Top Quark Mass in the Dilepton Channel at CDF

Bodhitha Jayatilaka
University of Michigan

On behalf of the CDF Collaboration

APS April Meeting, Dallas
April 23, 2006
Outline

• Experimental apparatus: Tevatron and CDF Detector
• The dilepton channel
 • Difficulties of measuring M_{top} in this channel
• The Matrix Element method
 • Systematic Uncertainties
• Measurement in data
• World average and consistency with lepton+jets
• An additional measurement: b-tagged sample
Tevatron and CDF Detector

- Tevatron
 - In past year, e cooling implemented
 - Helps with anti-proton stacking
 - Peak luminosity \(>1.7 \times 10^{32} \text{ cm}^{-2}\text{s}^{-1}\)
 - 1.6 fb\(^{-1}\) delivered to experiments
- CDF Detector - General purpose detector
 - Precision tracking (Silicon + COT)
 - EM and Hadronic calorimeters
 - Endplug new for Run II
 - Muon detectors (extended for Run II)
 - 1.3 fb\(^{-1}\) recorded at CDF
 - Measurement shown uses 750 pb\(^{-1}\) (up to December 2005)
Top Decay: The Dilepton Channel

- Top quarks are primarily pair produced at Tevatron
 - Decay channel is defined by W decay modes
- Both Ws decay leptonically in ~5% of all decays
 - 2 leptons (e or μ), 2 jets (from b-quarks), large missing E_T from vs

Advantages
- Clean: little background without need for b-tagging
- Least jets of any channel (less reliant on JES, less ambiguity in jets)

Disadvantages
- Low statistics
- 2 vs escape undetected—underconstrained system

Backgrounds
- Drell-Yan + jets
- Diboson + jets
- Mis-ID leptons (“fakes”)

![Diagram showing decay processes and backgrounds](image-url)
Measuring M_{top} in the Dilepton Channel

Important measurement

- Verify that we are measuring SM top
- If results across channels inconsistent, new physics might be in sample

Difficult channel to work in

- Low statistics
- Two neutrinos escape undetected
- Only one missing transverse energy measurement
 - Kinematically under-constrained
- Forced to make assumptions and integrate
The Matrix Element Method

- Use differential cross-section to calculate probability of event coming from M_{top}

$$\frac{1}{\sigma(M_t)} \frac{d\sigma(M_t)}{dx}$$

- Formulate differential cross-section using LO matrix element and transfer functions

$$\frac{d\sigma(M_t)}{dx} = \frac{1}{N} \int d\Phi_6 |M_{t\bar{t}}(p_i; M_t)|^2 \prod W(p_i, x) f_{PDF}(q_1) f_{PDF}(q_2)$$

- Transfer functions link measured quantities x to parton-level ones, p_i
- Perform integrals over unknown quantities (6)
- Simplifying assumptions made for tractability
- Use similar differential cross-sections for background processes
 - Final probability becomes weighted sum of signal and background probabilities
 $$P(x|M_t) = P_s(x|M_t)p_s + P_{bg1}(x)p_{bg1} + P_{bg2}(x)p_{bg2} + \cdots$$
- First application of method to dilepton channel (340 pb$^{-1}$), published in PRL 96, 152002

Integrals still take 2-3 hours per event!
Uncertainties

Statistical Uncertainty
- Expected for $M_{\text{top}}=175 \text{ GeV}/c^2$, $\sigma = 5.9 \text{ GeV}/c^2$
- Expected for $M_{\text{top}}=165 \text{ GeV}/c^2$, $\sigma = 5.1 \text{ GeV}/c^2$

Systematic Uncertainty

<table>
<thead>
<tr>
<th>Source</th>
<th>$\Delta M_{\text{top}} \text{ (GeV}/c^2)$</th>
</tr>
</thead>
<tbody>
<tr>
<td>Jet Energy Scale</td>
<td>2.6</td>
</tr>
<tr>
<td>Generator</td>
<td>0.5</td>
</tr>
<tr>
<td>Method</td>
<td>0.3</td>
</tr>
<tr>
<td>Sample Composition</td>
<td>0.7</td>
</tr>
<tr>
<td>Background Statistics</td>
<td>0.8</td>
</tr>
<tr>
<td>Background Modeling</td>
<td>0.8</td>
</tr>
<tr>
<td>FSR</td>
<td>0.5</td>
</tr>
<tr>
<td>ISR</td>
<td>0.5</td>
</tr>
<tr>
<td>PDFs</td>
<td>0.6</td>
</tr>
<tr>
<td>Total</td>
<td>3.1</td>
</tr>
</tbody>
</table>

Improves with better methods and/or more data

Improves with more CPU
Uncertainties

Statistical Uncertainty
- Expected for $M_{\text{top}} = 175$ GeV/c^2, $\sigma = 5.9$ GeV/c^2
- Expected for $M_{\text{top}} = 165$ GeV/c^2, $\sigma = 5.1$ GeV/c^2

Systematic Uncertainty

<table>
<thead>
<tr>
<th>Source</th>
<th>ΔM_{top} (GeV/c^2)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Jet Energy Scale</td>
<td>2.6</td>
</tr>
<tr>
<td>Generator</td>
<td>0.5</td>
</tr>
<tr>
<td>Method</td>
<td>0.3</td>
</tr>
<tr>
<td>Sample Composition</td>
<td>0.7</td>
</tr>
<tr>
<td>Background Statistics</td>
<td>0.8</td>
</tr>
<tr>
<td>Background Modeling</td>
<td>0.8</td>
</tr>
<tr>
<td>FSR</td>
<td>0.5</td>
</tr>
<tr>
<td>ISR</td>
<td>0.5</td>
</tr>
<tr>
<td>PDFs</td>
<td>0.6</td>
</tr>
<tr>
<td>Total</td>
<td>3.1</td>
</tr>
</tbody>
</table>

- Improves with better methods and/or more data
- Improves with more CPU

Working on using $Z \rightarrow bb$ to improve
Uncertainties

Statistical Uncertainty
- Expected for $M_{\text{top}} = 175$ GeV/c2, $\sigma = 5.9$ GeV/c2
- Expected for $M_{\text{top}} = 165$ GeV/c2, $\sigma = 5.1$ GeV/c2

Systematic Uncertainty

<table>
<thead>
<tr>
<th>Source</th>
<th>ΔM_{top} (GeV/c2)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Jet Energy Scale</td>
<td>2.6</td>
</tr>
<tr>
<td>Generator</td>
<td>0.5</td>
</tr>
<tr>
<td>Method</td>
<td>0.3</td>
</tr>
<tr>
<td>Sample Composition</td>
<td>0.7</td>
</tr>
<tr>
<td>Background Statistics</td>
<td>0.8</td>
</tr>
<tr>
<td>Background Modeling</td>
<td>0.8</td>
</tr>
<tr>
<td>FSR</td>
<td>0.5</td>
</tr>
<tr>
<td>ISR</td>
<td>0.5</td>
</tr>
<tr>
<td>PDFs</td>
<td>0.6</td>
</tr>
<tr>
<td>Total</td>
<td>3.1</td>
</tr>
</tbody>
</table>

Driven by small sample of (data-based) “fake” lepton events

- Improves with better methods and/or more data
- Improves with more CPU
Dataset Used

- 750 pb$^{-1}$ of data collected up to December 2005 at CDF
- Basic selection: 2 high-p_T (>20 GeV/c) leptons, 2 high-E_T (>15 GeV) jets, large E_T (>25 GeV)
- Additional cuts to help reduce background
 - Elevate E_T requirement when $m_\ell\ell$ is close to Z mass
 - Require scalar sum of energies in event, H_T>200 GeV

Source

<table>
<thead>
<tr>
<th>Event Type</th>
<th>N_{evs}</th>
</tr>
</thead>
<tbody>
<tr>
<td>tt ($M_t=175$ GeV/c^2, $\sigma=6.7$ pb)</td>
<td>36.1</td>
</tr>
<tr>
<td>$Z\rightarrow e\mu$</td>
<td>7.8</td>
</tr>
<tr>
<td>Fakes</td>
<td>6.3</td>
</tr>
<tr>
<td>WW/WZ</td>
<td>3.6</td>
</tr>
<tr>
<td>$Z\rightarrow \tau\tau$</td>
<td>1.6</td>
</tr>
<tr>
<td>Total Expected</td>
<td>55.4</td>
</tr>
</tbody>
</table>

Observed (750 pb$^{-1}$) | 64
Result

\[M_{\text{top}} = 164.5 \pm 4.5 \text{(stat.)} \pm 3.1 \text{(syst.) GeV/c}^2 \]

- Uses 64 events in 750 pb\(^{-1}\) of data
- **Most precise single measurement** of \(M_{\text{top}} \) in dilepton channel to-date
- Expected stat error of 5.1 GeV/c\(^2\) for \(M_t = 165 \) GeV/c\(^2\)
World Average and Consistency

- Dilepton measurement included in world average
 \[M_{\text{top}} = 172.5 \pm 1.3 \text{(stat.)} \pm 1.9 \text{(syst.) GeV/c}^2 \]
- hep-ex/0603039
- 11% weight
- Will contribute more as systematics come to dominate
World Average and Consistency

- Dilepton measurement included in world average
 \[M_{\text{top}} = 172.5 \pm 1.3 \text{(stat.)} \pm 1.9 \text{(syst.) GeV/c}^2 \]
- hep-ex/0603039
- 11% weight
 - Will contribute more as systematics come to dominate
- How consistent is 164.5 with 173.4?
 - Need more data to tell if discrepant
 - Trend is intriguing
- Other ways to probe whether sample has unexpected content?
 - Measure mass in subsample with different purity
B-Tagged Measurement

- Require one or more b-tag in sample
- Removes nearly all background, leaves 60% of signal
- Comparable sensitivity to full sample

\[M_{\text{top}} = 162.7 \pm 4.6 \text{(stat.)} \pm 3.0 \text{(syst.) GeV/c}^2 \]

- Result consistent with full sample
Conclusion and Outlook

- Application of Matrix Element technique to the dilepton channel
- Most precise single measurement of M_{top} in the dilepton channel

\[M_{\text{top}} = 164.5 \pm 4.5 \text{(stat.)} \pm 3.1 \text{(syst.) GeV/c}^2 \]

- Included in current world average (11% weight)
- With no improvements to method, projected stat. error with 4 fb$^{-1}$ is \(\sim 2 \text{ GeV/c}^2 \)
- Improvements to method in progress
Backup Slides
Measuring the Top Mass

1. Template-based

Reconstruct mass for each event

Form “templates” for signal (varying M_{top}) and background using simulated events

Perform maximum likelihood fit to extract measured M_{top}

Advantages: Takes all (simulated) detector effects into account, (relatively) computationally simple
Disadvantages: Only single number (recon. mass) per event in final Likelihood, all events have equal weight

2. Matrix Element-based

Form per-event probability using matrix element

Integrate over unmeasured quantities

Form ensemble probability and calibrate using simulated events

Advantages: More statistical power, probability curve rather than single mass per event, events weighted naturally
Disadvantages: Complex numerical integration (much CPU) → machinery does not account for all detector effects
Test of Method

- Response (left) is linear, sensitivity is degraded due to presence of unmodeled backgrounds
- Pulls (right), flat as function of top mass, ~ 1.5 (~ 1.4 for signal only)
 - Using parton-level information (all assumptions held), pull width ~ 1.0
 - As assumptions violated (realistic events) pull widths increase
 - Apply scale factor flat in top mass

\[
\text{Fitted Pull Width} = \frac{M_{\text{meas}} - M_{\text{true}}}{\sigma_{M_{\text{top}}}}
\]
Test of Method

$M_0 = 178.0 \pm 0.2$

$s = 1.00 \pm 0.01$

Response unbiased after correction

Error estimation correct

$Fitted\ \text{Pull Width} = \frac{M_{meas} - M_{true}}{\sigma_{M_{top}}}$
Treating Backgrounds

- Final event probability is weighted sum of signal and background probabilities
 \[P(x|M_t) = P_s(x|M_t)p_s + P_{bg1}(x)p_{bg1} + P_{bg2}(x)p_{bg2} + \cdots \]

- Weights are determined from expected fractional contribution of each source

- Form differential cross-sections as in signal for each modeled background process
 - Difficult to determined closed-form expression for backgrounds: use ME-based generators instead (e.g. ALPGEN)

- Example: DY+2 jets

- Modeled backgrounds
 - DY+jets
 - WW+jets
 - W+3 jets (for fakes)

- Product of per-event prob. densities give likelihood for sample
Data Events

- Only 31 candidate events from data collected in 2005
- Full data set has 64 events
- Curves are weighted signal+background probabilities
- Signal probability evaluated for $M_t = 130-220$ GeV/c2