Tuesday

@ Wish to cover (lots!):
@ Matrix formalism, and Strong Focusing

@ Hills Equation
@ Analytical Solutions to Hills Equation

@ Courant-Snyder parameters (beta function, ...)
@ motivation and meaning

@ computation




Back to Transverse Motion...
Piecewise Method of Solution

= Hill’s Equation "+ Kx =0

® Though K(s) changes along the design trajectory, it is
typically constant, in a piecewise fashion, through
individual elements (drift, sector mag, quad, edge, ...)

dr‘ft mK = 0: ./I;/, — 0 —> ,”L‘(S) = X -+ '/1;68
/
Quadj nt K > O: .’IJ(S) = Ty COS(\/E S) + \j% SiIl(\/? S)
Grad® o4
agne” ,
Medge’ mK <0: z(s) = xgcosh(1/|K]|s) + \/xf?' sinh(+/|K|s)

Here, x refers to horizontal or vertical motion, with relevant value of K




Piecewise Method -- Matrix Formalism

= Write solution to each piece in matrix form
® for each, assume K = const. from s=0 to s=L

nx=0: (2)-(}1)(%)

tilint <>:<—¢?W<E¢%L> T(%L)M)

"K<0: () onWER AR ()
! | K| sinh(y/|K|L) cosh(y/|K|L) g




“Thin Lens” Quadrupole

® |[f quadrupole magnet is short enough, particle’s offset
through the quad does not change by much, but the
slope of the trajectory does -- acts like a “thin lens” in
geometrical optics

B Take limit as L --> 0, while KL remains finite

[ romtrn e )~ (e )= (5 1)

m (similarly, for defocusing quadrupole)

® Valid approx., if F>> L 1 X(s)
kL-2L_1 Tl !
~ Bp F \/ HILLIIa




Quadrupole Field

®mNote: A quadrupole magnet will focus in
one plane, and defocus in the other




Piecewise Method -- Matrix Formalism

® Arbitrary trajectory, relative to the design
trajectory, can be computed via matrix
multiplication

"N) = MyMy_q - MoMy ()
X'nr L




Review of Matrices

@ Operation of matrix on a vector
@ Addition of matrices

@ Multiplication of matrices

@ Determinant of a matrix

@ Trace of a matrix

@ Eigen-values and eigen-vectors




Lens Systems

@ Singlet
@ Doublet

@ Triplet

@ Matrix descriptions of thin lens systems -- ray tracing




Stability Criterion

® For single pass through a system of elements,
above treatment may be enough to describe the
system. Suppose the “system” is a synchrotron --
how to show that the motion is stable for many
(infinite?) revolutions? (24 hrs x 50K rev/sec = ...)

® | ook at matrix describing motion for one revolution:

M=MxvMn_1 -+ MoM
= We want: R 2

($,> sz(x,) ﬁniteaskﬂooforarbitrary(x,)
T )k T /o T /o




Stability Criterion

A = eigenvalue

X, = MFX, = MF(AV; + BV,) = AA’fVl —I—B)\IQCVQ
det M =1=X Xy > Ay =1/) )\ = etin

If 1. is imaginary, then repeated application of M gives
exponential growth; if preal, gives oscillatory solutions...

characteristic equation: det(M — AI) =0

if M = ( ‘Z g ),then (@a—A)(d—A)—bc=0
memdp N —(a+d)A+ (ad—bc) =0
AN —trMA+1=0
A+1/A=trM So, u real (stability)
et +e ™ =2cospu=trM — |trM| < 2




Discovery of Strong Focusing”

® Consider weak focusing system discussed earlier, made up of 2N
identical gradient magnets. Take every other magnet, turn it around
so that the wedge opens inward, and reverse its current.

® Then all magnets have same bend field (in same direction) on the
ideal trajectory, but every other magnet has its gradient (K) with
reversed sign. We now have N “cells” of +K and -K.

® |n one degree-of-freedom (vertical, say), each cell has matrix:

M, — cos(VKL) \/% sin(vKL) cosh(vKL) # sinh(v/KL)
—VKsin(vVKL)  cos(vVKL) VK sinh(vVKL)  cosh(vKL)

( cos(vVK L) cosh(vVKL) + sin(v/KL) sinh(vVKL)

cos(vKL) cosh(\/FL)' — sin(v/ K L) sinh(vKL) )

from which

trM = 2cos(VKL) cosh(VKL)

*Courant, Livingston, and
Snyder, 1952.

Christofolis, ¢. 1950.

So, we need

| cos(v/KL) cosh(vVKL)| < 1

Here, K = |B’|/Bp




The Strong vs. The Weak...
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So, could choose K L? =~ [(0.2)27]? = 1.58, say.
KL = (B'/Bp)I? = (B'p/B)(L/p)? = In| 68 = In| (2/2N)* = 1.58
for example, say N ~ 25; then |n| ~ 100 > 1 (STRONG focusing!)

(Note: for Weak Foc. accel., typically n ~ 2/3 — KL? ~ 0.01!)




Alternating Gradients

® S0, now that we can accommodate very strong field gradients, and alternate
them over short distances, the extent of radial and vertical excursions
becomes decoupled from the orbital radius of the accelerator.

®= The announcement of the AG concept came in 1952, and was immediately
applied at Cornell in a 1 GeV electron synchrotron being constructed (Wilson,
et al.), the world’s highest energy at the time. This eventually led to the
design and construction of the PS at CERN (1958) and the AGS at
Brookhaven National Lab (1960), increasing particle energies to the 30 GeV

range. Strong Focusing has been at the heart of every forefront accelerator
ever since.




Application to FODO system

o= (e 1) (o V) (e 1) (o 1)

B ( —11/F l—é/F ) ( 1/1F 1+Ii/F )

B 1+ L/F 2L+ L*/F
- (—L/F2 1—L/F—L2/F2>

M ~ So,trM =2 — L?/F? and thus, for stability,
/\: il /\I —2<2-L%/F? <2
M N Ny —4< —-L?/F? <0
i | F>1L/2

and !repeat. |




Can now make LARGE accelerators!

® Since the lens spacing can be made arbitrarily short, with
corresponding focusing fields, then in principal can make
a synchrotron of arbitrary size

1 1

® Can “separate” the bending and focusing “functions”
® First synchrotron to use alternating gradient “thin lenses”

+ dipole magnets: T r. 3
= Fermilab Main Ring @ > me




The Notion of an Amplitude Function...

® Track a single particle
through a system of
FODO cells

B Repeat, representing
multiple passages
around a synchrotron

Can we describe the maximum amplitude of
particle excursions in analytical form?

of course!







Pushing the "Envelope”

, = We saw, for a FODO system,
Envelope described by an . .
“amplitude function” that the motion of a single
particle is contained within an
“envelope”

® Wish to determine its functional
form, and the rate at which the
phase of the oscillatory motion
develops

® Decouple motion of individual
particle from intrinsic properties
of the accelerator design




Hill's Equation --
Analytical Solution

= \We saw that the equation of transverse motion is Hill’s
Equation:
i 2"+ K(s)r =0

® Note: “similar” to simple harmonic oscillator equation, but
“spring constant” is not constant -- depends upon
longitudinal position, s.

® So, assume solution is sinusoidal, with a phase which
advances as a function of location s; also assume
amplitude is modulated by a function which also depends

upon s: 2(s) = A/B(s) sin[th(s) + 9]

® Plug into Hill’s Equation...




Analytical Solution (cont’d)

x(s) = A/ B(s)sin|(s) +
i | &= %Aﬁ_%ﬁ’sin[w()—l—c? + A/ cos[i(s) + 8]

T =

Plug into Hill's Equation, and collect terms...

"+ K(s)r = f[zb + ﬁwl cos[t(s) + 9]
+A\/B [ 1 5/2 %%/ — (¢))? + K| sin[y(s) + ] =0

A and ¢ are constants of integration, defined by the initial
conditions (=0, z;) of the particle. For arbitrary A, 4, the
contents of each [ ] must be zero simultaneously.




Analytical Solution (cont’d)

® Thus, we must have ...

/ 1 (3')2 1 3"
¢N+E¢,ZO and —Z(gQ) +§%—(¢/)2—|—K:O
BY" + By =0 266" — (8')2 —45°(¥)? + 4K 5 = 0
(By') =0 288" — (8')? + 4K 6% =4

/
=1
¢ / 6 \ Differential equation

Note: the phase advance is an Ijhe fU.IlCtiOH ﬁ(S) iS the et U amp“tUde
1

observable quantity. So, while could
choose different value of const, then
(3 would just be scaled accordingly;
S0, we can choose const = 1.

ocal Wavelength ()\/277) function must obey

f the oscillatory motion.




Some Comments

= We chose the amplitude function to be a positive definite function in its definition,
since we want to describe real solutions.

® The square root of the amplitude function determines the shape of the envelope
of a particle’s motion. But it also is a local wavelength of the motion.

® This seems strange at first, but ...

= |magine a particle oscillating within our focusing lens system; if the lenses are
suddenly spaced further apart, the particle’s motion will grow larger between
lenses, and additionally it will travel further before a complete oscillation takes
place. If the lenses are spaced closer together, the oscillation will not be
allowed to grow as large, and more oscillations will occur per unit distance
travelled.

= Thus, the spacing and/or strengths (i.e., K(s)) determine both the rate of
change of the oscillation phase as well as the maximum oscillation amplitude.
These attributes must be tied together.




The Amplitude Function, 5

Higher (3 --
smaller phase advance
larger beam size

Lower (3 --
greater phase advance
smaller beam size

® Since the amplitude function is a wavelength, it will have numerical values of
many meters, say. However, typical particle transverse motion is on the scale of

mm. So, this means that the constant A must have units of m'2, and it must be
numerically small. More on this subject later ...




Equation of Motion
of Amplitude Function

From
266" — (/)% + 4K (2 = 4

we get

25/6,/ N 2/8/8/// 1 1 2/3/6// _|_4K/62 +8K6/8/ —0
3" +4Kp +2K'3 = 0.
Typically, K'(s) = 0, and so
(8" +4KB)' =0

or

3" + 4K = const.

is the general equation of motion for the amplitude function, (.
(in regions where K is either zero or constant)




Piecewise Solutions

BK=0:
1 08‘-
ﬁ// = COTLSt TRN 6(8) = ﬁo —|— ﬁ(,)S —|_ 5/86/82 Parab\
= since 3 > 0, then from original diff. eq.: 233" — (ﬁ’)Q — /4
= Therefore, parabola is always concave up 5” > 0
BEK>0, K<O:

B(s) ~sin/cos or sinh/cosh 4+ const




Homework for Wednesday

@ Problem Set 2 -- Numbers 1, 2, 6, and 7




Courant-Snyder Parameters, &
Connection to Matrix Approach

® Suppose, for the moment, that we know the value of the
amplitude function and its slope at two points along our
particle transport system.

= Have seen how to write the motion of a single particle in
one degree of freedom between two points in terms of a
matrix. We can now recast the elements of this matrix in
terms of the local values of the amplitude function.

® Define two new variables, ] 115
= __5/7 Y= B

 Collectively, (3, «, v are called the Courant-Snyder
Parameters (sometimes called “Twiss” or “lattice” parameters)




The Transport Matrix

®\We can write: 2(s) = ar/Bsint + b/ cos

B Solve for a and b in terms of initial conditions
and write in matrix form

®we get:
( ) (ﬁﬁ) (cos A) 4+ ag sin A)) VB0 sin Ay ( o
4 1\/B_ sin Ay — \/_ cos A (%) (i (cos Ayp — arsin Avp) 0




Periodic Solutions

= \Within a system made up of periodic sections it is natural to
want the beam envelope to have the same periodicity.

® Taking the previous matrix to be that of a periodic section,
and demanding the C-S parameters be periodic yields...

RALLL L cos A + «sin A B sin A
periodic — — o SN Aw COS Aw — @ SIn Aw

Mperiodic &

K values of 3, a above correspond to one
particular point in the accelerator




Periodicity and the “Tune”

®\We see from above that matrix of a periodic
section (which, for example, could be an
entire synchrotron!) has a Trace which is

trace(Mperiodic) = 2 cos A

B |f the matrix does represent an entire
synchrotron, then the total phase advance is

just 27 x the tune: l

A = 2y =
i (5)




Computation of
Courant-Snyder Parameters
As an exaple, consider a FODOQO system

B - (e )G D) (e 1) 1)

= (e 1) Coge a4l

1+ L/F 2L+ L?/F
1 (—L/F2 1—L/F—L2/F2>

B Thus, use above matrix to compute
functions at exit of the F quad..




FODO Cell

B From the matrix:

1 A1 1+ L/F 2L + L?/F 1HiEle
e TR0 L0 R s e A TR el )

through one
periodic cell

1 o T72/102 _ . p_ L
traceM =a+d=2—L“/F* =2cospu :> sin - =

5 .b _oF 1+S%n,u/2 a:a.—d: 1+s%n,u/2
sin 1 — sin pu/2 2sin 1 — sinpu/2

®|f go from D quad to D quad, get

® gt exit: 5:2F\/1_Sin'u/2 a:\/l—sin,u/Z

1 +sinp/2’ 1+ sinp/2




Periodic FODQO Cell Functions

® Tevatron Cell

sin(pu/2) = L/2F = 0.6 — p~ 1.2(69°)
Brmaz = 2(25 m)4/1.6/0.4 = 100 m
Bmin = 2(25 m)4/0.4/1.6 = 25 m

VR 100><12/27T~20 120 I I I l I




Propagation of

Courant-Snyder Parameters

®\We note that can write periodic matrix
corresponding to location s as:

( cos A) 4+ asin Ay £ sin A
My =

—~ sin A cos A

— asin Ay )

- <é (1))(:OS.A¢-|-<_O‘7 _ﬁa>SiDA¢

= [cos Ay + Jsin Ay =e

8%
oo go(® P aaes

J A

trace(J) = 0;

J2

—1I




Tracking B, o, v ...

mLet M, and M5 be the “periodic” matrices at two points, and
M propagates the motion between them. Then,

+ My = M M, M1

(M7, My are “once around”)

M2

= Or, equivalently, Jo = M Jq M

® So, if know parameters (i.e., J) at one point, can find
them at another point if given the matrix for motion in
between




Evolution of the Phase Advance

® Again, if know parameters at one point, and
the matrix from there to another point, then

a b b
Mi_o = = tan Ay _,
LT % ( C d ) i1 (1,61 T bCVl it ¢1 £

® S0, from knowledge of matrices, can
“transport” phase and C-S parameters along
a beam line




Simple Examples

. 1 L
B Propagation Hih ( 0 1 )
through a Drift 111 L
g === A1) = tan (51—13041)
B = Bo — 209 + yo L?
a = ag — Yol

WEi
1 0
= Propagation il (—1/F 1)
through a Thin T ?‘f;o
Lens A

’y:’yo—l—QOzo/F—Fﬂo/FQ



Choice of Initial Conditions

® Have seen how B can be propagated from one point to
another. Still, have the choice of initial conditions...

m |f periodic system, like a “ring,” then natural to choose the
periodic solution for B, «

® |f beam line connects one ring to another ring, or a ring to
a target, then we take the periodic solution of the
upstream ring as the initial condition for the beam line

= Will discuss optical “mismatches” and their implications in
future talks




Computer Codes

® Complicated arrangements can be fed into
now-standard computer codes for analysis
" TRANSPORT
= SYNCH
= MAD
= CHEF
= many more ...




An Example -- NuMI| Beam Line

=10l
. u File Edit Examples Tools wWindows Devices Help
1 A A A A A
l JSI ng 0 o ||| Y ox fa dn Dn B Do
=101 =10 =10
Name | Tope | Acimutn | | oonise | options
NLIMI beamline  0-365.173 000133 ! Quads with F inthe name are focusing. with a D are defocusing
+- § EXTRACT beamline  0-60.0581 000134 HOD101 : QUADRUPOLE, TYPE = 0120, L= 0.5*LQ120, K1 =-115 6465 4/BRHO
= & FODO bearline  B0.0581-117.653 000135 IF100 : DRIFT. L=L6IN lion pump
: : : - § HT104 beamline  G0.0581-61.6186 000736 CNOTUR: DRIFT, L= 174625
(Michelotti, Ostiguy) £ HEPM1OS beamlne B1E1a662307 | 000137 G101DN: DRIFT,L = 2.16815
o105 beamline  2.307-65.759 000136 IP107A: DRIFT. L = LEIN
it 62 456 000133 G101 : LINE = (IP100,0101UP.H2D101,MAD101.HAD1 01,0101 DN IP101A)
quadupale 63,99 000140 HQF102 : QUADRUPOLE, TYPE = G120, L = 0.5*LQ120, K1 = 132 87501/BRHOD
ke B34 000141 HQ0ZDM : DRIFT, L =.2139953
ol B 514 000142 G102 : LINE = ( HQF102.MQF1 02 HQF1 02, HQ020M )
3‘?; '“'3“85'?89 000743 HQD103 : QUADRUPOLE, TYPE = 2120, L= 0540120, K1 =-130.68561/BRHO
Il .

000144 HQO3DM - DRIFT, L =.2139957

EOR105 beamline 65783663733 000145 Q103 : LINE = { HOD103MQD103.HQD1 03 HQO3DN )
YALTOS beamline  EE373373.0292 | nnq46 HQF104 | QUADRUPOLE, TYPE = GB0. L= D.5*L0G0, K1 = 44.92256/BRHO
WEPM10E beamline  73.0292-79.7014 000147 HO04DM - DRIFT, L= 26229
Q108 beamlne  79.7014-83.0732 goniag | |
COR106 beamline  83.0732-83.5315 o x|
YAC106 beanline  83.5515-95.954 Fie Options Data Help
HEFM107 bearline  95.964-96.9374
i o107 bearline  96.9374-100.276
COR107 beamline  100.276-100.785
WACIO0F beamline  100.785-112.827 10
COR108 beamline  112.827-113.35
: WEPM108 beamline  113.35-114.193
+- § 0108 beamline  114.133-117.653 'E' 5
+- i WDOWH beamline  117.653-175.538 = 2
| carieR: diift 238.485 i 0B
+- § WUR beamlne  232.485-365.179 & =
5
e | EN, P N . T [ P

00 180 koo bS50 300 30
Arc Length [m]
— Harizontal Beta |— ‘“ertical Beta — Horizontal &lpha  — Wertical &lpha

BARRRFALEY




NuMI Beam Line usmg CHEF

BN e B man Sumae n"-‘mun'

Beta [m]

Arc Length [m]

|— Honzontal Beta I— Vertical Beta — Hornzontal Alpha — Vertical Alpha




Homework for Wednesday

@ Problem Set 2 -- Numbers 1, 2, 6, and 7




