angular deflection, Maximum Excursion:
 - Note: 0 < tune < 1,
 - Thus, due to limited range of \(n \), then as \(R \) (i.e., energy) got large, so did the required apertures.
Desire particles “near” the design trajectory to remain near the design trajectory -- as we saw in weak focusing system, for small displacements, want a restoring force proportional to displacement.

Result: Simple Harmonic Motion

Will explore the use of linear fields

\[B = \text{constant} \quad \text{or} \quad B = \text{constant} \times \text{displacement} \]
Guide Fields
and Linear Focusing Fields

\[X(z) = \text{actual} \]

\[X_d(z) = \text{design} \]

\[x' = \frac{dx}{ds} \]

\[s = \text{distance along ideal path} \]

\[\gamma m \frac{d^2 X_d}{dt^2} = -ev_s B_0 \]
Linear Restoring Forces

- Assume linear guide fields:
 \[B_Y = B_0 + B'y \]
 \[B_x = B'x \]

- Look at radial motion:

\[
\frac{dx}{dt} = \frac{dx}{ds} \frac{ds}{dt} = x'v_s
\]

\[
\frac{ds_1}{\rho + x} = \frac{ds}{\rho}
\]

\[
\frac{d\theta}{ds}
\]

\[
\frac{d\theta}{\rho}
\]

\[
\gamma m \frac{d^2(x_d)}{dt^2} = -e v_s B_0
\]

\[
\gamma m \frac{d^2(X_d + x)}{dt^2} = -e v_s B_y(X)
\]

\[
\gamma m (X''_d + x'') v_s^2 = -e v_s B_y(X)
\]

\[
\gamma m v_s x'' = -e \frac{v_s}{v_s} B_y + e B_0
\]

\[
\gamma m v_s x'' = -e \left[B_y \left(1 + \frac{x}{\rho} \right) - B_0 \right]
\]

\[
x'' = -\frac{e}{\rho} \left[(B_y - B_0) + B_y \frac{x}{\rho} \right]
\]

\[
\approx -\frac{1}{B\rho} \left[B'x + B_0 \frac{x}{\rho} \right]
\]
Hill’s Equation

Then, for vertical motion:

So we have, to lowest order,

\[x'' + \left(\frac{B'}{B\rho} + \frac{1}{\rho^2} \right)x = 0 \]
\[y'' - \left(\frac{B'}{B\rho} \right)y = 0 \]

General Form:

\[x'' + K(s)x = 0 \]

\((\text{SHO}, \text{for } K=\text{const.}) \)
Beam Line Components

- Electrostatic deflectors and the need to use magnetic fields
- Iron-dominated Magnetic Elements
 - dipole, quadrupole, n-pole magnets
 - combined function magnet
 - Lambertson magnets, solenoids, kickers, ...
- Hysteresis in iron magnets
- Solving Poisson’s Equation by “relaxation”
Magnetic Elements

\[B_Y = B'x \]
\[B_X = B'y \]
(Quadrupole Magnet)

\[B_Y = B_0 \]
\[B_X = 0 \]
(Dipole Magnet)
Gradient Magnets

\[B_y = B_0 + B'x \]
\[B_x = B'y \]

“Alternating Gradient”
Iron-dominated Magnets

Field Calculations of Simple Devices
 Dipole magnet
 Quadrupole magnet

More complex designs
Superconducting Magnets

- Here, field is not shaped by iron pole tips, but rather is shaped by placement of the conductor.
- Example: dipole magnet...

\[2\pi r B_\theta = \mu_0 J(\pi r^2) \]

\[B_\theta = \frac{\mu_0 J}{2r} \]

\[B_y = \frac{\mu_0 J}{2} d, \quad B_x = 0 \]

Current density \(J \)
Tevatron Dipole Magnet

“Cosine Theta” design
Superconducting Magnets

- Example:
 - $J \sim 1000 \text{ A/mm}^2$, $d \sim 1 \text{ cm}$
 - \[B \sim \frac{1}{2}(4\pi \times 10^{-7})(1000 \times 10^6)(10^{-2}) = 2\pi \text{ Tesla} \]

- Tevatron -- \(~4.4 \text{ Tesla}\)
- SSC (above parameters) -- \(6.6 \text{ Tesla}\)
- LHC -- \(8 \text{ Tesla}\)
- LBNL model magnet -- \(16 \text{ Tesla}\)

Note: Higher fields a “plus,” but field quality typically easier to control with iron pole tips shaping the field …
“Relaxation” Method

- When the field is independent of z, the average potential on circle parallel to x-y plane equals the potential at the center of the circle, provided no charge density in the region.

- Generate “mesh” of points, with fixed potentials at the boundaries; generate “first guess” at values of potential at the mesh points.

- At each point, calculate average of potential of neighboring points; compare with the “guess”; alter the guess to split the difference.

- Repeat, until “converge” to a solution for which the average of the neighbors equals each “guess” value (to a certain accuracy). From the resulting potential, compute the field.
Sector Magnets

- Sector Dipole Magnet: “edge” of magnetic field is perpendicular to incoming/outgoing design trajectory:

 Field points “out of the page”
Sector Magnets & Sector Focusing

- Incoming ray displaced from ideal trajectory will experience more/less bending field, thus is “focused” toward axis in the bend plane:

Extra path length = $ds = d\theta \, x$
so extra bend angle = $dx = -ds/\rho$

$$dx = -(d\theta/\rho)x = -(1/\rho^2)x \, ds$$
or, $$x = -(1/\rho^2)x$$

Thus, $K_x = 1/\rho^2$, $K_y = 0$.
(as seen previously, with $B' = 0$)

For short magnet with small bend angle, acts like lens in the bend plane with

$$\frac{1}{f_x} = \frac{\theta}{\rho}$$
Edge Focusing

- In an ideal sector magnet, the magnetic field begins/ends exactly at $s = 0$, L independent of transverse coordinates x, y relative to the design trajectory.
 - *i.e.*, the face of the magnet is perpendicular to the design trajectory at entrance/exit
Edge Focusing

- However, could (and often do) have the faces at angles w.r.t. the design trajectory -- provides “edge focusing”

- Since our transverse coordinate x is everywhere perpendicular to s, then a particle entering with an offset will see more/less bending at the interface...
- more later...
Some words on Space Charge

For most of this course, will neglect the force on a particle due to the presence of surrounding particles.

- Fields within a uniform “bunch”
- Fields within a Gaussian “bunch”

will say more about this next week.
Homework for Tuesday

Problem Set 1 -- Nos. 3, 4, 5, 8, and 10